Applied Deep Learning-Based Crop Yield Prediction: A Systematic Analysis of Current Developments and Potential Challenges
Abstract
:1. Introduction
2. Comparison of Related Works and Existing Surveys with the Present Review Study
3. Methodology
3.1. Review Protocol
3.2. Practical Approach
3.2.1. Formulation of the Research Questions
- Q1. What types of crops have been treated by previous studies to predict yield using deep learning?
- Q2. Which deep learning architectures have been tested in the literature for crop yield prediction?
- Q3. What are the main categories of input data used in previous studies for crop yield prediction using deep learning?
- Q4. What are the challenges and the requirements for predicting crop yield using deep learning?
3.2.2. Search Strategy for Relevant Studies
3.2.3. Definition of Criteria for Inclusion and Exclusion
3.2.4. Quality Assessment
- Relevance of Research Questions: Studies were evaluated on how directly they addressed the proposed questions, with a scoring range from 0 to 5 (highly relevant).
- Methodological Clarity and Detail: The clarity and depth of the described methodology, including any technical details, were scored from 0 (unclear or insufficiently detailed) to 5 (exceptionally clear and detailed).
- Technical Specifications: The detail with which the deep learning architecture was described was scored from 0 (no specifications provided) to 5 (comprehensive specifications).
- Results and Discussion: The presentation and discussion of the study’s findings were evaluated, with scores ranging from 0 (lacking discussion) to 5 (comprehensive and insightful discussion).
3.2.5. Data Extraction
4. Results
4.1. Selected Studies
4.2. Statistical Analysis
4.3. Crops Examined in Studies Using Deep Learning Models
4.4. Deep Learning Architectures Used in Crop Yield Prediction
4.4.1. A Brief Overview of Deep Learning
4.4.2. Deep Learning Models Applied for Forecasting Agricultural Yields
- Two-dimensional CNN: This architecture performs convolution operations using specialized filters and possesses multiple layers similar to other CNN models (Figure 8). These include a convolutional layer, nonlinear layer, max-pooling layer, and fully connected layers. Numerous studies have showcased the effectiveness of this architecture, particularly for processing unstructured data such as images.
- Three-dimensional CNN: The primary distinction between three-dimensional and two-dimensional CNN is that 3D CNNs apply convolution across both spatial and temporal dimensions [121]. Unlike 1D and 2D CNN, the inclusion of a third dimension in 3D CNN allows for the creation of a complex feature cube as depicted in Figure 9 that captures more detailed information [122].
4.5. Main Input Data
4.6. Requirements and Challenges in Predicting Crop Yield Using DL
4.7. Bayesian Approaches to the Challenges of Crop Yield Prediction
5. Discussion
6. Recommended Best Studies for Readers
- The study introduces novel and methodologically original approaches to predict agricultural yield.
- The study defines agricultural yield in accordance with the established literature, rather than using discontinuous or alternative measures.
- The data used as input reflect the exploitation of new geospatial technologies.
- The study focuses on yield prediction for major crops, particularly cereals.
- Finally, the selected article demonstrates significant quality.
- The study conducted by the authors of [8], who developed a model based on deep CNN-LSTM for in-season soybean prediction and accomplished this by exploiting satellite imagery.
- The study carried out in [58], which used high-resolution imagery acquired by a UAV to predict cereal crops using a spatio-temporal DL model.
- The study conducted in [109], where the authors presented the prediction of winter wheat yield using a hybrid deep learning model combining static features and remote sensing data.
- The study carried out in [29], in which the authors determined corn yield using high-resolution hyperspectral data and combining different dimensions of a CNN as a DL model.
- The study presented in [44], in which authors developed various models combining different DL architectures, namely, LSTM and CNN, and used satellite data to predict soybean yield.
- The research study carried out in [49], where the authors focused on predicting winter wheat and corn yields, accomplished this by studying the effects of spatial, spectral, and temporal data, and proposed a novel technique called SSTNN to establish their prediction.
7. Open Issues and Future Road Maps
- Using high-performance architectures based on transformers, as it was highlighted in the study conducted in [148], and GANs, and examining the benefits of using a hybrid solution based on efficient algorithms.
- Exploring other domain adaptation methods, as yield is sensitive from one area to another.
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AI | Artificial intelligence |
AL | Active Learning |
ALASSO | Adaptive LASSO |
BART | Bayesian Additive Regression Trees |
CNN | Convolutional neural network |
DANN | Domain Adversarial Neural Network |
DBN | Deep Belief Network |
DL | Deep learning |
DNN | Deep neural network |
DOAJ | Directory of Open Access Journals |
EVI | Enhanced Vegetation Index |
FAO | Food and Agriculture Organization |
GAN | Generative Adversarial Networks |
GEE | Google Earth Engine |
GPR | Gaussian Process Regression |
GRU | Gated Recurrent Unit |
IEEE | Institute of Electrical and Electronics Engineers |
KR | Knowledge Representation |
LASSO | Least Absolute Shrinkage and Selection Operator |
LiDAR | Light Detection And Ranging |
LSTM | Long Short-Term Memory |
MAE | Mean Absolute Error |
MAPE | Mean Absolute Percentage Error |
MDPI | Multidisciplinary Digital Publishing Institute |
ML | Machine Learning |
