Next Article in Journal
Algorithm for Probabilistic Dual Hesitant Fuzzy Multi-Criteria Decision-Making Based on Aggregation Operators with New Distance Measures
Next Article in Special Issue
Dini-Type Helicoidal Hypersurfaces with Timelike Axis in Minkowski 4-Space E14
Previous Article in Journal
Planar Graphs under Pythagorean Fuzzy Environment
Previous Article in Special Issue
Quantum Information: A Brief Overview and Some Mathematical Aspects
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Implicit Equations of the Henneberg-Type Minimal Surface in the Four-Dimensional Euclidean Space

1
Department of Mathematics, Faculty of Sciences, Bartın University, 74100 Bartın, Turkey
2
Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, 15784 Athens, Greece
*
Author to whom correspondence should be addressed.
Mathematics 2018, 6(12), 279; https://doi.org/10.3390/math6120279
Submission received: 18 October 2018 / Revised: 20 November 2018 / Accepted: 22 November 2018 / Published: 25 November 2018
(This article belongs to the Special Issue Computer Algebra in Scientific Computing)

Abstract

:
Considering the Weierstrass data as ( ψ , f , g ) = ( 2 , 1 z m , z n ) , we introduce a two-parameter family of Henneberg-type minimal surface that we call H m , n for positive integers ( m , n ) by using the Weierstrass representation in the four-dimensional Euclidean space E 4 . We define H m , n in ( r , θ ) coordinates for positive integers ( m , n ) with m 1 , n 1 , m + n 1 , and also in ( u , v ) coordinates, and then we obtain implicit algebraic equations of the Henneberg-type minimal surface of values ( 4 , 2 ) .

1. Introduction

The theory of surfaces has an important role in mathematics, physics, biology, architecture, see e.g., the classical books [1,2] and papers [3,4,5,6,7,8,9].
A minimal surface in the three-dimensional Euclidean space E 3 , also in higher dimensions, is a regular surface for which the mean curvature vanishes identically. See [10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27] for details. On the other hand, a Henneberg surface [4,5,6], also obtained by the Weierstrass representation [8,9] is well-known classical minimal surface in E 3 .
In the four-dimensional Euclidean space E 4 , a general definition of rotation surfaces was given by Moore in [28] as follows
X ( u , t ) = x 1 ( u ) cos ( a t ) x 2 ( u ) sin ( a t ) x 1 ( u ) cos ( a t ) + x 2 ( u ) sin ( a t ) x 3 ( u ) cos ( b t ) x 4 ( u ) sin ( b t ) x 3 ( u ) cos ( b t ) + x 4 ( u ) sin ( b t ) .
A more restricted case can be found in [29]:
W ( u , t ) = ( x 1 ( u ) , x 2 ( u ) , r ( u ) cos ( t ) , r ( u ) sin ( t ) ) .
It is a bit too general since the curve is not located in any subspace before rotation.
Güler and Kişi [30] studied the Weierstrass representation, the degree and the classes of surfaces in E 4 , see [31,32,33,34,35,36,37,38] for some previous work.
In this paper, we study a two-parameter family of Henneberg-type minimal surfaces using the Weierstrass representation in E 4 . We give the Weierstrass equations for a minimal surface in E 4 , and obtain two normals of the surface in Section 2.
In Section 3, we introduce complex form of the Henneberg-type minimal surface in 4-dimension, considering 3-dimension case. Then we define Henneberg-type minimal surface in the polar coordinates using real part for values ( m , n ) called H m , n , where m and n are positive integers with m 1 , n 1 , m + n 1 . We also focus on Henneberg-type minimal surface H 4 , 2 using the Weierstrass representation in E 4 , and give explicit parametrizations for minimal Henneberg-type surface of values  ( 4 , 2 ) .
Finally, we describe how we obtained the implicit algebraic equation of the Henneberg-type surface H 4 , 2 , by using elimination techniques based on Groebner Basis in the software package Maple in Section 4.

