Wound Healing: Biologics, Skin Substitutes, Biomembranes and Scaffolds
Abstract
:1. Introduction
2. Biologics for Wound Healing
2.1. Description
2.2. Mechanisms and Indications
Monoterpene | Company (FDA Approval) | Composition | Mechanism | Clinical Trials |
---|---|---|---|---|
Sulbogin® (SuileTM) ointment wound dressing | Hedonist Biochemical Technologies Co, Taipei, Taiwan (2001, 2003) | 0.7% borneol, 4.5% bismuth subgallate, Vaseline® | bismuth subgallate induces macrophages to secrete growth factors to facilitate wound healing [6] decreases lesion area, enhances granulation tissue formation and re-epithelialization, initiates proliferation of collagen via the activation of fibroblasts, accelerates reestablishment of blood vessels, restricts the formation of nitric oxide [4] |
|
thymol | N/A | monoterpenic phenol which is usually found in thyme oil | modulates prostaglandin synthesis [7]; anti-inflammatory; inhibits myeloperoxidase activity [8,9]; oxidant effects on docosahexaenoic acid [10]; prevents lipid autoxidation [11] and formation of toxic elements via the stimulation of reactive nitrogen species [12]; enhances collagen synthesis and fibroblast metabolism [9]; antimicrobial; anesthetic [16] |
|
α-terpineol | N/A | monoterpene alcohol derived from pine and other oils | inhibits generation of prostaglandin-endoperoxide synthase [18], COX-2 [19], IL-1β [20], IL-6 [21], NF-κB [20], TNF-α and NO production [21]; increased expression of IL-10; inhibits neutrophil influx [22]; antimicrobial [23]; antifungal [24] |
|
genipin | N/A | fruit extract aglycone derived from iridoid glycoside | crosslinking agent [25,26]; antioxidant [27]; anti-inflammatory [28]; stimulates NO production; inhibits lipid peroxidation; elevates potential of mitochondrial membranes; elevates secretion of insulin; increases ATP levels; closes KATP channels [29] |
|
aucubin | N/A | iridoid glycoside found in plants | anti-inflammatory [44], antimicrobial, antioxidant, chemopreventive agent |
|
d-Limonene | N/A | orange-peel derived terpene d-Limonene | anti-angiogenic, anti-inflammatory; decreases systemic cytokines; inhibits expression of endothelial P-selectin |
|
sericin | N/A | protein created by silkworms (Bombyx mori) | stimulates migration of fibroblasts; generates collagen in wounds, leading to activation of epithelialization; anti-inflammatory; initiates propagation and attachment of skin fibroblasts and keratinocytes |
|
2.3. Contraindications
3. Skin Substitutes for Wound Healing
3.1. Description
Epidermal Skin Replacement | ||||
---|---|---|---|---|
Biologic Company (FDA Approval) Product Description | Product Description | FDA Indications (Other Indications) | Clinical Trials | Advantages Disadvantages |
Epicel® Genzyme Tissue Repair Corporation Cambridge, MA, USA (2007) Permanent skin substitute Living Cell Therapy Cultured Epithelial Autograft (CEA) | autologous keratinocytes with murine fibroblasts are cultured to form epidermal autografts which are then processed into sheets and placed onto petroleum gauze [71]. It is used as an adjuvant to STSG or alone if STSG are not available due to the extent or severity of the burns. | Humanitarian Device Exemption (HDE) for treatment of deep dermal or full thickness burns (greater than or equal to 30% TBSA); grafting after congenital nevus removal (diabetic and venous ulcers) | Burns
| Advantages
|
Laserskin® Fidia Advanced Biopolymers Abano Terme, Italy Permanent skin substitute | autologous keratinocytes and fibroblasts derived from a skin biopsy cultured on a laser-microperforated biodegradable matrix of benzyl esterified hyaluronic acid [75,76]. Cells proliferate and migrate through the matrix. Microperforations allow for drainage of wound exudate. | (diabetic foot ulcers and venous leg ulcers, partial thickness burns, vitiligo) [77,78] |
Diabetic Foot Ulcers (DFUs)
| Advantages
|
Dermal Skin Replacement | ||||
Biologic Company (FDA Approval) Product Description | Product Description | FDA Indications (Other Indications) | Clinical Trials | Advantages Disadvantages |