MLP | Multilayer Perceptron |
MODIS | Moderate Resolution Imaging Spectroradiometer |
NDVI | Normalized Difference Vegetation Index |
NNGPs | Nearest Neighbor Gaussian Processes |
PNN | Probabilistic Neural Network |
RBM | Restricted Boltzmann Machine |
R-CNN | Region-based convolutional neural network |
RF | Random Forest |
R-FCN | Region-based fully convolutional network |
RMSE | Root Mean Square Error |
RoI | Region of Interest |
RPN | Region Proposal Network |
rrBLUP | ridge regression Best Linear Unbiased Prediction |
SBN | Sigmoid Belief Network |
SIF | Solar-Induced chlorophyll Fluorescence |
SLR | Systematic literature review |
SSAE | Stacked-Sparse Autoencoder |
SVM | Support Vector Machine |
TCN | Temporal Convolutional Network |
UAV | Unmanned Aerial Vehicle |
VARBVS | Variational inference for Bayesian variable selection |
XAI | Explainable Artificial Intelligence |
References
- Food and Agriculture Organization of the United Nations. The Future of Food and Agriculture: Trends and Challenges; FAO: Rome, Italy, 2017. [Google Scholar]
- United Nations. Feeding the World Sustainably; United Nations Chronicle: New York, NY, USA, 2020. [Google Scholar]
- Van Klompenburg, T.; Kassahun, A.; Catal, C. Crop yield prediction using machine learning: A systematic literature review. Comput. Electron. Agric. 2020, 177, 105709. [Google Scholar] [CrossRef]
- Zannou, J.G.N.; Houndji, V.R. Sorghum Yield Prediction using Machine Learning. In Proceedings of the 2019 3rd International Conference on Bio-Engineering for Smart Technologies (BioSMART), Paris, France, 24–26 April 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Maimaitijiang, M.; Sagan, V.; Sidike, P.; Hartling, S.; Esposito, F.; Fritschi, F.B. Soybean yield prediction from UAV using multimodal data fusion and deep learning. Remote Sens. Environ. 2020, 237, 111599. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, S.; Guan, K.; Wolanin, A.; You, L.; Ju, W.; Zhang, Y. The Ability of Sun-Induced Chlorophyll Fluorescence from OCO-2 and MODIS-EVI to Monitor Spatial Variations of Soybean and Maize Yields in the Midwestern USA. Remote Sens. 2020, 12, 1111. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Z.; Feng, L.; Du, Q.; Runge, T. Combining Multi-Source Data and Machine Learning Approaches to Predict Winter Wheat Yield in the Conterminous United States. Remote Sens. 2020, 12, 1232. [Google Scholar] [CrossRef]
- Sun, J.; Di, L.; Sun, Z.; Shen, Y.; Lai, Z. County-Level Soybean Yield Prediction Using Deep CNN-LSTM Model. Sensors 2019, 19, 4363. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Zhang, Z.; Luo, Y.; Zhang, L.; Zhang, J.; Li, Z.; Tao, F. Wheat yield predictions at a county and field scale with deep learning, machine learning, and Google Earth Engine. Eur. J. Agron. 2021, 123, 126204. [Google Scholar] [CrossRef]
- Crawford, K. The Atlas of AI: Power, Politics, and the Planetary Costs of Artificial Intelligence; Yale University Press: New Haven, CT, USA, 2021. [Google Scholar]
- Banerjee, G.; Sarkar, U.; Das, S.; Ghosh, I. Artificial intelligence in agriculture: A literature survey. Int. J. Sci. Res. Comput. Sci. Appl. Manag. Stud. 2018, 7, 1–6. [Google Scholar]
- Astaoui, G.; Dadaiss, J.E.; Sebari, I.; Benmansour, S.; Mohamed, E. Mapping wheat dry matter and nitrogen content dynamics and estimation of wheat yield using UAV multispectral imagery machine learning and a variety-based approach: Case study of Morocco. AgriEngineering 2021, 3, 29–49. [Google Scholar] [CrossRef]
- Haq, M.A.; Rahaman, G.; Baral, P.; Ghosh, A. Deep learning based supervised image classification using UAV images for forest areas classification. J. Indian Soc. Remote Sens. 2021, 49, 601–606. [Google Scholar] [CrossRef]
- Haq, M.A.; Khan, M.Y.A. Crop water requirements with changing climate in an arid region of Saudi Arabia. Sustainability 2022, 14, 13554. [Google Scholar] [CrossRef]
- Haq, M.A. CNN Based Automated Weed Detection System Using UAV Imagery. Comput. Syst. Sci. Eng. 2022, 42, 837–849. [Google Scholar]
- Maheswari, P.; Raja, P.; Apolo-Apolo, O.E.; Perez-Ruiz, M. Intelligent fruit yield estimation for orchards using deep learning based semantic segmentation techniques—A review. Front. Plant Sci. 2021, 12, 684328. [Google Scholar] [CrossRef]
- Kim, N.; Ha, K.-J.; Park, N.-W.; Cho, J.; Hong, S.; Lee, Y.-W. A Comparison Between Major Artificial Intelligence Models for Crop Yield Prediction: Case Study of the Midwestern United States, 2006–2015. ISPRS Int. J. Geo-Inf. 2019, 8, 240. [Google Scholar] [CrossRef]
- Dharani, M.K.; Thamilselvan, R.; Natesan, P.; Kalaivaani, P.C.D.; Santhoshkumar, S. Review on Crop Prediction Using Deep Learning Techniques. J. Phys. Conf. Ser. 2021, 1767, 012026. [Google Scholar] [CrossRef]
- Rashid, M.; Bari, B.S.; Yusup, Y.; Kamaruddin, M.A.; Khan, N. A Comprehensive Review of Crop Yield Prediction Using Machine Learning Approaches with Special Emphasis on Palm Oil Yield Prediction. IEEE Access 2021, 9, 63406–63439. [Google Scholar] [CrossRef]
- Dewangan, U.; Talwekar, R.H.; Bera, S. Systematic Literature Review on Crop Yield Prediction using Machine & Deep Learning Algorithm. In Proceedings of the 2022 5th International Conference on Advances in Science and Technology (ICAST), Mumbai, India, 2–3 December 2022; pp. 654–661. [Google Scholar]
- Oikonomidis, A.; Catal, C.; Kassahun, A. Deep learning for crop yield prediction: A systematic literature review. N. Z. J. Crop Hortic. Sci. 2023, 51, 1–26. [Google Scholar] [CrossRef]
- Sordello, R.; Villemey, A.; Jeusset, A.; Vargac, M.; Bertheau, Y.; Coulon, A.; Deniaud, N.; de Lachapelle, F.F.; Guinard, E.; Jactel, H. Conseils Méthodologiques pour la Réalisation D’une Revue Systématique à Travers L’expérience de COHNECS-IT. Available online: https://hal.sorbonne-universite.fr/hal-01592725/ (accessed on 1 December 2021).