2. Weierstrass Equations for a Minimal Surface in 𝔼4

We identify x and x t without further comment. Let E 4 = { x = ( x 1 , x 2 , x 3 , x 4 ) t | x i R } , · , · be the 4-dimensional Euclidean space with metric x , y = x 1 y 1 + x 2 y 2 + x 3 y 3 + x 4 y 4 .
Hoffman and Osserman [12] gave the Weierstrass equations for a minimal surface in E 4 :
Φ ( z ) = ψ 2 1 + f g , i ( 1 f g ) , f g , i ( f + g ) .
Here, ψ is analytic and the order of the zeros of ψ must be greater than the order of the poles of fg at each point.
X x i X y = Φ ( z ) = [ ( 1 + f 1 g 1 f 2 g 2 ) x ( f 2 g 1 + f 1 g 2 ) y , f 2 g 1 + f 1 g 2 x y + f 1 g 1 y f 2 g 2 y , f 1 g 1 x + ( f 2 + g 2 ) y , f 2 + g 2 x + ( f 1 + g 1 ) y ] i [ y f 1 ( g 2 x + g 1 y ) + f 2 ( g 1 x + g 2 y ) , ( 1 + f 1 g 1 f 2 g 2 ) x ( f 2 g 1 + f 1 g 2 ) y , + ( f 2 + g 2 ) x + ( f 1 + g 1 ) y , f 1 + g 1 x ( f 2 + g 2 ) y ] ,
where ψ = 2 z and f = f 1 + i f 2 , g = g 1 + i g 2 . We set
w 1 = [ ( f 2 g 1 x + f 1 g 2 x y + f 1 g 1 y f 2 g 2 y ) , ( 1 + f 1 g 1 f 2 g 2 ) x ( f 2 g 1 + f 1 g 2 ) y , ( f 2 + g 2 x + ( f 1 + g 1 ) y ) , f 1 g 1 x + ( f 2 + g 2 ) y ]
which is perpendicular to X x , and
w 2 = [ ( ( 1 + f 1 g 1 f 2 g 2 ) x ( f 2 g 1 + f 1 g 2 ) y ) , y f 1 ( g 2 x + g 1 y ) + f 2 ( g 1 x + g 2 y ) , ( f 1 x + g 1 x ( f 2 + g 2 ) y ) , f 2 x + g 2 x + ( f 1 + g 1 ) y ]
which is perpendicular to X y .
So far, we see that:
b = X x , w 2 = ( 1 + f 1 2 + f 2 2 ) ( 1 + g 1 2 + g 2 2 ) ( x 2 + y 2 ) = X y , w 1 ,
while
a = X x , X x = X y , X y = 1 + f 1 2 + f 2 2 ( 1 + g 1 2 + g 2 2 ) ( x 2 + y 2 ) = w j , w j .
Next, we use Gram-Schmidt to find an orthonormal basis for the normal space. Let e 1 = X x / a and e 2 = X y / a .
Then we get
n 1 = a a 2 b 2 w 1 + b a X y
and
n 2 = a a 2 b 2 w 2 b a X x ,
where
a 2 b 2 = 4 f 1 2 + f 2 2 x 2 + y 2 2 g 1 2 + g 2 2 + 1 2 , a a 2 b 2 = 1 + f 1 2 + f 2 2 4 f 1 2 + f 2 2 x 2 + y 2 g 1 2 + g 2 2 + 1 , b a = 1 + f 1 2 + f 2 2 1 + f 1 2 + f 2 2 ,
w 1 = f 1 g 2 + f 2 g 1 x 1 + f 1 g 1 f 2 g 2 y ( 1 + f 1 g 1 f 2 g 2 ) x ( f 2 g 1 + f 1 g 2 ) y f 2 + g 2 x ( f 1 + g 1 ) y f 1 g 1 x + ( f 2 + g 2 ) y , w 2 = ( ( 1 + f 1 g 1 f 2 g 2 ) x ( f 2 g 1 + f 1 g 2 ) y ) y f 1 ( g 2 x + g 1 y ) + f 2 ( g 1 x + g 2 y ) ( f 1 x + g 1 x ( f 2 + g 2 ) y ) f 2 x + g 2 x + ( f 1 + g 1 ) y ,
X x = ( 1 + f 1 g 1 f 2 g 2 ) x ( f 2 g 1 + f 1 g 2 ) y f 2 g 1 x + f 1 g 2 x y + f 1 g 1 y f 2 g 2 y f 1 x g 1 x + ( f 2 + g 2 ) y f 2 x + g 2 x + ( f 1 + g 1 ) y , X y = f 1 g 2 + f 2 g 1 x + 1 f 1 g 1 + f 2 g 2 y ( 1 + f 1 g 1 f 2 g 2 ) x ( f 2 g 1 + f 1 g 2 ) y f 2 + g 2 x + ( f 1 + g 1 ) y f 1 + g 1 x ( f 2 + g 2 ) y .
With x = r cos ( θ ) , y = r sin ( θ ) , f 1 = 1 r m cos ( m θ ) , f 2 = r m sin ( m θ ) , g 1 = r n cos ( n θ ) , g 2 = r n sin ( n θ ) we have the following two normals:
n 1 ( r , θ ) = A B sin θ r 2 m r n sin n + 1 θ + r m r n sin m + n + 1 θ B cos θ + r 2 m r n cos n + 1 θ r m r n cos m + n + 1 θ r 2 m sin θ + r m sin m + 1 θ B r n sin n + 1 θ r 2 m cos θ r m cos m + 1 θ B r n cos n + 1 θ ,
and
n 2 ( r , θ ) = A B cos θ r 2 m r n cos n + 1 θ + r m r n cos m + n + 1 θ B sin θ r 2 m r n sin n + 1 θ + r m r n sin m + n + 1 θ r 2 m cos θ + r m cos m + 1 θ B r n cos n + 1 θ r 2 m sin θ + r m sin m + 1 θ + B r n sin n + 1 θ ,
where A = B r 2 n + 1 2 r 2 m 2 r m cos m θ + 1 1 / 2 , B = r 2 m 2 r m cos m θ + 1 .
When we check inner products of n 1 and n 2 with themselves, we get
n 1 , n 1 = n 2 , n 2 = A 2 r 2 n + 1 r 2 m + r 4 m 2 r 3 m cos m θ + B 2 = 1 .

