Suction Control of a Boundary Layer Ingestion Inlet
Abstract
:1. Introduction
2. Computational Setup
2.1. Model in Study
2.2. Numerical Methods
2.3. Evaluation Parameters
2.4. Validation of the Simulation Method
3. Results and Discussion
3.1. Research Schemes of the Suction Flow Control
3.2. The Change in Aerodynamic Performance and Interior Flow Details
3.3. Additional Improvement for the Original Suction Control
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
AL | the area of the low-energy fluid at the air intake exit |
AExit | the area of the air intake exit |
AR | the ratio of AL/AExit |
Cp | static pressure coefficient |
BLI | boundary layer ingestion |
d | the diameter of the suction pipes |
D | the diameter of the air intake exit |
DC120 | the circumferential total pressure distortion coefficient at the exit of the air intake |
H | the height of the air intake inlet |
mdesign | design mass flow rate of the air intake |
mexit | mass flow rate at the air intake exit |
minlet | mass flow rate at the air intake inlet |
msuction | the mass flow that has been sucked out |
P | static pressure |
Pexit | the static pressure at the air intake exit |
Psuction | the backpressure at the exit of the suction pipes |
P*(x) | the total pressure at the air intake inlet |
P* | total pressure |
q | the average dynamic pressure |
R | the curvature radius of the S-duct for validation |
SC120 | the swirl distortion coefficient at the air intake exit |
T* | total temperature |
VFAV | area average velocity |
Vpipe,15deg | the velocity of the main flow in the suction pipes with an installation angle equaling 15 degrees |
Vxy,120 | second flow velocity in a circular sector of 120° |
Vxz,main | resultant velocity in the X and Z direction of the main flow |
x | the height from the bottom wall at the air intake inlet |
θ | cross-stream polar angle |
α | the installation angle of the suction pipe |
σ | total pressure recovery of the S-shaped air intake |
δ | boundary layer thickness |
Δx | the distance between the throat centroid of the air intake and the exit centroid |
Subscripts | |
design | the design condition |
exit | the exit of the S-shaped inlet |
FAV | the area average value |
H | high-energy region |
L | low-energy region |
max | maximum value |
min | minimum value |
no control | condition without flow control |
pipe | the suction pipes |
section A | the A-A cross-section of the S-duct for validation |
section E | the E-E cross-section of the S-duct for validation |
suction | suction control |
wall valid | the wall of the S-duct for validation |
120 | circular sector whose angle is 120 |
15 deg | suction pipe with a 15-degree installation angle |
Superscripts | |
* | total condition |
References
- Berrier, B.L.; Carter, M.B.; Brian, G.A. High Reynolds Number Investigation of a Flush-Mounted, S-Duct Inlet with Large Amounts of Boundary Layer Ingestion; NASA/TP-2005-213766; Langley Research Center, NASA: Hampton, VA, USA, 2005.
- Plas, A.P.; Sargeant, M.A.; Madani, V.; Crichton, D.; Greitzer, E.M.; Hynes, T.P.; Hall, C.A. Performance of a Boundary Layer Ingesting (BLI) Propulsion System. In Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 8–11 January 2007. [Google Scholar]
- Sabo, K.M.; Drela, M. Benefits of Boundary Layer Ingestion Propulsion. In Proceedings of the AIAA SciTech, 53rd AIAA Aerospace Sciences Meeting, Kissimmee, FL, USA, 5–9 January 2015. [Google Scholar]
- Ochs, S.S.; Tillman, G.; Joo, J.; Voytovych, D. CFD-based Analysis of Boundary Layer Ingesting Propulsion. In Proceedings of the Propulsion and Energy Forum, 51st AIAA/SAE/ASEE Joint Propulsion Conference, Orlando, FL, USA, 27–29 July 2015. [Google Scholar]