- Nambiema, A.; Fouquet, J.; Guilloteau, J.; Descatha, A. La revue systématique et autres types de revue de la littérature: Qu’est-ce que c’est, quand, comment, pourquoi? Arch. Des Mal. Prof. L’Environ. 2021, 82, 539–552. [Google Scholar] [CrossRef]
- Siddaway, A.P.; Wood, A.M.; Hedges, L.V. How to do a systematic review: A best practice guide for conducting and reporting narrative reviews, meta-analyses, and meta-syntheses. Annu. Rev. Psychol. 2019, 70, 747–770. [Google Scholar] [CrossRef] [PubMed]
- Sandhu, K.S.; Lozada, D.N.; Zhang, Z.; Pumphrey, M.O.; Carter, A.H. Deep Learning for Predicting Complex Traits in Spring Wheat Breeding Program. Front. Plant Sci. 2021, 11, 613325. [Google Scholar] [CrossRef]
- Li, Z.; Chen, Z.; Cheng, Q.; Fei, S.; Zhou, X. Deep Learning Models Outperform Generalized Machine Learning Models in Predicting Winter Wheat Yield Based on Multispectral Data from Drones. Drones 2023, 7, 505. [Google Scholar] [CrossRef]
- Huang, H.; Huang, J.; Feng, Q.; Liu, J.; Li, X.; Wang, X.; Niu, Q. Developing a dual-stream deep-learning neural network model for improving county-level winter wheat yield estimates in China. Remote Sens. 2022, 14, 5280. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Safaei, N.; Khaki, S.; Lopez, G.; Zeng, W.; Ewert, F.; Gaiser, T.; Rahimi, J. Winter wheat yield prediction using convolutional neural networks from environmental and phenological data. Sci. Rep. 2022, 12, 3215. [Google Scholar] [CrossRef]
- Yang, W.; Nigon, T.; Hao, Z.; Paiao, G.D.; Fernández, F.G.; Mulla, D.; Yang, C. Estimation of corn yield based on hyperspectral imagery and convolutional neural network. Comput. Electron. Agric. 2021, 184, 106092. [Google Scholar] [CrossRef]
- Måløy, H.; Windju, S.; Bergersen, S.; Alsheikh, M.; Downing, K.L. Multimodal performers for genomic selection and crop yield prediction. Smart Agric. Technol. 2021, 1, 100017. [Google Scholar] [CrossRef]
- Jeong, S.; Ko, J.; Yeom, J.-M. Predicting rice yield at pixel scale through synthetic use of crop and deep learning models with satellite data in South and North Korea. Sci. Total Environ. 2022, 802, 149726. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Wu, X. Individualized Indicators and Estimation Methods for Tiger Nut (Cyperus esculentus L.) Tubers Yield Using Light Multispectral UAV and Lightweight CNN Structure. Drones 2023, 7, 432. [Google Scholar] [CrossRef]
- Xu, X.; Li, H.; Yin, F.; Xi, L.; Qiao, H.; Ma, Z.; Shen, S.; Jiang, B.; Ma, X. Wheat ear counting using K-means clustering segmentation and convolutional neural network. Plant Methods 2020, 16, 106. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, B.; Yang, C.; Shi, Y.; Liao, Q.; Zhou, G.; Wang, C.; Xie, T.; Jiang, Z.; Zhang, D. Rapeseed stand count estimation at leaf development stages with UAV imagery and convolutional neural networks. Front. Plant Sci. 2020, 11, 617. [Google Scholar] [CrossRef]
- Tanaka, Y.; Watanabe, T.; Katsura, K.; Tsujimoto, Y.; Takai, T.; Tanaka, T.S.T.; Kawamura, K.; Saito, H.; Homma, K.; Mairoua, S.G.; et al. Deep Learning Enables Instant and Versatile Estimation of Rice Yield Using Ground-Based RGB Images. Plant Phenomics 2023, 5, 0073. [Google Scholar] [CrossRef]
- Bellis, E.S.; Hashem, A.A.; Causey, J.L.; Runkle, B.R.; Moreno-García, B.; Burns, B.W.; Green, V.S.; Burcham, T.N.; Reba, M.L.; Huang, X. Detecting intra-field variation in rice yield with unmanned aerial vehicle imagery and deep learning. Front. Plant Sci. 2022, 13, 716506. [Google Scholar] [CrossRef] [PubMed]
- Mia, M.S.; Tanabe, R.; Habibi, L.N.; Hashimoto, N.; Homma, K.; Maki, M.; Matsui, T.; Tanaka, T.S. Multimodal Deep Learning for Rice Yield Prediction Using UAV-Based Multispectral Imagery and Weather Data. Remote Sens. 2023, 15, 2511. [Google Scholar] [CrossRef]
- Yalcin, H. An approximation for a relative crop yield estimate from field images using deep learning. In Proceedings of the 2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Istanbul, Turkey, 16–19 July 2019; pp. 1–6. [Google Scholar]
- Yang, Q.; Shi, L.; Lin, L. Plot-scale rice grain yield estimation using UAV-based remotely sensed images via CNN with time-invariant deep features decomposition. In Proceedings of the IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 7180–7183. [Google Scholar]
- Mu, H.; Zhou, L.; Dang, X.; Yuan, B. Winter Wheat Yield Estimation from Multitemporal Remote Sensing Images based on Convolutional Neural Networks. In Proceedings of the 2019 10th International Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp), Shanghai, China, 5–7 August 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Lee, S.; Jeong, Y.; Son, S.; Lee, B. A self-predictable crop yield platform (SCYP) based on crop diseases using deep learning. Sustainability 2019, 11, 3637. [Google Scholar] [CrossRef]
- Alibabaei, K.; Gaspar, P.D.; Lima, T.M. Crop Yield Estimation Using Deep Learning Based on Climate Big Data and Irrigation Scheduling. Energies 2021, 14, 3004. [Google Scholar] [CrossRef]
- Zhou, S.; Xu, L.; Chen, N. Rice Yield Prediction in Hubei Province Based on Deep Learning and the Effect of Spatial Heterogeneity. Remote Sens. 2023, 15, 1361. [Google Scholar] [CrossRef]
- Gavahi, K.; Abbaszadeh, P.; Moradkhani, H. DeepYield: A combined convolutional neural network with long short-term memory for crop yield forecasting. Expert Syst. Appl. 2021, 184, 115511. [Google Scholar] [CrossRef]
- Sagan, V.; Maimaitijiang, M.; Bhadra, S.; Maimaitiyiming, M.; Brown, D.R.; Sidike, P.; Fritschi, F.B. Field-scale crop yield prediction using multi-temporal WorldView-3 and PlanetScope satellite data and deep learning. ISPRS J. Photogramm. Remote Sens. 2021, 174, 265–281. [Google Scholar] [CrossRef]