TransCyte® Shire Regenerative Medicine, Inc. San Diego, CA, USA; Smith & Nephew, Inc., Largo, FL, USA (1997) Temporary skin substitute Composite matrix | human allogeneic fibroblasts from neonatal foreskin seeded onto silicone covered bioabsorbable nylon mesh scaffold and cultured ex vivo for 4–6 weeks, secreting components of the extracellular matrix and many local growth factors [85] | temporary covering of deep partial thickness and full thickness burn wounds (chronic leg ulcers (diabetic foot ulcers lasting more than 6 weeks; venous and pressure ulcers) | Burns
| Advantages
|
Dermagraft® Shire Regenerative Medicine, Inc.San Diego, CA, USA (2001) Permanent or temporary skin substitute Living Cell Therapy Allogenic matrix derived from human neonatal fibroblast | cryopreserved allogenic neonatal fibroblasts derived from neonatal foreskin and cultured on bioabsorbable collagen on polyglactin (Dexon) or polyglactin-910 (Vicryl) mesh for several weeks [91]. The biodegradable mesh disappears after 3–4 weeks | Premarket approval (PMA) for full-thickness diabetic lower extremity ulcers present for longer than 6 weeks extending through the dermis but not to the tendon, muscle, or bone [92] (Chronic wounds, and noninfected wounds. It can be used as a temporary or permanent covering to support take of meshed STSG on excised burn wounds [93,94]) | DFUs
| Advantages
|
AlloDerm®/Strattice® LifeCell Corporation Branchburg, NJ, USA (1992) Permanent skin substituteLiving Cell Therapy Human skin allograft derived from donated human cadaver | lyophilized human acellular cadaver dermal matrix serves as a scaffold for tissue remodeling [85] | Burns, full thickness wounds [102] (breast surgery [103,104,105], soft tissue reconstruction [106]) | Burns
| Advantages
|
Biobrane® Smith & Nephew, St. Petersburg, FL, USA Temporary skin substitute Acellular matrix | acellular dermal matrix made of porcine type I collagen that is incorporated onto a porous nylon mesh with a silicone membrane. The semipermeable membrane allows for penetration of antibiotics, drainage of exudates, and control of evaporative water losses. The nylon and silicone membrane allow for adherence to the wound surface [110]. | Partial thickness burns within 6 hours and donor sites of split thickness skin grafts [111] with low bacterial counts and without eschar or debris [112]; treatment of toxic epidermal necrolysis [113] and paraneoplastic pemphigus (dermabrasion, skin-graft harvesting, and laser resurfacing, chronic wounds, venous ulcers [110]) | Burns
| Advantages
|
Integra® Dermal Regeneration Template (DRT) Integra Lifesciences Corporation Plainsboro, Plainsboro, NJ, USA (1996) Permanent skin substitute Acellular matrix | bilayered extracellular matrix of cross-linked bovine type 1 collagen and chondroitin-6-sulfate glycosaminoglycan dermal replacement [85,126], with a thin silicone backing which acts as a temporary epidermal substitute. The product facilitates migration of macrophages and fibroblasts to initiate angiogenesis from dermal wound bed to create granulation tissue to support graft or local tissue. Once the neo-dermis is formed, the silicone layer is removed and the wound is permanently closed with a STSG on the neo-dermis [91]. | pressure ulcers, venous ulcers, diabetic ulcers, chronic vascular ulcers, surgical wounds (donor sites/grafts, post-Moh’s surgery, post-laser surgery, podiatric, wound dehiscence), trauma wounds (abrasions, lacerations, second-degree burns, and skin tears) and draining wounds (approved through 510(k) process in 2002) | Burns
| Advantages
|
Post-excisional treatment of life threatening full thickness or deep partial thickness burn injuries [134] where autograft is not available at the time of excision or not desirable due to the condition of the patient (approved 2001); reconstruction of scar contractures when other therapies have failed or when donor sites for repair are not sufficient or desirable due to the condition of the patient; chronic lower extremity ulcers [91,92] (soft tissue defects) | DFUs
| |||
Epidermal/Dermal Skin Replacements (Full-Thickness) | ||||
Biologic Company (FDA Approval) Product Description | Product Description | FDA Indications (Other Indications) | Clinical Trials | Advantages Disadvantages |