- Uranga, A.; Drela, M.; Greitzer, E.M.; Hall, D.K.; Titchener, N.A.; Lieu, M.K.; Siu, N.M.; Casses, C.; Huang, A.C.; Gatlin, G.M.; et al. Boundary Layer Ingestion Benefit of the D8 Transport Aircraft. AIAA J. 2017, 55, 3693–3708. [Google Scholar] [CrossRef]
- Hall, D.K.; Huang, A.C.; Uranga, A.; Greitzer, E.M.; Drela, M.; Sato, S. Boundary Layer Ingestion Propulsion Benefit for Transport Aircraft. J. Propuls. Power 2017, 33, 1118–1129. [Google Scholar] [CrossRef]
- Arend, D.J.; Wolter, J.D.; Hirt, S.M.; Provenza, A.; Gazzaniga, J.A.; Cousins, W.T.; Hardin, L.W.; Sharma, O. Experimental Evaluation of an Embedded Boundary Layer Ingesting Propulsor for Highly Efficient Subsonic Cruise Aircraft. In Proceedings of the AIAA Propulsion and Energy Forum, 53rd AIAA/SAE/ASEE Joint Propulsion Conference, Atlanta, GA, USA, 10–12 July 2017. [Google Scholar]
- Rademakers, R.P.M.; Bindl, S.; Niehuis, R. Effects of flow distortions as they occur in s-duct inlets on the performance and stability of a jet engine. In Proceedings of the ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, Montréal, QC, Canada, 15–19 June 2015. [Google Scholar]
- Liu, L.; Chen, F.; Luo, K.; Pan, H.; Qin, H.; Wang, F.; Zhou, M.; Tian, X. Blowing-suction control in s-shaped inlet and its impact on fan-stage performance. AIAA J. 2019, 57, 3954–3968. [Google Scholar] [CrossRef]
- Laskaridis, P.; Singh, R.; Pachidis, V.; Pilidis, P. Opportunities and challenges for distributed propulsion and boundary layer ingestion. Aircr. Eng. Aerosp. Technol. 2014, 86, 451–458. [Google Scholar] [CrossRef]
- Perovic, D.; Hall, C.A.; Gunn, E.J. Stall inception in a boundary layer ingesting fan. In Proceedings of the ASME Turbo Expo 2015: Turbine Technical Conference and Exposition GT2015, Montréal, QC, Canada, 15–19 June 2015. [Google Scholar]
- Lucas, J.R.; O’Brien, W.F.; Ferrar, A.M. Effect of BLI–type inlet distortion on turbofan engine performance. In Proceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, Düsseldorf, Germany, 16–20 June 2014. [Google Scholar]
- Romani, G.; Ye, Q.; Avallone, F.; Ragni, D.; Casalino, D. Numerical analysis of fan noise for the NOVA boundary-layer ingestion configuration. Aerosp. Sci. Technol. 2020, 96, 105532. [Google Scholar] [CrossRef]
- Zhang, W.; Stapelfeldt, S.; Vahdati, M. Influence of the inlet distortion on fan stall margin at different rotational speeds. Aerosp. Sci. Technol. 2020, 98, 105668. [Google Scholar] [CrossRef]
- Frohnapfel, D.J.; O’Brien, W.F. Fan Response to Inlet Swirl Distortions Produced by Boundary Layer Ingesting Aircraft Configurations. In Proceedings of the Propulsion and Energy Forum, 51st AIAA/SAE/ASEE Joint Propulsion Conference, Orlando, FL, USA, 27–29 July 2015. [Google Scholar]
- Lu, H.; Yang, Z.; Pan, T.; Li, Q. Non-uniform stator loss reduction design strategy in a transonic axial-flow compressor stage under inflow distortion. Aerosp. Sci. Technol. 2019, 92, 347–362. [Google Scholar] [CrossRef]
- Gunn, E.J.; Hall, C.A. Aerodynamics of Boundary Layer Ingesting Fans. In Proceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, Düsseldorf, Germany, 16–20 June 2014. [Google Scholar]
- Zhu, H.; Hao, W.; Li, C.; Ding, Q.; Wu, B. Application of flow control strategy of blowing, synthetic and plasma jet actuators in vertical axis wind turbines. Aerosp. Sci. Technol. 2019, 88, 468–480. [Google Scholar] [CrossRef]
- Lee, B.J.; Liou, M.S.; Kim, C. Optimizing a Boundary-Layer-Ingestion Offset Inlet by Discrete Adjoint Approach. AIAA J. 2010, 48, 2008–2016. [Google Scholar] [CrossRef]
- Rodriguez, D.L. Multidisciplinary Optimization Method for Designing Boundary-Layer-Ingesting Inlets. J. Aircr. 2009, 46, 883–894. [Google Scholar] [CrossRef]