- Nevavuori, P.; Narra, N.; Lipping, T. Crop yield prediction with deep convolutional neural networks. Comput. Electron. Agric. 2019, 163, 104859. [Google Scholar] [CrossRef]
- Ju, S.; Lim, H.; Ma, J.W.; Kim, S.; Lee, K.; Zhao, S.; Heo, J. Optimal county-level crop yield prediction using MODIS-based variables and weather data: A comparative study on machine learning models. Agric. For. Meteorol. 2021, 307, 108530. [Google Scholar] [CrossRef]
- Yang, Q.; Shi, L.; Han, J.; Zha, Y.; Zhu, P. Deep convolutional neural networks for rice grain yield estimation at the ripening stage using UAV-based remotely sensed images. Field Crops Res. 2019, 235, 142–153. [Google Scholar] [CrossRef]
- Qiao, M.; He, X.; Cheng, X.; Li, P.; Luo, H.; Zhang, L.; Tian, Z. Crop Yield Prediction from Multi-spectral, Multi-temporal Remotely Sensed Imagery Using Recurrent 3D Convolutional Neural Networks. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102436. [Google Scholar] [CrossRef]
- MacEachern, C.B.; Esau, T.J.; Schumann, A.W.; Hennessy, P.J.; Zaman, Q.U. Detection of fruit maturity stage and yield estimation in wild blueberry using deep learning convolutional neural networks. Smart Agric. Technol. 2023, 3, 100099. [Google Scholar] [CrossRef]
- Chakraborty, M.; Pourreza, A.; Zhang, X.; Jafarbiglu, H.; Shackel, K.A.; DeJong, T. Early almond yield forecasting by bloom mapping using aerial imagery and deep learning. Comput. Electron. Agric. 2023, 212, 108063. [Google Scholar] [CrossRef]
- Huber, F.; Yushchenko, A.; Stratmann, B.; Steinhage, V. Extreme Gradient Boosting for yield estimation compared with Deep Learning approaches. Comput. Electron. Agric. 2022, 202, 107346. [Google Scholar] [CrossRef]
- Han, J.; Shi, L.; Yang, Q.; Chen, Z.; Yu, J.; Zha, Y. Rice yield estimation using a CNN-based image-driven data assimilation framework. Field Crops Res. 2022, 288, 108693. [Google Scholar] [CrossRef]
- Tanabe, R.; Matsui, T.; Tanaka, T.S. Winter wheat yield prediction using convolutional neural networks and UAV-based multispectral imagery. Field Crops Res. 2023, 291, 108786. [Google Scholar] [CrossRef]
- Ghazaryan, G.; Skakun, S.; König, S.; Rezaei, E.E.; Siebert, S.; Dubovyk, O. Crop Yield Estimation Using Multi-Source Satellite Image Series and Deep Learning. In Proceedings of the IGARSS 2020—2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 5163–5166. [Google Scholar] [CrossRef]
- Qiao, M.; He, X.; Cheng, X.; Li, P.; Luo, H.; Tian, Z.; Guo, H. Exploiting hierarchical features for crop yield prediction based on 3-D convolutional neural networks and multikernel gaussian process. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 4476–4489. [Google Scholar] [CrossRef]
- Terliksiz, A.S.; Altỳlar, D.T. Use of deep neural networks for crop yield prediction: A case study of soybean yield in Lauderdale County, Alabama, USA. In Proceedings of the 2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Istanbul, Turkey, 16–19 July 2019; pp. 1–4. [Google Scholar]
- Nevavuori, P.; Narra, N.; Linna, P.; Lipping, T. Crop Yield Prediction Using Multitemporal UAV Data and Spatio-Temporal Deep Learning Models. Remote Sens. 2020, 12, 4000. [Google Scholar] [CrossRef]
- Abbaszadeh, P.; Gavahi, K.; Alipour, A.; Deb, P.; Moradkhani, H. Bayesian multi-modeling of deep neural nets for probabilistic crop yield prediction. Agric. For. Meteorol. 2022, 314, 108773. [Google Scholar] [CrossRef]
- Khaki, S.; Wang, L. Crop Yield Prediction Using Deep Neural Networks. Front. Plant Sci. 2019, 10, 621. [Google Scholar] [CrossRef]
- Ramzan, Z.; Asif, H.S.; Yousuf, I.; Shahbaz, M. A Multimodal Data Fusion and Deep Neural Networks Based Technique for Tea Yield Estimation in Pakistan Using Satellite Imagery. IEEE Access 2023, 11, 42578–42594. [Google Scholar] [CrossRef]
- Bai, D.; Li, D.; Zhao, C.; Wang, Z.; Shao, M.; Guo, B.; Liu, Y.; Wang, Q.; Li, J.; Guo, S. Estimation of soybean yield parameters under lodging conditions using RGB information from unmanned aerial vehicles. Front. Plant Sci. 2022, 13, 1012293. [Google Scholar] [CrossRef] [PubMed]
- Fei, S.; Li, L.; Han, Z.; Chen, Z.; Xiao, Y. Combining novel feature selection strategy and hyperspectral vegetation indices to predict crop yield. Plant Methods 2022, 18, 119. [Google Scholar] [CrossRef] [PubMed]
- Kumar, C.; Mubvumba, P.; Huang, Y.; Dhillon, J.; Reddy, K. Multi-Stage Corn Yield Prediction Using High-Resolution UAV Multispectral Data and Machine Learning Models. Agronomy 2023, 13, 1277. [Google Scholar] [CrossRef]
- Mokhtar, A.; El-Ssawy, W.; He, H.; Al-Anasari, N.; Sammen, S.S.; Gyasi-Agyei, Y.; Abuarab, M. Using machine learning models to predict hydroponically grown lettuce yield. Front. Plant Sci. 2022, 13, 706042. [Google Scholar] [CrossRef]
- Kuwata, K.; Shibasaki, R. Estimating crop yields with deep learning and remotely sensed data. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 858–861. [Google Scholar]
- Livieris, I.E.; Dafnis, S.D.; Papadopoulos, G.K.; Kalivas, D.P. A Multiple-Input Neural Network Model for Predicting Cotton Production Quantity: A Case Study. Algorithms 2020, 13, 273. [Google Scholar] [CrossRef]
- Barbosa, B.D.S.; Ferraz, G.A.e.S.; Costa, L.; Ampatzidis, Y.; Vijayakumar, V.; dos Santos, L.M. UAV-based coffee yield prediction utilizing feature selection and deep learning. Smart Agric. Technol. 2021, 1, 100010. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, Z.; Yang, H.L.; Yang, Z. An adaptive adversarial domain adaptation approach for corn yield prediction. Comput. Electron. Agric. 2021, 187, 106314. [Google Scholar] [CrossRef]
- Priyatikanto, R.; Lu, Y.; Dash, J.; Sheffield, J. Improving generalisability and transferability of machine-learning-based maize yield prediction model through domain adaptation. Agric. For. Meteorol. 2023, 341, 109652. [Google Scholar] [CrossRef]