Apligraf®/Graftskin® Organogenesis, Canton, MA, USA (1998, 2001) Permanent skin substitute Living Cell Therapy Composite matrix | cornified epidermal allogeneic keratinocytes derived from neonatal foreskin cultured on a type I bovine collagen gel seeded with living neonatal allogeneic human fibroblasts in dermal matrix [91] | Chronic partial and full thickness venous stasis ulcers and full thickness diabetic foot ulcers [140] (epidermolysis bullosa [141], recurrent hernia repair, pressure sores, burn reconstruction) [92] | Venous Leg Ulcers
| Advantages
|
OrCel® Forticell Bioscience, New York City, NY, USA (1998) Living Cell Therapy Composite matrix | neonatal foreskin derived keratinocytes and dermal fibroblasts cultured in separate layers into a type I bovine collagen porous sponge [85]. During healing, autologous skin cells replace the cells in the product. | Approved for HDE in 2001 for use in patients with dystrophic epidermolysis bullosa undergoing hand reconstruction surgery to close and heal wounds created by surgery, including donor sites; PMA approval for autograft donor sites in burn patients (overlay on split thickness skin grafts to improve cosmesis and function) [92] (chronic diabetic and venous wounds) |
| Advantages
|
GraftJacket® Wright Medical Technology, Inc., Arlington, TX, USA, licensed by KCI USA, Inc., San Antonio, TX, USA Permanent skin substitute Human skin allograft derived from donated human cadaver | micronized acellular human dermis with a dermal matrix and intact basement membrane to facilitate ingrowth of blood vessels | (deep and superficial wounds, sinus tract wounds, tendon repair, such as rotator cuff repair) [154] not subject to FDA pre-notification approval as it is a human cell or tissue based product | DFUs
| Advantages
|
PermaDerm® Regenicin, Inc., Little Falls, NJ, USA Permanent skin substitute | autologous keratinocytes and fibroblasts cultured on bovine collagen scaffold | Orphan status approval as a permanent skin substitute in burns |
| Advantages
|
3.2. Contraindications
3.3. Clinical Trial Based Evidence
4. Biomembranes for Wound Healing
4.1. Description
4.2. Mechanism and Indications
4.3. Contraindications
4.4. Clinical Trial Based Evidence
5. Scaffolds for Wound Healing
5.1. Description
5.2. Mechanisms and Indications
5.3. Contraindications
5.4. Clinical Trial Based Evidence
6. Conclusions
Abbreviations
RNA | Ribonucleic Acid |
IL-6 | Interleukin 6 |
TNF-α | Tumor Necrosis Factor Alpha |
LTC4 | Leukotriene C4 |
TXB2 | Thromboxane B2 |
UVB | Ultraviolet B |
MIF | Migration Inhibitory Factor |
NO | Nitric Oxide |
RCT | Randomized Controlled Trial |
TBSA | Total Body Surface Area |
STSG | Split-Thickness Skin Graft |
COX-2 | Cyclooxygenase-2 |
IL-1β | Interleukin-1 beta |
NF-κB | Nuclear Factor kappa-light-chain-enhancer of activated B cells |
IL-10 | Interleukin 10 |
ATP | Adenosine Triphosphate |
KATP | Potassium Channels |
CEA | Cultured Epithelial Autograft |
HDE | Humanitarian Device Exemption |
DFU | Diabetic Foot Ulcers |
PMA | Premarket Approval |
LOS | Length of Stay |
TGF-β | Transforming Growth Factor-beta |
CACs | Circulating Angiogenic Cells |
OPN | Osteopontin |
CCPE | Collagen Coated Porous Polyethylene |
PMB | Poly(2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate) |
UPPE | Uncoated Porous Polyethylene |
DNA | Deoxyribonucleic Acid |
P3HT | Photosensitive Polymer Poly (3-hexylthiophene) |
CGS | Collagen/Gelatin Sponge |
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ghosh, P.K.; Gaba, A. Phyto-extracts in wound healing. J. Pharm. Pharm. Sci. 2013, 16, 760–820. [Google Scholar]
- Rennert, R.C.; Rodrigues, M.; Wong, V.W.; Duscher, D.; Hu, M.; Maan, Z.; Sorkin, M.; Gurtner, G.C.; Longaker, M.T. Biological therapies for the treatment of cutaneous wounds: Phase iii and launched therapies. Expert opin. Biol. Ther. 2013, 13, 1523–1541. [Google Scholar]
- Cohen, I.K. Lessons from the history of wound healing. Clin. Dermatol. 2007, 25, 3–8. [Google Scholar]
- Barreto, R.S.; Albuquerque-Junior, R.L.; Araujo, A.A.; Almeida, J.R.; Santos, M.R.; Barreto, A.S.; DeSantana, J.M.; