Urban Cold and Heat Island in the City of Bragança (Portugal)
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Case Study
3.2. UHI Intensity
3.3. Seasonal Hour Temperature Change across LCZs
3.4. Wind and Rain Effect
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- United Nations. World Population Prospects: 2018 Revision; United Nations: New York, NY, USA, 2018. [Google Scholar]
- Oke, T.R. Initial Guidance to Obtain Representative Meteorological Observations at Urban Sites, in Instruments and Observing Methods; WHO, Ed.; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Janković, V. A historical review of urban climatology and the atmospheres of the industrialized world. Wiley Interdiscip. Rev. Clim. Chang. 2013, 4, 539–553. [Google Scholar] [CrossRef]
- Collier, C.G. The impact of urban areas on weather. Q. J. R. Meteorol. Soc. 2006, 132, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Landsberg, H.E. The Urban Climate; Academic Press: Cambridge, MA, USA, 1981; Volume 28. [Google Scholar]
- Hebbert, M.; Jankovic, V. Cities and Climate Change: The Precedents and Why They Matter. Urban Stud. 2013, 50, 1332–1347. [Google Scholar] [CrossRef] [Green Version]
- Mills, G. Urban climatology: History, status and prospects. Urban Clim. 2014, 10, 479–489. [Google Scholar] [CrossRef]
- Ren, C.; Ng, E.Y.-Y.; Katzschner, L. Urban climatic map studies: A review. Int. J. Climatol. 2011, 31, 2213–2233. [Google Scholar] [CrossRef]
- Stewart, I.D. A systematic review and scientific critique of methodology in modern urban heat island literature. Int. J. Climatol. 2011, 31, 200–217. [Google Scholar] [CrossRef] [Green Version]
- Giridharan, R.; Ganesan, S.; Lau, S.S.Y. Daytime urban heat island effect in high-rise and high-density residential developments in Hong Kong. Energy Build. 2004, 36, 525–534. [Google Scholar] [CrossRef]
- Memon, R.A.; Leung, D.Y.C.; Liu, C.-H. An investigation of urban heat island intensity (UHII) as an indicator of urban heating. Atmos. Res. 2009, 94, 491–500. [Google Scholar] [CrossRef]
- Cuadrat, J.M.; Saz Sánchez, M.A.; Vicente Serrano, S.M. Spatial patterns of the urban heat island in Zaragoza (Spain). Clim. Res. 2005, 30, 61–69. [Google Scholar] [Green Version]
- Van Hove, L.W.A.; Jacobs, C.M.J.; Heusinkveld, B.G.; Elbers, J.A.; van Driel, B.L.; Holtslag, A.A.M. Temporal and spatial variability of urban heat island and thermal comfort within the Rotterdam agglomeration. Build. Environ. 2015, 83, 91–103. [Google Scholar] [CrossRef]
- Gartland, L. Heat Islands: Understanding and Mitigating Heat in Urban Areas; Earthscan: London, UK, 2008. [Google Scholar]
- Oke, T.R. Boundary Layer Climates; Routledge: London, UK, 1987. [Google Scholar]
- Sakakibara, Y.; Owa, K. Urban–rural temperature differences in coastal cities: Influence of rural sites. Int. J. Climatol. 2005, 25, 811–820. [Google Scholar] [CrossRef]
- Chrysoulakis, N.; Grimmond, C.S.B. Understanding and Reducing the Anthropogenic Heat Emission, in Urban Climate Mitigation Techniques; Routledge: London, UK, 2016; pp. 27–40. [Google Scholar]
- Taha, H. Urban climates and heat islands: Albedo, evapotranspiration, and anthropogenic heat. Energy Build. 1997, 25, 99–103. [Google Scholar] [CrossRef]
- Trlica, A.; Hutyra, L.R.; Schaaf, C.L.; Erb, A.; Wang, J.A. Albedo, Land Cover, and Daytime Surface Temperature Variation Across an Urbanized Landscape. Earths Future 2017, 5, 1084–1101. [Google Scholar] [CrossRef] [Green Version]