- Apolo-Apolo, O.E.; Pérez-Ruiz, M.; Martínez-Guanter, J.; Valente, J. A Cloud-Based Environment for Generating Yield Estimation Maps from Apple Orchards Using UAV Imagery and a Deep Learning Technique. Front. Plant Sci. 2020, 11, 1086. [Google Scholar] [CrossRef]
- Hasan, M.M.; Chopin, J.P.; Laga, H.; Miklavcic, S.J. Detection and analysis of wheat spikes using convolutional neural networks. Plant Methods 2018, 14, 100. [Google Scholar] [CrossRef]
- Ariza-Sentís, M.; Valente, J.; Kooistra, L.; Kramer, H.; Mücher, S. Estimation of spinach (Spinacia oleracea) seed yield with 2D UAV data and deep learning. Smart Agric. Technol. 2023, 3, 100129. [Google Scholar] [CrossRef]
- Lu, J.; Yang, R.; Yu, C.; Lin, J.; Chen, W.; Wu, H.; Chen, X.; Lan, Y.; Wang, W. Citrus green fruit detection via improved feature network extraction. Front. Plant Sci. 2022, 13, 946154. [Google Scholar] [CrossRef]
- Peng, J.; Wang, D.; Zhu, W.; Yang, T.; Liu, Z.; Rezaei, E.E.; Li, J.; Sun, Z.; Xin, X. Combination of UAV and deep learning to estimate wheat yield at ripening stage: The potential of phenotypic features. Int. J. Appl. Earth Obs. Geoinf. 2023, 124, 103494. [Google Scholar] [CrossRef]
- Zhou, C.; Ye, H.; Hu, J.; Shi, X.; Hua, S.; Yue, J.; Xu, Z.; Yang, G. Automated Counting of Rice Panicle by Applying Deep Learning Model to Images from Unmanned Aerial Vehicle Platform. Sensors 2019, 19, 3106. [Google Scholar] [CrossRef] [PubMed]
- Lang, P.; Zhang, L.; Huang, C.; Chen, J.; Kang, X.; Zhang, Z.; Tong, Q. Integrating environmental and satellite data to estimate county-level cotton yield in Xinjiang Province. Front. Plant Sci. 2023, 13, 1048479. [Google Scholar] [CrossRef] [PubMed]
- Cheng, E.; Zhang, B.; Peng, D.; Zhong, L.; Yu, L.; Liu, Y.; Xiao, C.; Li, C.; Li, X.; Chen, Y. Wheat yield estimation using remote sensing data based on machine learning approaches. Front. Plant Sci. 2022, 13, 1090970. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Si, H.; Gao, Z.; Shi, L. Winter wheat yield prediction using an LSTM model from MODIS LAI products. Agriculture 2022, 12, 1707. [Google Scholar] [CrossRef]
- Zhu, Y.; Wu, S.; Qin, M.; Fu, Z.; Gao, Y.; Wang, Y.; Du, Z. A deep learning crop model for adaptive yield estimation in large areas. Int. J. Appl. Earth Obs. Geoinf. 2022, 110, 102828. [Google Scholar] [CrossRef]
- Shen, Y.; Mercatoris, B.; Cao, Z.; Kwan, P.; Guo, L.; Yao, H.; Cheng, Q. Improving Wheat Yield Prediction Accuracy Using LSTM-RF Framework Based on UAV Thermal Infrared and Multispectral Imagery. Agriculture 2022, 12, 892. [Google Scholar] [CrossRef]
- Di, Y.; Gao, M.; Feng, F.; Li, Q.; Zhang, H. A New Framework for Winter Wheat Yield Prediction Integrating Deep Learning and Bayesian Optimization. Agronomy 2022, 12, 3194. [Google Scholar] [CrossRef]
- Shahrin, F.; Zahin, L.; Rahman, R.; Hossain, A.J.; Kaf, A.H.; Azad, A.A.M. Agricultural analysis and crop yield prediction of Habiganj using multispectral bands of satellite imagery with machine learning. In Proceedings of the 2020 11th International Conference on Electrical and Computer Engineering (ICECE), Dhaka, Bangladesh, 17–19 December 2020; pp. 21–24. [Google Scholar]
- Zhang, L.; Zhang, Z.; Luo, Y.; Cao, J.; Tao, F. Combining Optical, Fluorescence, Thermal Satellite, and Environmental Data to Predict County-Level Maize Yield in China Using Machine Learning Approaches. Remote Sens. 2020, 12, 21. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, S.; Chen, J.; Chen, B.; Wang, X.; Hao, D.; Sun, L. Rice yield prediction and model interpretation based on satellite and climatic indicators using a transformer method. Remote Sens. 2022, 14, 5045. [Google Scholar] [CrossRef]
- Tian, H.; Wang, P.; Tansey, K.; Han, D.; Zhang, J.; Zhang, S.; Li, H. A deep learning framework under attention mechanism for wheat yield estimation using remotely sensed indices in the Guanzhong Plain, PR China. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102375. [Google Scholar] [CrossRef]
- Tian, H.; Wang, P.; Tansey, K.; Zhang, J.; Zhang, S.; Li, H. An LSTM neural network for improving wheat yield estimates by integrating remote sensing data and meteorological data in the Guanzhong Plain, PR China. Agric. For. Meteorol. 2021, 310, 108629. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, Z.; Tao, F.; Zhang, L.; Luo, Y.; Zhang, J.; Han, J.; Xie, J. Integrating Multi-Source Data for Rice Yield Prediction across China using Machine Learning and Deep Learning Approaches. Agric. For. Meteorol. 2021, 297, 108275. [Google Scholar] [CrossRef]
- Schwalbert, R.A.; Amado, T.; Corassa, G.; Pott, L.P.; Prasad, P.V.; Ciampitti, I.A. Satellite-based soybean yield forecast: Integrating machine learning and weather data for improving crop yield prediction in southern Brazil. Agric. For. Meteorol. 2020, 284, 107886. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, Z.; Kang, Y.; Özdoğan, M. Corn yield prediction and uncertainty analysis based on remotely sensed variables using a Bayesian neural network approach. Remote Sens. Environ. 2021, 259, 112408. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, Z.; Luo, Y.; Cao, J.; Xie, R.; Li, S. Integrating satellite-derived climatic and vegetation indices to predict smallholder maize yield using deep learning. Agric. For. Meteorol. 2021, 311, 108666. [Google Scholar] [CrossRef]
- Jhajharia, K.; Mathur, P.; Jain, S.; Nijhawan, S. Crop yield prediction using machine learning and deep learning techniques. Procedia Comput. Sci. 2023, 218, 406–417. [Google Scholar] [CrossRef]
- Divakar, M.S.; Elayidom, M.S.; Rajesh, R. Forecasting crop yield with deep learning based ensemble model. Mater. Today Proc. 2022, 58, 256–259. [Google Scholar] [CrossRef]