3. Henneberg Family of Surfaces H m , n

In 3-space, the Weierstrass data of the Henneberg surface is known as ( f , g ) = ( 1 1 / z 4 , z ) . In 4-space, we consider general case of it and choose ψ = 2 , f = 1 1 / z m and g = z n in (1). This gives
Φ ( z ) = 1 + z n z n m , i ( 1 z n + z n m ) , 1 z m z n , i ( 1 z m + z n ) .
We integrate (6) to get complex form of the family of Henneberg-type minimal surface:
Φ ( z ) d z = z + z n + 1 n + 1 z m + n + 1 m + n + 1 i z z n + 1 n + 1 + z m + n + 1 m + n + 1 z z m + 1 m + 1 z n + 1 n + 1 i z z m + 1 m + 1 + z n + 1 n + 1
with m 1 , n 1 , m + n 1 . Therefore, we get following definition:
Definition 1.
Taking the real part of the (7), with z = r e i θ , we obtain family of Henneberg-type minimal surface H m , n as follows
H m , n ( r , θ ) = r cos ( θ ) + r n + 1 cos ( ( n + 1 ) θ ) n + 1 r m + n + 1 cos ( ( m + n + 1 ) θ ) m + n + 1 r sin ( θ ) + r n + 1 sin ( ( n + 1 ) θ ) n + 1 r m + n + 1 sin ( ( m + n + 1 ) θ ) m + n + 1 r cos ( θ ) r m + 1 cos ( ( m + 1 ) θ ) m + 1 r n + 1 cos ( ( n + 1 ) θ ) n + 1 r sin ( θ ) r m + 1 sin ( ( m + 1 ) θ ) m + 1 + r n + 1 sin ( ( n + 1 ) θ ) n + 1 ,
where m 1 , n 1 , m + n 1 .