- Brown, R.D. Design with Microclimate: The Secret to Comfortable Outdoor Space; Island Press: Washington, DC, USA, 2010. [Google Scholar]
- Jandaghian, Z.; Akbari, H. The Effect of Increasing Surface Albedo on Urban Climate and Air Quality: A Detailed Study for Sacramento, Houston, and Chicago. Climate 2018, 6, 19. [Google Scholar] [CrossRef]
- Morini, E.; Touchaei, A.G.; Rossi, F.; Cotana, F.; Akbari, H. Evaluation of albedo enhancement to mitigate impacts of urban heat island in Rome (Italy) using WRF meteorological model. Urban Clim. 2018, 24, 551–566. [Google Scholar] [CrossRef]
- Boehme, P.; Berger, M.; Massier, T. Estimating the building based energy consumption as an anthropogenic contribution to urban heat islands. Sustain. Cities Soc. 2015, 19, 373–384. [Google Scholar] [CrossRef]
- Schrijvers, P.J.C.; Jonker, H.J.J.; Kenjereš, S.; de Roode, S.R. Breakdown of the night time urban heat island energy budget. Build. Environ. 2015, 83, 50–64. [Google Scholar] [CrossRef]
- Kusaka, H.; Kimura, F. Thermal Effects of Urban Canyon Structure on the Nocturnal Heat Island: Numerical Experiment Using a Mesoscale Model Coupled with an Urban Canopy Model. J. Appl. Meteorol. 2004, 43, 1899–1910. [Google Scholar] [CrossRef]
- Suomi, J.; Kayhko, J. The impact of environmental factors on urban temperature variability in the coastal city of Turku, SW Finland. Int. J. Climatol. 2012, 32, 451–463. [Google Scholar] [CrossRef]
- Półrolniczak, M.; Tomczyk, A.; Kolendowicz, L. Thermal Conditions in the City of Poznań (Poland) during Selected Heat Waves. Atmosphere 2018, 9, 11. [Google Scholar] [CrossRef]
- Vez, J.P.M.; Rodríguez, A.; Jiménez, J.I. A study of the urban heat island of Granada. Int. J. Climatol. 2000, 20, 899–911. [Google Scholar]
- Acero, J.A.; Arrizabalaga, J.; Kupski, S.; Katzschner, L. Urban heat island in a coastal urban area in northern Spain. Theor. Appl. Climatol. 2013, 113, 137–154. [Google Scholar] [CrossRef]
- Peron, F.; De Maria, M.M.; Spinazzè, F.; Mazzali, U. An analysis of the urban heat island of Venice mainland. Sustain. Cities Soc. 2015, 19, 300–309. [Google Scholar] [CrossRef]
- Ye, C.; Liu, Y.; Quan, W.; Liu, W.; Liu, C. Application of Urban Thermal Environment Monitoring Based on Remote Sensing in Beijing. Procedia Environ. Sci. 2011, 11, 1424–1433. [Google Scholar] [CrossRef]
- Liu, Y.; Fang, X.; Xu, Y.; Zhang, S.; Luan, Q. Assessment of surface urban heat island across China’s three main urban agglomerations. Theor. Appl. Climatol. 2018, 133, 473–488. [Google Scholar] [CrossRef]
- Yang, X.; Li, Y.; Luo, Z.; Chan, P.W. The urban cool island phenomenon in a high-rise high-density city and its mechanisms. Int. J. Climatol. 2017, 37, 890–904. [Google Scholar] [CrossRef]
- Sobstyl, J.M.; Emig, T.; Qomi, M.J.A.; Ulm, F.J.; Pelleng, R.J. Role of City Texture in Urban Heat Islands at Nighttime. Phys. Rev. Lett. 2018, 120, 108701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Givoni, B. Climate Considerations in Building and Urban Design; John Wiley & Sons: Hoboken, NJ, USA, 1998. [Google Scholar]
- Stewart, I.D.; Oke, T.R. Local climate zones for urban temperature studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Beck, C.; Straub, A.; Breitner, A.; Cyrys, J.; Philipp, A.; Rathmann, J.; Schneider, A.; Wolf, K.; Jacobeit, J. Air temperature characteristics of local climate zones in the Augsburg urban area (Bavaria, southern Germany) under varying synoptic conditions. Urban Clim. 2018, 25, 152–166. [Google Scholar] [CrossRef]