- Zenkner, S.; Trost, M.; Becker, R.; Voß, C. Preliminary engine design and inlet optimization of the MULDICON concept. Aerosp. Sci. Technol. 2019, 93, 105318. [Google Scholar] [CrossRef]
- Lima, L.S.M.; Huebner, R.; Tobaldini, L. Numerical Investigations of S-Shaped Air Inlet for Embedded Engines. J. Propuls. Power 2019, 35, 475–489. [Google Scholar] [CrossRef]
- Rudin, I.; Arad, E.; Cohen, J. Performance enhancement of boundary layer ingesting inlet using active flow control methods. In Proceedings of the AIAA AVIATION Forum, 2018 Applied Aerodynamics Conference, Atlanta, GA, USA, 25–29 June 2018. [Google Scholar]
- Asghar, A.; Sidhu, S.; Allan, W.D.E.; Ingram, G.; Hickling, T.M.; Stowe, R. Investigation of a passive flow control device in an s-duct inlet of a propulsion system with high subsonic flow. In Proceedings of the ASME Turbo Expo 2018, Turbomachinery Technical Conference and Exposition, Oslo, Norway, 11–15 June 2018. [Google Scholar]
- Tanguy, G.; MacManus, D.G.; Zachos, P.; Gil-Prieto, D.; Garnier, E. Passive Flow Control Study in an S-Duct Using Stereo Particle Image Velocimetry. AIAA J. 2017, 55, 1862–1877. [Google Scholar] [CrossRef]
- Selvanayagam, J.; Aliaga, C.; Stokes, J.; Sasanapuri, B. Numerical Simulation of an Aircraft Engine Intake S-Duct Diffuser. In Proceedings of the AIAA Propulsion and Energy Forum, 53rd AIAA/SAE/ASEE Joint Propulsion Conference, Atlanta, GA, USA, 10–12 July 2017. [Google Scholar]
- Sakidin, H.; Jessam, R.A.; Al-Kayiem, H.H.; Nasif, M.S.; Yusof, M.H.; Sa’ad, N.; Ling Chuan Ching, D.; Abdul Karim, S.A. Flow control in s-shaped air intake diffuser of gas turbine using proposed energy promoters. MATEC Web Conf. 2017, 131, 02006. [Google Scholar] [CrossRef]
- Lakebrink, M.T.; Mani, M.; Winkler, C. Numerical investigation of fluidic oscillator flow control in an s-duct diffuser. In Proceedings of the AIAA SciTech Forum, 55th AIAA Aerospace Sciences Meeting, Grapevine, TX, USA, 9–13 January 2017. [Google Scholar]
- Keerthi, M.C.; Kushari, A.; Somasundaram, V. Experimental study of suction flow control effectiveness in a serpentine intake. J. Fluids Eng. 2017, 139, 101104. [Google Scholar] [CrossRef]
- Vaccaro, J.C.; Elimelech, Y.; Chen, Y.; Sahni, O.; Jansen, K.E.; Amitay, M. Experimental and numerical investigation on steady blowing flow control within a compact inlet duct. Int. J. Heat Fluid Flow 2015, 54, 143–152. [Google Scholar] [CrossRef]
- Gu, J.W.; Ren, J.; Wu, N.; Li, M.; Hu, Q.; Liu, H.; Chen, X.L.; Liu, E.H. Numerical Analysis of Effect of Boundary Layer Characteristics on the Flow Field in S-shaped Inlet. MATEC Web Conf. 2015, 25, 01011. [Google Scholar] [CrossRef]
- Ghaedamini Harouni, A. Flow control of a boundary layer ingesting serpentine diffuser via blowing and suction. Aerosp. Sci. Technol. 2014, 39, 472–480. [Google Scholar] [CrossRef]
- Zhiyin, Y. Large-eddy simulation: Past, present and the future. Chin. J. Aeronaut. 2015, 28, 11–24. [Google Scholar] [CrossRef]
- De Vanna, F.; Bernardini, M.; Picano, F.; Benini, E. Wall-modeled LES of shock-wave/boundary layer interaction. Int. J. Heat Fluid Flow 2022, 98, 109071. [Google Scholar] [CrossRef]
- Schlatter, P.; ÖRlÜ, R. Assessment of direct numerical simulation data of turbulent boundary layers. J. Fluid Mech. 2010, 659, 116–126. [Google Scholar] [CrossRef]
- Fiola, C.; Agarwal, R.K. Simulation of Secondary and Separated Flow in Diffusing S Ducts. J. Propuls. Power 2015, 31, 180–191. [Google Scholar] [CrossRef]
- Fiola, C.; Agarwal, R.K. Simulation of secondary and separated flow in a diffusing S-duct using four different turbulence models. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2013, 228, 1954–1963. [Google Scholar] [CrossRef]