Algebraic Henneberg-Type Minimal Surface H 4 , 2

Next, we choose ( ψ , f , g ) = ( 2 , 1 1 / z 4 , z 2 ) in (1). This means ( m , n ) = ( 4 , 2 ) . Hence, we can define Henneberg-type surface H 4 , 2 in ( r , θ ) and ( u , v ) coordinates in the four-dimensional Euclidean space.
Definition 2.
In ( r , θ ) coordinates, taking m = 4 , n = 2 in (8), we have Henneberg-type minimal surface as follows:
H 4 , 2 ( r , θ ) = r 3 cos ( 3 θ ) 3 + r cos ( θ ) + cos ( θ ) r r 3 sin ( 3 θ ) 3 r sin ( θ ) sin ( θ ) r r 3 cos ( 3 θ ) 3 + r cos ( θ ) + cos ( 3 θ ) 3 r 3 r 3 sin ( 3 θ ) 3 + r sin ( θ ) sin ( 3 θ ) 3 r 3 = x ( r , θ ) y ( r , θ ) z ( r , θ ) w ( r , θ ) .
With the help of following equalities
r 3 cos ( 3 θ ) 3 = 1 3 r 3 cos 3 θ r 3 cos θ sin 2 θ , r 3 sin ( 3 θ ) 3 = 1 3 r 3 sin 3 θ + r 3 cos 2 θ sin θ , cos ( 3 θ ) 3 r 3 = 1 3 r 3 cos 3 θ 1 r 3 cos θ sin 2 θ , sin ( 3 θ ) 3 r 3 = 1 3 r 3 sin 3 θ + 1 r 3 cos 2 θ sin θ ,
and substituting
cos ( θ ) r = u u 2 + v 2 , sin ( θ ) r = v u 2 + v 2 ,
into (9), we have following definition:
Definition 3.
Henneberg-type minimal surface in ( u , v ) coordinates is defined by as follows:
H 4 , 2 ( u , v ) = 1 3 u 3 u v 2 + u + u u 2 + v 2 1 3 v 3 + u 2 v v v u 2 + v 2 1 3 u 3 + u v 2 + u + 1 3 u 3 u 2 + v 2 3 u v 2 u 2 + v 2 3 1 3 v 3 + u 2 v + v + 1 3 v 3 u 2 + v 2 3 u 2 v u 2 + v 2 3 = x ( u , v ) y ( u , v ) z ( u , v ) w ( u , v ) ,
where u : = r cos θ , v : = r sin θ .
Next, we see algebraic surface and its degree:
Definition 4.
With R 4 = { ( x , y , z , w ) x , y , z , w R } , the set of roots of a polynomial f ( x , y , z , w ) = 0 gives an algebraic surface. An algebraic surface is said to be of d e g r e e n, when n = deg ( f ) .
On the other hand, we meet following lemma about an algebraic minimal surface and an algebraic curve, obtained by Henneberg:
Lemma 1.
(Henneberg [5,7]) A plane intersects an algebraic minimal surface in an algebraic curve.
See also [16] for details.
Considering the above definition and lemma in 4-space, we obtain the following corollaries for the algebraic curves within the Henneberg-type minimal surface H 4 , 2 ( u , v ) in (10):
Corollary 1.
The implicit equation of the curve
H 4 , 2 ( u , 0 ) = γ 4 , 2 ( u ) = 1 3 u 3 + u + 1 u 0 1 3 u 3 + u + 1 3 u 3 0
on the x z -plane, obtained by eliminating u and v, is as follows (see Figure 1a)
γ 4 , 2 ( x , z ) = 729 x 6 + 6561 x 5 z 19683 x 4 z 2 + 19683 x 3 z 3 + 1458 x 5 10935 x 4 z + 26244 x 3 z 2 19683 x 2 z 3 + 9720 x 4 32076 x 3 z + 65610 x 2 z 2 + 6561 x z 3 59049 z 4 14040 x 3 + 36936 x 2 z 49572 x z 2 729 z 3 38772 x 2 + 72576 x z 116154 z 2 + 29016 x 27000 z + 83240 .
Its degree is d e g ( γ 4 , 2 ( x , z ) ) = 6 . Hence, the x z -plane intersects the algebraic minimal surface H 4 , 2 ( u , v ) in an algebraic curve γ 4 , 2 ( u ) .
Corollary 2.
The implicit equation of the curve
H 4 , 2 ( 0 , v ) = γ 4 , 2 ( v ) = 0 1 3 v 3 v 1 v 0 1 3 v 3 + v + 1 3 v 3
on the y w -plane, obtained by eliminating u and v, is as follows (see Figure 1b)
γ 4 , 2 ( y , w ) = 729 w 3 y 3 2187 w 2 y 4 + 2187 w y 5 729 y 6 + 2187 w 4 8748 w 3 y + 12636 w 2 y 2 3402 w y 3 + 14823 y 4 + 13365 w 2 + 25623 w y 41175 y 2 + 39601 ,
and we see that its degree is d e g ( γ 4 , 2 ( y , w ) ) = 6 . Therefore, the y w -plane intersects the algebraic minimal surface H 4 , 2 ( u , v ) in an algebraic curve γ 4 , 2 ( v ) .
Next, we will focus on the implicit equation of the algebraic surface H 4 , 2 ( x , y , z , w ) and on the degree of the Henneberg-type surface H 4 , 2 ( u , v ) .
By eliminating u and v of H 4 , 2 ( u , v ) using Groebner Basis in the Maple software package (see Section 4), we obtain the irreducible implicit equations of H 4 , 2 x , y , z , w = 0 in the cartesian coordinates x , y , z , w . The degrees of the 125 implicit equations vary from 12 to 15. Next, we show only the leading term of one of the degree 15 implicit equations:
H 4 , 2 ( x , y , z , w ) = 200357529114010966392986849696173135384400160212306238814 6921798341947018263352974811247016293579407850833661779885 3866925524317171303746574348380455005752233355972467214402 70054850560 x y 2 z w 11 + 729 other lower degree terms .
Since d e g H 4 , 2 = 15 , we have that H 4 , 2 ( x , y , z , w ) = 0 is an implicit algebraic Henneberg-type minimal surface in 4-space.