- Jaison, B. Adaptive Lemuria: A progressive future crop prediction algorithm using data mining. Sustain. Comput. Inform. Syst. 2021, 31, 100577. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, Z. A Bayesian domain adversarial neural network for corn yield prediction. IEEE Geosci. Remote. Sens. Lett. 2022, 19, 5513705. [Google Scholar] [CrossRef]
- Perich, G.; Turkoglu, M.O.; Graf, L.V.; Wegner, J.D.; Aasen, H.; Walter, A.; Liebisch, F. Pixel-based yield mapping and prediction from Sentinel-2 using spectral indices and neural networks. Field Crop. Res. 2023, 292, 108824. [Google Scholar] [CrossRef]
- Wang, J.; Wang, P.; Tian, H.; Tansey, K.; Liu, J.; Quan, W. A deep learning framework combining CNN and GRU for improving wheat yield estimates using time series remotely sensed multi-variables. Comput. Electron. Agric. 2023, 206, 107705. [Google Scholar] [CrossRef]
- Cunha, R.L.; Silva, B.; Netto, M.A. A scalable machine learning system for pre-season agriculture yield forecast. In Proceedings of the 2018 IEEE 14th International Conference on E-Science (e-Science), Amsterdam, The Netherlands, 29 October–1 November 2018; pp. 423–430. [Google Scholar]
- De Freitas Cunha, R.L.; Silva, B. Estimating crop yields with remote sensing and deep learning. In Proceedings of the 2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS), Santiago, Chile, 22–26 March 2020; pp. 273–278. [Google Scholar]
- Yli-Heikkilä, M.; Wittke, S.; Luotamo, M.; Puttonen, E.; Sulkava, M.; Pellikka, P.; Heiskanen, J.; Klami, A. Scalable crop yield prediction with Sentinel-2 time series and temporal convolutional network. Remote. Sens. 2022, 14, 4193. [Google Scholar] [CrossRef]
- Olofintuyi, S.S.; Olajubu, E.A.; Olanike, D. An ensemble deep learning approach for predicting cocoa yield. Heliyon 2023, 9, e08351. [Google Scholar] [CrossRef]
- Sun, J.; Lai, Z.; Di, L.; Sun, Z.; Tao, J.; Shen, Y. Multilevel deep learning network for county-level corn yield estimation in the US corn belt. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5048–5060. [Google Scholar] [CrossRef]
- Liu, F.; Jiang, X.; Wu, Z. Attention. Mechanism-Combined LSTM for Grain Yield Prediction in China Using Multi-Source Satellite Imagery. Sustainability 2023, 15, 9210. [Google Scholar] [CrossRef]
- Nasr, I.; Nassar, L.; Karray, F.; Zayed, M.B. Enhanced Deep Learning Satellite-based Model for Yield Forecasting and Quality Assurance Using Metamorphic Testing. In Proceedings of the 2023 International Joint Conference on Neural Networks (IJCNN), Gold Coast, Australia, 18–23 June 2023; pp. 1–6. [Google Scholar]
- Zhang, J.; Tian, H.; Wang, P.; Tansey, K.; Zhang, S.; Li, H. Improving wheat yield estimates using data augmentation models and remotely sensed biophysical indices within deep neural networks in the Guanzhong Plain, PR China. Comput. Electron. Agric. 2022, 192, 106616. [Google Scholar] [CrossRef]
- Morales, G.; Sheppard, J.W.; Hegedus, P.B.; Maxwell, B.D. Improved Yield Prediction of Winter Wheat Using a Novel Two-Dimensional Deep Regression Neural Network Trained via Remote Sensing. Sensors 2023, 23, 489. [Google Scholar] [CrossRef] [PubMed]
- Espinosa, C.E.; Velásquez, S.; Hernández, F.L. Sugarcane Productivity Estimation Through Processing Hyperspectral Signatures Using Artificial Neural Networks. In Proceedings of the 2020 IEEE Latin American GRSS ISPRS Remote Sensing Conference (LAGIRS), Santiago, Chile, 22–26 March 2020; pp. 290–295. [Google Scholar] [CrossRef]
- Zhou, W.; Song, C.; Liu, C.; Fu, Q.; An, T.; Wang, Y.; Sun, X.; Wen, N.; Tang, H.; Wang, Q. A Prediction Model of Maize Field Yield Based on the Fusion of Multitemporal and Multimodal UAV Data: A Case Study in Northeast China. Remote Sens. 2023, 15, 3483. [Google Scholar] [CrossRef]
- Wang, X.; Huang, J.; Feng, Q.; Yin, D. Winter Wheat Yield Prediction at County Level and Uncertainty Analysis in Main Wheat-Producing Regions of China with Deep Learning Approaches. Remote Sens. 2020, 12, 1744. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the Advances in Neural Information Processing Systems: 26th Annual Conference on Neural Information Processing Systems 2012, Lake Tahoe, NV, USA, 3–6 December 2012; Volume 25. [Google Scholar]
- Rakhmatulin, I.; Kamilaris, A.; Andreasen, C. Deep neural networks to detect weeds from crops in agricultural environments in real-time: A review. Remote Sens. 2021, 13, 4486. [Google Scholar] [CrossRef]
- Grohs, P.; Kutyniok, G. (Eds.) Mathematical Aspects of Deep Learning; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Mohammadi, S.; Belgiu, M.; Stein, A. 3D Fully Convolutional Neural Networks with Intersection Over Union Loss for Crop Mapping from Multi-Temporal Satellite Images. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 5834–5837. [Google Scholar]
- García-Martínez, H.; Flores-Magdaleno, H.; Ascencio-Hernández, R.; Khalil-Gardezi, A.; Tijerina-Chávez, L.; Mancilla-Villa, O.R.; Vázquez-Peña, M.A. Corn Grain Yield Estimation from Vegetation Indices, Canopy Cover, Plant Density, and a Neural Network Using Multispectral and RGB Images Acquired with Unmanned Aerial Vehicles. Agriculture 2020, 10, 277. [Google Scholar] [CrossRef]
- Deng, Y.; Chen, R.; Wu, C. Examining. the deep belief network for subpixel unmixing with medium spatial resolution multispectral imagery in urban environments. Remote Sens. 2019, 11, 1566. [Google Scholar] [CrossRef]
- Hassan, M.M.; Alam, M.G.R.; Uddin, M.Z.; Huda, S.; Almogren, A.; Fortino, G. Human emotion recognition using deep belief network architecture. Inf. Fusion 2019, 51, 10–18. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, F. An improved deep belief network prediction model based on knowledge transfer. Future Internet 2020, 12, 188. [Google Scholar] [CrossRef]