- Middel, A.; Häb, K.; Brazel, A.J.; Martin, C.A.; Guhathakurta, S. Impact of urban form and design on mid-afternoon microclimate in Phoenix Local Climate Zones. Landsc. Urban Plan. 2014, 122, 16–28. [Google Scholar] [CrossRef]
- Siu, L.W.; Hart, M.A. Quantifying urban heat island intensity in Hong Kong SAR, China. Environ. Monit. Assess. 2013, 185, 4383–4398. [Google Scholar] [CrossRef] [PubMed]
- Leconte, F.; Bouyer, J.; Claverie, R.; Pétrissans, M. Using Local Climate Zone scheme for UHI assessment: Evaluation of the method using mobile measurements. Build. Environ. 2015, 83, 39–49. [Google Scholar] [CrossRef]
- Alexander, P.; Mills, G. Local Climate Classification and Dublin’s Urban Heat Island. Atmosphere 2014, 5, 755. [Google Scholar] [CrossRef]
- Perera, N.G.R.; Emmanuel, R. A “Local Climate Zone” based approach to urban planning in Colombo, Sri Lanka. Urban Clim. 2018, 23, 188–203. [Google Scholar] [CrossRef]
- Gál, T.; Unger, J. Detection of ventilation paths using high-resolution roughness parameter mapping in a large urban area. Build. Environ. 2009, 44, 198–206. [Google Scholar] [CrossRef]
- SPSS Inc. PASW Statistics for Windows, version 18.0.; SPSS Inc.: Chicago, IL, USA, 2019. [Google Scholar]
- Fariña Tojo, J.; Fernández Áñez, M.V.; Galvez Huerta, M.A.; Hernández Aja, A.; Urrutia del Campo, N. Manual de Diseño Bioclimático: Manual de Recomendaciones Para la Elaboración de Normativas Urbanísticas; Instituto Politécnico de Bragança: Bragança, Portugal, 2013. [Google Scholar]
- Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Zhou, B.; Rybski, D.; Kropp, J.P. The role of city size and urban form in the surface urban heat island. Sci. Rep. 2017, 7, 4791. [Google Scholar] [CrossRef] [PubMed]
- Tan, M.; Li, X. Quantifying the effects of settlement size on urban heat islands in fairly uniform geographic areas. Habitat Int. 2015, 49, 100–106. [Google Scholar] [CrossRef] [Green Version]
- Oke, T.R. City size and the urban heat island. Atmos. Environ. (1967) 1973, 7, 769–779. [Google Scholar] [CrossRef]
- Roberge, F.; Sushama, L. Urban heat island in current and future climates for the island of Montreal. Sustain. Cities Soc. 2018, 40, 501–512. [Google Scholar] [CrossRef]
- Clay, R.; Guan, H.; Wild, N.; Bennett, J.; Vinodkumar; Ewenz, C. Urban Heat Island traverses in the City of Adelaide, South Australia. Urban Clim. 2016, 17, 89–101. [Google Scholar] [CrossRef]
- Zhang, H.; Qi, Z.-F.; Ye, X.-Y.; Cai, Y.-B.; Ma, W.-C.; Chen, M.-N. Analysis of land use/land cover change, population shift, and their effects on spatiotemporal patterns of urban heat islands in metropolitan Shanghai, China. Appl. Geogr. 2013, 44, 121–133. [Google Scholar] [CrossRef]
- Ivajnšič, D.; Kaligarič, M.; Žiberna, I. Geographically weighted regression of the urban heat island of a small city. Appl. Geogr. 2014, 53, 341–353. [Google Scholar] [CrossRef]
- Dos Santos Cardoso, R.; Dorigon, L.P.; Teixeira, D.C.F.; de Costa Trindade Amorim, M.C. Assessment of Urban Heat Islands in Small- and Mid-Sized Cities in Brazil. Climate 2017, 5, 14. [Google Scholar] [CrossRef]
- Vardoulakis, E.; Karamanis, D.; Fotiadi, A.; Mihalakakou, G. The urban heat island effect in a small Mediterranean city of high summer temperatures and cooling energy demands. Solar Energy 2013, 94, 128–144. [Google Scholar] [CrossRef]
- Lopes, A.; Alves, E.; Alcoforado, M.J.; Machete, R. Lisbon urban heat island updated: New highlights about the relationships between thermal patterns and wind regimes. Adv. Meteorol. 2013, 2013, 487695. [Google Scholar] [CrossRef]