4. Maple Codes and Figures for Algebraic Henneberg Surface in 𝔼4

To compute the implicit equation of the Henneberg surface in E 4 we have tried a series of standard techniques in elimination theory: projective (Macaulay) and sparse multivariate resultants implemented in the Maple package multires (The package can be found at http://www-sop.inria.fr/galaad/software/multires/multires), Maple’s native implicitization command Implicitize, and implicitization based on Maples’ native implementation of Groebner Basis. For the latter we implemented in Maple the method in [39] (Chapter 3, p. 128).
All the above methods failed to give the implicit equations in reasonable time. In particular, for the resultant methods, the bottleneck was the computation of the determinant of the huge resultant matrix.
The final and successful method we have tried was to compute the equations defining the elimination ideal using the Groebner Basis package FGb [40]. The package can be found at: https://www-polsys.lip6.fr/ jcf/FGb/index.html.
The time required to output the 125 polynomials defining the elimination ideal was under 20 s. See Figure 2 and Figure 3 for the projections in R 3 of the surface defined by one of these polynomials.

Author Contributions

E.G. gave the idea for Henneberg type minimal surface in 4-space. Then E.G., Ö.K. and C.K. checked and polished the draft.

Funding

This research received no external funding.

Conflicts of Interest

The author declares that there is no conflict of interests regarding the publication of this paper.