- Kawamura, K.; Nishigaki, T.; Andriamananjara, A.; Rakotonindrina, H.; Tsujimoto, Y.; Moritsuka, N.; Rabenarivo, M.; Razafimbelo, T. Using a one-dimensional convolutional neural network on visible and near-infrared spectroscopy to improve soil phosphorus prediction in Madagascar. Remote Sens. 2021, 13, 1519. [Google Scholar] [CrossRef]
- Chaerun Nisa, E.; Kuan, Y.-D. Comparative Assessment to Predict and Forecast Water-Cooled Chiller Power Consumption Using Machine Learning and Deep Learning Algorithms. Sustainability 2021, 13, 744. [Google Scholar] [CrossRef]
- Albelwi, S.; Mahmood, A. A framework for designing the architectures of deep convolutional neural networks. Entropy 2017, 19, 242. [Google Scholar] [CrossRef]
- Hou, R.; Chen, C.; Shah, M. An end-to-end 3D convolutional neural network for action detection and segmentation in videos. arXiv 2017, arXiv:1712.01111. [Google Scholar]
- Mäyrä, J.; Keski-Saari, S.; Kivinen, S.; Tanhuanpää, T.; Hurskainen, P.; Kullberg, P.; Poikolainen, L.; Viinikka, A.; Tuominen, S.; Kumpula, T. Tree species classification from airborne hyperspectral and LiDAR data using 3D convolutional neural networks. Remote Sens. Environ. 2021, 256, 112322. [Google Scholar] [CrossRef]
- Vrskova, R.; Kamencay, P.; Hudec, R.; Sykora, P. A New Deep-Learning Method for Human Activity Recognition. Sensors 2023, 23, 2816. [Google Scholar] [CrossRef]
- Granger, E.; Kiran, M.; Blais-Morin, L.-A. A comparison of CNN-based face and head detectors for real-time video surveillance applications. In Proceedings of the 2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA), Montreal, QC, Canada, 28 November–1 December 2017; pp. 1–7. [Google Scholar]
- Zhao, H.; Chen, Z.; Jiang, H.; Jing, W.; Sun, L.; Feng, M. Evaluation of three deep learning models for early crop classification using sentinel-1A imagery time series—A case study in Zhanjiang, China. Remote Sens. 2019, 11, 2673. [Google Scholar] [CrossRef]
- Zhao, W.; Meng, Q.-H.; Zeng, M.; Qi, P.-F. Stacked sparse auto-encoders (SSAE) based electronic nose for Chinese liquors classification. Sensors 2017, 17, 2855. [Google Scholar] [CrossRef] [PubMed]
- Ajakan, H.; Germain, P.; Larochelle, H.; Laviolette, F.; Marchand, M. Domain-Adversarial Neural Networks. arXiv 2014, arXiv:1412.4446. [Google Scholar]
- Lin, T.; Wang, Y.; Liu, X.; Qiu, X. A survey of transformers. AI Open 2022, 3, 111–132. [Google Scholar] [CrossRef]
- He, Y.; Zhao, J. Temporal Convolutional Networks for Anomaly Detection in Time Series. J. Phys. Conf. Ser. 2019, 1213, 042050. [Google Scholar] [CrossRef]
- Creswell, A.; White, T.; Dumoulin, V.; Arulkumaran, K.; Sengupta, B.; Bharath, A.A. Generative Adversarial Networks: An Overview. IEEE Signal Process. Mag. 2018, 35, 53–65. [Google Scholar] [CrossRef]
- Wang, K.; Gou, C.; Duan, Y.; Lin, Y.; Zheng, X.; Wang, F.-Y. Generative adversarial networks: Introduction and outlook. IEEE/CAA J. Autom. Sin. 2017, 4, 588–598. [Google Scholar] [CrossRef]
- Elbasi, E.; Zaki, C.; Topcu, A.E.; Abdelbaki, W.; Zreikat, A.I.; Cina, E.; Shdefat, A.; Saker, L. Crop Prediction Model Using Machine Learning Algorithms. Appl. Sci. 2023, 13, 9288. [Google Scholar] [CrossRef]
- Ansarifar, J.; Wang, L.; Archontoulis, S. An interaction regression model for crop yield prediction. Sci. Rep. 2021, 11, 17754. [Google Scholar] [CrossRef] [PubMed]
- Posch, K.; Arbeiter, M.; Pilz, J. A novel Bayesian approach for variable selection in linear regression models. Comput. Stat. Data Anal. 2020, 144, 106881. [Google Scholar] [CrossRef]
- Jenul, A.; Schrunner, S.; Pilz, J.; Tomic, O. A user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS). Mach. Learn. 2022, 111, 3897–3923. [Google Scholar] [CrossRef]
- Rasmussen, C.E.; Williams, C.K.I. Gaussian Processes for Machine Learning; MIT Press: Cambridge, MA, USA, 2005. [Google Scholar]
- Neal, R.M. Bayesian Learning for Neural Networks; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar]
- Gramacy, R. Surrogates: Gaussian Process Modeling, Design and Optimization for the Applied Sciences; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Sparapani, R.; Spanbauer, C.; McCulloch, R. Nonparametric Machine Learning and Efficient Computation with Bayesian Additive Regression Trees: The BART R Package. J. Stat. Softw. 2021, 97, 1–66. [Google Scholar] [CrossRef]
- Datta, A.; Banerjee, S.; Finley, A.O.; Gelfand, A.E. Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geostatistical Datasets. J. Am. Stat. Assoc. 2016, 111, 800–812. [Google Scholar] [CrossRef] [PubMed]
- Posch, K.; Arbeiter, M.; Pleschberger, M.; Pilz, J. Variable Selection Using Nearest Neighbor Gaussian Processes. Bayesian Anal. 2024. to be submitted. [Google Scholar]
- Zou, H. The Adaptive Lasso and Its Oracle Properties. J. Am. Stat. Assoc. 2006, 101, 1418–1429. [Google Scholar] [CrossRef]
- Carbonetto, P.; Stephens, M. Scalable variational inference for Bayesian variable selection in regression, and its accuracy in genetic association studies. Bayesian Anal. 2012, 7, 73–108. [Google Scholar] [CrossRef]
- Damianou, A.; Lawrence, N. Deep Gaussian processes. In Proceedings of the Artificial Intelligence and Statistics, Scottsdale, AZ, USA, 29 April–1 May 2013; pp. 207–215. [Google Scholar]
- Murphy, K.P. Probabilistic Machine Learning: Advanced Topics; MIT Press: Cambridge, MA, USA, 2023. [Google Scholar]
- You, J.; Li, X.; Low, M.; Lobell, D.; Ermon, S. Deep Gaussian Process for Crop Yield Prediction Based on Remote Sensing Data. Proc. AAAI Conf. Artif. Intell. 2017, 31, 4559–4565. [Google Scholar] [CrossRef]
- Sharifi, A. Yield prediction with machine learning algorithms and satellite images. J. Sci. Food Agric. 2021, 101, 891–896. [Google Scholar] [CrossRef] [PubMed]