- Giannaros, T.M.; Melas, D. Study of the urban heat island in a coastal Mediterranean City: The case study of Thessaloniki, Greece. Atmos. Res. 2012, 118, 103–120. [Google Scholar] [CrossRef]
- Haashemi, S.; Weng, Q.; Darbishi, A.; Alavipanah, S.K. Seasonal variations of the surface urban heat island in a semi-arid city. Remote Sens. 2016, 8, 352. [Google Scholar] [CrossRef]
- Peng, J.; Ma, J.; Liu, Q.; Liu, Y.; Hu, Y.; Li, Y.; Yue, Y. Spatial-temporal change of land surface temperature across 285 cities in China: An urban-rural contrast perspective. Sci. Total Environ. 2018, 635, 487–497. [Google Scholar] [CrossRef] [PubMed]
- Anjos, M.; Lopes, A. Urban Heat Island and Park Cool Island Intensities in the Coastal City of Aracaju, North-Eastern Brazil. Sustainability 2017, 9, 1379. [Google Scholar] [CrossRef]
- Bowler, D.E.; Buyung-Ali, L.; Knight, T.M.; Pullin, A.S. Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landsc. Urban Plan. 2010, 97, 147–155. [Google Scholar] [CrossRef]
- Feyisa, G.L.; Dons, K.; Meilby, H. Efficiency of parks in mitigating urban heat island effect: An example from Addis Ababa. Landsc. Urban Plan. 2014, 123, 87–95. [Google Scholar] [CrossRef]
- Saaroni, H.; Amorim, J.H.; Hiemstra, J.A.; Pearlmutter, D. Urban Green Infrastructure as a tool for urban heat mitigation: Survey of research methodologies and findings across different climatic regions. Urban Clim. 2018, 24, 94–110. [Google Scholar] [CrossRef]
- Tan, J.; Zheng, Y.; Tang, X.; Guo, C.; Li, L.; Song, G.; Zhen, X.; Yuan, D.; Kalkstein, A.J.; Li, F.; et al. The urban heat island and its impact on heat waves and human health in Shanghai. Int. J. Biometeorol. 2010, 54, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Shahmohamadi, P.; Che-Ani, A.I.; Etessam, I.; Maulud, K.N.A.; Tawil, N.M. Healthy environment: The need to mitigate urban heat island effects on human health. Procedia Eng. 2011, 20, 61–70. [Google Scholar] [CrossRef]
- Gabriel, K.M.A.; Endlicher, W.R. Urban and rural mortality rates during heat waves in Berlin and Brandenburg, Germany. Environ. Pollut. 2011, 159, 2044–2050. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.; Lau, S.S.Y.; Qin, H.; Gou, Z. Effects of urban planning indicators on urban heat island: A case study of pocket parks in high-rise high-density environment. Landsc. Urban Plan. 2017, 168, 48–60. [Google Scholar] [CrossRef]
- Per, J. Vegetation as an urban climate control in the subtropical city of Gaborone, Botswana. Int. J. Climatol. 2004, 24, 1307–1322. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.-H.; Baik, J.-J. Statistical and dynamical characteristics of the urban heat island intensity in Seoul. Theor. Appl. Climatol. 2010, 100, 227–237. [Google Scholar] [CrossRef]
Point | LCZ 1 | Elevation (m) | Latitude (°) | Longitude (°) |
---|---|---|---|---|
1 | 9 | 679.8 | −6.77 | 41.818 |
2 | RCD | 644.9 | −6.760 | 41.814 |
3 | 2 | 651.4 | −6.757 | 41.815 |
4 | 3 | 670.8 | −6.760 | 41.808 |
5 | 8 | 712.9 | −6.765 | 41.806 |
6 | 3 | 651.9 | −6.757 | 41.805 |
7 | 2 | 677.9 | −6.762 | 41.801 |
8 | RCD | 672.1 | −6.760 | 41.806 |
9 | RCD | 659.7 | −6.761 | 41.799 |
10 | 5 | 720.9 | −6.761 | 41.791 |
11 | RCD | 664.9 | −6.748 | 41.804 |
12 | 5 | 678.6 | −6.777 | 41.803 |
13 | 2 | 710.2 | −6.771 | 41.807 |
14 | 9 | 709.9 | −6.792 | 41.806 |
15 | 9 | 660.7 | −6.775 | 41.796 |
16 | RCD | 673.6 | −6.794 | 41.794 |
17 | 8 | 714.2 | −6.782 | 41.789 |
18 | 5 | 736.8 | −6.777 | 41.781 |