References

  1. Darboux, G. Lecons sur la Theorie Generate des Surfaces III; Gauthier-Villars: Paris, France, 1894. [Google Scholar]
  2. Eisenhart, L.P. A Treatise on the Differential Geometry of Curves and Surfaces; Dover Publications: New York, NY, USA, 1909. [Google Scholar]
  3. Bour, E. Théorie de la déformation des surfaces. J. l’Êcole Polytech. 1862, 22, 1–148. [Google Scholar]
  4. Henneberg, L. Über Salche Minimalfläche, Welche Eine Vorgeschriebene Ebene Curve sur Geodätishen Line Haben. Ph.D. Thesis, Eidgenössisches Polythechikum, Zürich, Switzerland, 1875. [Google Scholar]
  5. Henneberg, L. Über diejenige minimalfläche, welche die Neilsche Parabel zur ebenen geodätischen Linie hat. Wolf Z. 1876, XXI, 17–21. [Google Scholar]
  6. Henneberg, L. Über die Evoluten der ebenen algebraischen Curven. Wolf Z. 1876, 21, 71–72. [Google Scholar]
  7. Henneberg, L. Bestimmung der niedrigsten classenzahl der algebraischen minimalflachen. Ann. Mat. Pura Appl. 1878, 9, 54–57. [Google Scholar] [CrossRef]
  8. Weierstrass, K. Untersuchungen über die flächen, deren mittlere Krümmung überall gleich null ist. Preuss Akad. Wiss. 1866, III, 219–220. [Google Scholar]
  9. Weierstrass, K. Mathematische Werke; Mayer & Muller: Berlin, Germany, 1903; Volume 3. [Google Scholar]
  10. Takahashi, T. Minimal immersions of Riemannian manifolds. J. Math. Soc. Jpn. 1966, 18, 380–385. [Google Scholar] [CrossRef]
  11. Osserman, R. A Survey of Minimal Surfaces; Van Nostrand Reinhold Co.: New York, NY, USA, 1969. [Google Scholar]
  12. Hoffman, D.A.; Osserman, R. The Geometry of the Generalized Gauss Map; American Mathematical Society: Providence, RI, USA, 1980. [Google Scholar]
  13. Lawson, H.B. Lectures on Minimal Submanifolds, 2nd ed.; Mathematics Lecture Series 9; Publish or Perish, Inc.: Wilmington, NC, USA, 1980; Volume I. [Google Scholar]
  14. Do Carmo, M.; Dajczer, M. Helicoidal surfaces with constant mean curvature. Tohoku Math. J. 1982, 34, 351–367. [Google Scholar] [CrossRef]
  15. De Oliveira, M.E.G.G. Some new examples of nonorientable minimal surfaces. Proc. Am. Math. Soc. 1986, 98, 629–636. [Google Scholar] [CrossRef]
  16. Nitsche, J.C.C. Lectures on Minimal Surfaces. Vol. 1. Introduction, Fundamentals, Geometry and Basic Boundary Value Problems; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
  17. Small, A.J. Minimal surfaces in ℝ3 and algebraic curves. Differ. Geom. Appl. 1992, 2, 369–384. [Google Scholar] [CrossRef]
  18. Small, A.J. Linear structures on the collections of minimal surfaces in ℝ3 and ℝ4. Ann. Glob. Anal. Geom. 1994, 12, 97–101. [Google Scholar] [CrossRef]
  19. Ikawa, T. Bour’s theorem and Gauss map. Yokohama Math. J. 2000, 48, 173–180. [Google Scholar]
  20. Ikawa, T. Bour’s theorem in Minkowski geometry. Tokyo J. Math. 2001, 24, 377–394. [Google Scholar] [CrossRef]
  21. Gray, A.; Abbena, E.; Salamon, S. Modern Differential Geometry of Curves and Surfaces with Mathematica®, 3rd ed.; Studies in Advanced Mathematics; Chapman & Hall/CRC: Boca Raton, FL, USA, 2006. [Google Scholar]
  22. Güler, E.; Turgut Vanlı, A. Bour’s theorem in Minkowski 3-space. J. Math. Kyoto Univ. 2006, 46, 47–63. [Google Scholar] [CrossRef]
  23. Güler, E.; Yaylı, Y.; Hacısalihoğlu, H.H. Bour’s theorem on the Gauss map in 3-Euclidean space. Hacet. J. Math. Stat. 2010, 39, 515–525. [Google Scholar]
  24. Güler, E.; Yaylı, Y. Generalized Bour theorem. Kuwait J. Sci. 2015, 42, 79–90. [Google Scholar]
  25. Ji, F.; Kim, Y.H. Mean curvatures and Gauss maps of a pair of isometric helicoidal and rotation surfaces in Minkowski 3-space. J. Math. Anal. Appl. 2010, 368, 623–635. [Google Scholar] [CrossRef]
  26. Ji, F.; Kim, Y.H. Isometries between minimal helicoidal surfaces and rotation surfaces in Minkowski space. Appl. Math. Comput. 2013, 220, 1–11. [Google Scholar] [CrossRef]
  27. Dierkes, U.; Hildebrandt, S.; Sauvigny, F. Minimal Surfaces, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