- Wellborn, S.; Reichert, B.; Okiishi, T. An experimental investigation of the flow in a diffusing S-duct. In Proceedings of the 28th Joint Propulsion Conference and Exhibit, Nashville, TN, USA, 6–8 July 1992. [Google Scholar]
- Gan, W.; Zhang, X. Design optimization of a three-dimensional diffusing S-duct using a modified SST turbulent model. Aerosp. Sci. Technol. 2017, 63, 63–72. [Google Scholar] [CrossRef]
- Debiasi, M.; Herberg, M.; Zeng, Y.; Tsai, H.M.; Dhanabalan, S. Control of Flow Separation in S-Ducts via Flow Injection and Suction. In Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 7–10 January 2008. [Google Scholar]
- Wojewodka, M.M.; White, C.; Shahpar, S.; Kontis, K. A review of flow control techniques and optimization in s-shaped ducts. Int. J. Heat Fluid Flow 2018, 74, 223–235. [Google Scholar] [CrossRef]
- Keerthi, M.C.; Kushari, A. Effectiveness of Vortex Generator Jets and Wall Suction on Separated Flows in Serpentine-Duct Diffuser. Aerosp. Sci. Technol. 2014, 34, 12–19. [Google Scholar] [CrossRef]
- Paul, A.R.; Ranjan, P.; Patel, V.K.; Jain, A. Comparative studies on flow control in rectangular S-duct diffuser using submerged-vortex generators. Aerosp. Sci. Technol. 2013, 28, 332–343. [Google Scholar] [CrossRef]
- Yi, J.; Kim, C.; Lee, B.J. Adjoint-based design optimization of vortex generator in an s-shaped subsonic inlet. AIAA J. 2012, 50, 2492–2507. [Google Scholar] [CrossRef]
- Yi, J.; Lee, B.J.; Kim, C. Efficient Design Optimization of Vortex Generators in Subsonic Offset Inlet by Discrete Adjoint Approach. In Proceedings of the 20th AIAA Computational Fluid Dynamics Conference, Honolulu, HI, USA, 27–30 June 2011. [Google Scholar]
- Annbtawi, A.J.; Blackweldeq, R.F.; Lissnmnn, P.B.S.; Liebeck, R.H. An Experimental Study of Vortex Generators in Boundary Layer Ingesting Diffusers with a Centerline Offset. In Proceedings of the 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Los Angeles, CA, USA, 20–24 June 1999. [Google Scholar]
- Aref, P.; Ghoreyshi, M.; Jirasek, A.; Satchell, M.J. CFD Validation and Flow Control of RAE-M2129 S-Duct Diffuser Using CREATETM-AV Kestrel Simulation Tools. Aerospace 2018, 5, 31. [Google Scholar] [CrossRef]
- Webster, R.; Sreenivas, K.; Hyams, D.; Hilbert, B.; Briley, W.; Whitfield, D. Demonstration of Sub-system Level Simulations: A Coupled Inlet and Turbofan Stage. In Proceedings of the 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Atlanta, GA, USA, 30 July–1 August 2012. [Google Scholar]
Parameters | Suction Control Parameters | |||
---|---|---|---|---|
Case Name | Location (z/L) | Angle (β, °) | Pipe Diameter (d, mm) | |
Location_Angle_Diameter (For example, 1stBend_15°_6 mm) | Near throat, 1st Bend, Near separation point | 15, 30, 45 | 8, 10, 12 |
Parameters | msuction/minlet | mexit (kg/s) | AR | σ | DC120 | SC120 | |
---|---|---|---|---|---|---|---|
Case Name | |||||||
No control | / | 9.6059 | 0.3978 | 0.98750 | 0.2907 | 0.0776 | |
1stBend_15°_12mm | 2.0638 | 9.8432 | 0.3316 | 0.99259 | 0.2205 | 0.0060 | |
Large mass flow suction | 8.9687 | 10.1118 | 0.2372 | >1 | 0.0152 | 0.0214 | |
1stBend_15°_12mm_Vanes | 2.1608 | 9.5952 | 0.3331 | 0.99262 | 0.0202 | 0.0436 | |
No Suction_Vanes | / | 9.4793 | 0.3658 | 0.98759 | 0.0865 | 0.0275 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Li, G.; Wang, B.; Wu, S. Suction Control of a Boundary Layer Ingestion Inlet. Aerospace 2023, 10, 989. https://doi.org/10.3390/aerospace10120989
Liu L, Li G, Wang B, Wu S. Suction Control of a Boundary Layer Ingestion Inlet. Aerospace. 2023; 10(12):989. https://doi.org/10.3390/aerospace10120989
Chicago/Turabian StyleLiu, Lei, Guozhan Li, Ban Wang, and Shaofeng Wu. 2023. "Suction Control of a Boundary Layer Ingestion Inlet" Aerospace 10, no. 12: 989. https://doi.org/10.3390/aerospace10120989