- Parez, S.; Dilshad, N.; Alghamdi, N.S.; Alanazi, T.M.; Lee, J.W. Visual Intelligence in Precision Agriculture: Exploring Plant Disease Detection via Efficient Vision Transformers. Sensors 2023, 23, 6949. [Google Scholar] [CrossRef] [PubMed]
- Wikle, C.K.; Zammit-Mangion, A.; Cressie, N.A.C. Spatio-Temporal Statistics with R; Chapman & Hall/CRC the R Series; CRC Press, Taylor and Francis Group: Boca Raton, FL, USA, 2019. [Google Scholar]
Inclusion Criteria | Exclusion Criteria |
---|---|
The study must be empirical research that includes a methodology and results section | The paper is a survey or a review article |
The study must have been published within the last eight years | Articles published before 2015 The considered paper has already been included from another database search |
The paper discusses the application of deep learning to crop yield prediction | The publication does not deal with the application of deep learning to agricultural yield prediction The article does not meet the quality standards required for inclusion in our systematic review |
The article is written in English | The article is written in a language other than English |
Database | Number of Articles Remaining after Application of Inclusion and Exclusion Criteria |
---|---|
DOAJ | 30 |
IEEE | 15 |
MDPI | 15 |
ScienceDirect | 32 |
Total | 92 |
Deep Learning Architecture | Main Input | Crop | References |
---|---|---|---|
1D CNN | Markers, UAV data, satellite data, environmental data | Wheat, corn, barley, rice | [9,25,26,27,28,29,30,31] |
2D CNN | Hand-held devices, UAV data, RGB ground imagery, ground agricultural stations data, satellite data, web crawling (Google Web) data, satellite data, environmental data, in-field images (Canon camera) | Wheat, rapeseed, rice, tiger nuts, sunflower, sorghum, apple, pear, chives, onion, soybean, tomato, potato, corn, barley, wild blueberries, almond | [4,8,29,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54] |
3D CNN | UAV data, satellite data | Rice, maize, soybean, wheat, barley, oats | [36,44,45,55,56,57,58,59] |
DNN | Environmental data, UAV data, spectrometers, satellite data, web crawling (Google Web) data | Corn, tea, soybean, wheat, lettuce, cotton, apple, pear, chives, onion, coffee, rice | [5,6,7,9,17,28,31,41,45,60,61,62,63,64,65,66,67,68,69,70] |
R-CNN | UAV data, land-based vehicle, hand-held camera, Cloud platform | Apple, wheat, spinach, citrus, rice | [71,72,73,74,75,76] |
LSTM | Satellite data, environmental data, UAV data | Cotton, wheat, soybean, maize, tomato, potato, rice, rapeseed mustard, barley, bajra, jowar, onion | [8,31,42,47,49,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93] |
DBN | Environmental data | Apple, banana, castor oil seed, cherries, chick peas, chili, cocoa, beans, coconuts, coffee, green, ginger, maize, onion, orange, papaya, pepper, potato, rice, sunflower, tea, tomato, wheat, olicrop | [94] |
DANN | Satellite data | Corn | [95] |
ConvLSTM | UAV data, satellite data, environmental data | Wheat, barley, oats, rice, soybean | [43,44,58,59,93] |
GRU | Environmental data, satellite data | Tomato, potato, cereal, wheat | [42,96,97] |
LSTM-DNN | Environmental data, satellite data | Soybean, corn, rice, sugarcane, cotton | [98,99] |
Transformer | Satellite data, environmental data | Rice | [85] |
TCN | Satellite data | Winter wheat, spring wheat, rye, feed barley, malting barley, oats | [100] |
SSAE | Satellite data | Rice, corn, soybean | [47] |
CNN-LSTM | Environmental data, satellite data, UAV data | Cocoa, maize, soybean, wheat, barley, oats, rice, beans, potatoes | [8,43,44,52,55,58,93,101,102,103] |
1D CNN-2D CNN | UAV data | Corn | [29] |
1D CNN-LSTM | Satellite data, environmental data | Rice | [31] |
DFNNGRU-DeepGRUs | Satellite data | Strawberry | [104] |
2D CNN-GAN | Satellite data, environmental data | Wheat | [105] |
3D CNN-2D CNN | Satellite data | Wheat | [106] |
3DCNN +LSTM | Satellite data | Wheat, corn | [49] |
3DCNN-ConvLSTM | Satellite data | Soybean | [44] |
Autoencoders | Spectrometry techniques | Sugarcane | [107] |
CNN-attention-LSTM | LiDAR, UAV data, environmental data | Maize | [108] |
CNN-GRU | Satellite data | Wheat | [97] |
CNN-LSTM-GRU | Satellite data, environmental data | Wheat | [27] |
LSTM-1D CNN | Satellite data, environmental data | Rice | [31] |
LSTM-CNN | Satellite data | Wheat | [109] |
SAE-CNNLSTM | Satellite data | Strawberry | [104] |
Data Type | Number of Publications |
---|---|
UAV (RGB) | 16 |
UAV (multispectral) | 11 |
UAV (hyperspectral) | 1 |
UAV (thermal) | 2 |
Satellite | 49 |
Hand-held device | 4 |
Land-based vehicle | 1 |
Ground agricultural stations | 2 |
Markers | 2 |
Environmental data | 20 |
Spectrometry techniques | 2 |
Web crawling | 1 |
Light Detection And Ranging (LiDAR) | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meghraoui, K.; Sebari, I.; Pilz, J.; Ait El Kadi, K.; Bensiali, S. Applied Deep Learning-Based Crop Yield Prediction: A Systematic Analysis of Current Developments and Potential Challenges. Technologies 2024, 12, 43. https://doi.org/10.3390/technologies12040043
Meghraoui K, Sebari I, Pilz J, Ait El Kadi K, Bensiali S. Applied Deep Learning-Based Crop Yield Prediction: A Systematic Analysis of Current Developments and Potential Challenges. Technologies. 2024; 12(4):43. https://doi.org/10.3390/technologies12040043
Chicago/Turabian StyleMeghraoui, Khadija, Imane Sebari, Juergen Pilz, Kenza Ait El Kadi, and Saloua Bensiali. 2024. "Applied Deep Learning-Based Crop Yield Prediction: A Systematic Analysis of Current Developments and Potential Challenges" Technologies 12, no. 4: 43. https://doi.org/10.3390/technologies12040043