  28. Moore, C. Surfaces of rotation in a space of four dimensions. Ann. Math. 1919, 21, 81–93. [Google Scholar] [CrossRef]
  29. Ganchev, G.; Milousheva, V. An invariant theory of surfaces in the four-dimensional Euclidean or Minkowski space. Pliska Stud. Math. Bulg. 2012, 21, 177–200. [Google Scholar]
  30. Güler, E.; Kişi, Ö. Weierstrass representation, degree and classes of the surfaces in the four dimensional Euclidean space. Celal Bayar Univ. J. Sci. 2017, 13, 155–163. [Google Scholar] [CrossRef]
  31. Arslan, K.; Kılıç Bayram, B.; Bulca, B.; Öztürk, G. Generalized Rotation Surfaces in 𝔼4. Results Math. 2012, 61, 315–327. [Google Scholar] [CrossRef]
  32. Xu, G.; Rabczuk, T.; Güler, E.; Wu, X.; Hui, K.; Wang, G. Quasi-harmonic Bezier approximation of minimal surfaces for finding forms of structural membranes. Comput. Struct. 2015, 161, 55–63. [Google Scholar] [CrossRef]
  33. Arslan, K.; Bayram, B.; Bulca, B.; Öztürk, G. On translation surfaces in 4-dimensional Euclidean space. Acta Comment. Univ. Tartu. Math. 2016, 20, 123–133. [Google Scholar] [CrossRef]
  34. Güler, E.; Magid, M.; Yaylı, Y. Laplace Beltrami operator of a helicoidal hypersurface in four space. J. Geom. Symmetry Phys. 2016, 41, 77–95. [Google Scholar] [CrossRef]
  35. Arslan, K.; Bulca, B.; Kosova, D. On generalized rotational surfaces in Euclidean spaces. J. Korean Math. Soc. 2017, 54, 999–1013. [Google Scholar] [CrossRef]
  36. The Hieu, D.; Ngoc Thang, N. Bour’s theorem in 4-dimensional Euclidean space. Bull. Korean Math. Soc. 2017, 54, 2081–2089. [Google Scholar]
  37. Güler, E.; Hacısalihoğlu, H.H.; Kim, Y.H. The Gauss map and the third Laplace-Beltrami operator of the rotational hypersurface in 4-Space. Symmetry 2018, 10, 398. [Google Scholar] [CrossRef]
  38. Güler, E. Isometric deformation of (m, n)-type helicoidal surface in the three dimensional Euclidean space. Mathematics 2018, 6, 226. [Google Scholar] [CrossRef]
  39. Cox, D.; Little, J.; O’Shea, D. Ideals, Varieties, and Algorithms. An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3rd ed.; Undergraduate Texts in Mathematics; Springer: New York, NY, USA, 2007. [Google Scholar]
  40. Faugère, J.C. FGb: A library for computing Gröbner bases. In Proceedings of the Third International Congress Conference on Mathematical Software (ICMS’10), Kobe, Japan, 13–17 September 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 84–87. [Google Scholar]
Figure 1. Henneberg algebraic curves. (a): γ 4 , 2 ( x , z ) = 0 ; (b): γ 4 , 2 ( y , w ) = 0 .
Figure 1. Henneberg algebraic curves. (a): γ 4 , 2 ( x , z ) = 0 ; (b): γ 4 , 2 ( y , w ) = 0 .
Mathematics 06 00279 g001
Figure 2. Projection in R 3 of a Henneberg algebraic surface. (a): H 4 , 2 ( x , y , z ) = 0 ; (b): H 4 , 2 ( x , y , w ) = 0 .
Figure 2. Projection in R 3 of a Henneberg algebraic surface. (a): H 4 , 2 ( x , y , z ) = 0 ; (b): H 4 , 2 ( x , y , w ) = 0 .
Mathematics 06 00279 g002
Figure 3. Projection in R 3 of a Henneberg algebraic surface. (a): H 4 , 2 ( x , z , w ) = 0 ; (b): H 4 , 2 ( y , z , w ) = 0 .
Figure 3. Projection in R 3 of a Henneberg algebraic surface. (a): H 4 , 2 ( x , z , w ) = 0 ; (b): H 4 , 2 ( y , z , w ) = 0 .
Mathematics 06 00279 g003

Share and Cite

MDPI and ACS Style

Güler, E.; Kişi, Ö.; Konaxis, C. Implicit Equations of the Henneberg-Type Minimal Surface in the Four-Dimensional Euclidean Space. Mathematics 2018, 6, 279. https://doi.org/10.3390/math6120279

AMA Style

Güler E, Kişi Ö, Konaxis C. Implicit Equations of the Henneberg-Type Minimal Surface in the Four-Dimensional Euclidean Space. Mathematics. 2018; 6(12):279. https://doi.org/10.3390/math6120279

Chicago/Turabian Style

Güler, Erhan, Ömer Kişi, and Christos Konaxis. 2018. "Implicit Equations of the Henneberg-Type Minimal Surface in the Four-Dimensional Euclidean Space" Mathematics 6, no. 12: 279. https://doi.org/10.3390/math6120279

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop