Fixed Point Theorems for Almost Z-Contractions with an Application
Abstract
:1. Introduction and Preliminaries
- (ζ1)
- .
- (ζ2)
- for all .
- (ζ3)
- If are sequences in such that , then
- (ζ4)
- If are sequences in such that and for all , then Equation (1) is satisfied.
2. Main Results
3. An Application
- (a)
- (b)
- (c)
- for all
Author Contributions
Conflicts of Interest
References
- Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundam. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Berinde, V. Approximating fixed points of weak contractions using the Picard iteration. Nonlinear Anal. Forum 2004, 9, 43–53. [Google Scholar]
- Berinde, V. General constructive fixed point theorems for Ciric-type almost contractions in metric spaces. Carpathian J. Math. 2008, 24, 10–19. [Google Scholar]
- Babu, G.V.R.; Sandhya, M.L.; Kameswari, M.V.R. A note on a fixed point theorem of Berinde on weak contractions. Carpathian J. Math. 2008, 24, 8–12. [Google Scholar]
- Shoaib, A. α-η dominated mappings and related common fixed point results in closed ball. J. Concrete Appl. Math. 2015, 13, 152–170. [Google Scholar]
- Shoaib, A.; Arshad, M.; Kutbi, M.A. Common fixed points of a pair of Hardy Rogers type mappings on a closed ball in ordered partial metric spaces. J. Comput. Anal. Appl. 2014, 17, 255–264. [Google Scholar]
- Khojasteh, F.; Shukla, S.; Radenovic, S. A new approach to the study of fixed point theorems via simulation functions. Filomat 2015, 29, 1189–1194. [Google Scholar] [CrossRef]
- Argoubi, H.; Samet, B.; Vetro, C. Nonlinear contractions involving simulation functions in a metric space with a partial order. J. Nonlinear Sci. Appl. 2015, 8, 1082–1094. [Google Scholar] [CrossRef]
- Roldan-Lopez-de-Hierro, A.F.; Karapınar, E.; Roldan-Lopez-de-Hierro, C.; Martínez-Moreno, J. Coincidence point theorems on metric spaces via simulation functions. J. Comput. Appl. Math. 2015, 275, 345–355. [Google Scholar] [CrossRef]
- Boyd, D.W.; Wong, J.S.W. On nonlinear contractions. Proc. Am. Math. Soc. 1969, 20, 458–464. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Isik, H.; Gungor, N.B.; Park, C.; Jang, S.Y. Fixed Point Theorems for Almost Z-Contractions with an Application. Mathematics 2018, 6, 37. https://doi.org/10.3390/math6030037
Isik H, Gungor NB, Park C, Jang SY. Fixed Point Theorems for Almost Z-Contractions with an Application. Mathematics. 2018; 6(3):37. https://doi.org/10.3390/math6030037
Chicago/Turabian StyleIsik, Huseyin, Nurcan Bilgili Gungor, Choonkil Park, and Sun Young Jang. 2018. "Fixed Point Theorems for Almost Z-Contractions with an Application" Mathematics 6, no. 3: 37. https://doi.org/10.3390/math6030037
APA StyleIsik, H., Gungor, N. B., Park, C., & Jang, S. Y. (2018). Fixed Point Theorems for Almost Z-Contractions with an Application. Mathematics, 6(3), 37. https://doi.org/10.3390/math6030037