19 | RCD | 811.8 | −6.753 | 41.795 |
20 | RCD | 558.1 | −6.738 | 41.815 |
21 | 8 | 681.6 | −6.763 | 41.810 |
22 | 3 | 629.8 | −6.751 | 41.809 |
23 | RCD | 709.6 | −6.803 | 41.779 |
LCZ—Description [36] | Fish-Eye 1 | Average Sky View Factor | Roughness Length [43] | Impervious Surface (%) 2 |
---|---|---|---|---|
2–Compact midrise—Dense mix of midrise buildings (3–9 stories). Few or no trees. Land cover mostly paved. | 0.43 | 1.54–2.5 | 94–99 | |
3–Compact low-rise—Dense mix of low-rise buildings (1–3 stories). Few or no trees. Land cover mostly paved. | 0.75 | 0.93–1.07 | 88–99 | |
5–Open midrise—Open arrangement of midrise buildings (3–9 stories). Abundance of pervious land cover (low plants, scattered trees). | 0.72 | 0.74–0.76 | 90–99 | |
8–Large low-rise—Open arrangement of large low-rise buildings (1–3 stories). Few or no trees. Land cover mostly paved. | 0.78 | 0.82–0.99 | 99 | |
9–Sparsely built—Sparse arrangement of small or medium-sized buildings in a natural setting. | 0.92–0.90 | 0.00–0.15 | 23–57 | |
GAB—Urban Green Spaces—Heavily wooded landscape of deciduous and/or evergreen trees or lightly wooded landscape of deciduous and/or evergreen. | 0.71–0.42 | 0.08–2.00 | 2–81 | |
RCD—Rural Areas—Open arrangement of bushes, shrubs, and short, woody trees and featureless landscape of grass or herbaceous plants/crops. | 0.88–0.84 | 0 | 0–20 |
LCZ | Mean | Std. Deviation | Std. Error Mean | t | p |
---|---|---|---|---|---|
2 vs. 3 | −0.197 | 1.313 | 0.006 | −30.711 | 0.000 |
2 vs. 5 | 0.251 | 1.458 | 0.007 | 35.162 | 0.000 |
2 vs. 8 | 0.196 | 1.098 | 0.005 | 36.446 | 0.000 |
2 vs. 9 | 0.700 | 1.515 | 0.007 | 94.395 | 0.000 |
2 vs. GAB | 0.269 | 0.815 | 0.004 | 67.452 | 0.000 |
2 vs. RCD | 0.903 | 1.924 | 0.009 | 95.812 | 0.000 |
3 vs. 5 | 0.449 | 0.756 | 0.004 | 121.090 | 0.000 |
3 vs. 8 | 0.393 | 0.732 | 0.004 | 109.810 | 0.000 |
3 vs. 9 | 0.898 | 0.796 | 0.004 | 230.165 | 0.000 |
3 vs. GAB | 0.467 | 0.829 | 0.004 | 114.920 | 0.000 |
3 vs. RCD | 1.100 | 1.097 | 0.005 | 204.832 | 0.000 |
5 vs. 8 | −0.055 | 0.648 | 0.003 | −17.369 | 0.000 |
5 vs. 9 | 0.449 | 0.713 | 0.003 | 128.649 | 0.000 |
5 vs. GAB | 0.018 | 1.118 | 0.005 | 3.309 | 0.000 |
5 vs. RCD | 0.652 | 0.958 | 0.005 | 138.825 | 0.000 |
8 vs. 9 | 0.504 | 0.791 | 0.004 | 130.229 | 0.000 |
8 vs. GAB | 0.073 | 0.882 | 0.004 | 16.956 | 0.000 |
8 vs. RCD | 0.707 | 1.175 | 0.006 | 122.802 | 0.000 |
9 vs. RCD | 0.202 | 0.686 | 0.003 | 60.218 | 0.000 |
GAB vs. 9 | 0.431 | 1.051 | 0.005 | 83.734 | 0.000 |
GAB vs. RCD | 0.633 | 1.453 | 0.007 | 89.025 | 0.000 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonçalves, A.; Ornellas, G.; Castro Ribeiro, A.; Maia, F.; Rocha, A.; Feliciano, M. Urban Cold and Heat Island in the City of Bragança (Portugal). Climate 2018, 6, 70. https://doi.org/10.3390/cli6030070
Gonçalves A, Ornellas G, Castro Ribeiro A, Maia F, Rocha A, Feliciano M. Urban Cold and Heat Island in the City of Bragança (Portugal). Climate. 2018; 6(3):70. https://doi.org/10.3390/cli6030070
Chicago/Turabian StyleGonçalves, Artur, Gabriella Ornellas, António Castro Ribeiro, Filipe Maia, Alfredo Rocha, and Manuel Feliciano. 2018. "Urban Cold and Heat Island in the City of Bragança (Portugal)" Climate 6, no. 3: 70. https://doi.org/10.3390/cli6030070
APA StyleGonçalves, A., Ornellas, G., Castro Ribeiro, A., Maia, F., Rocha, A., & Feliciano, M. (2018). Urban Cold and Heat Island in the City of Bragança (Portugal). Climate, 6(3), 70. https://doi.org/10.3390/cli6030070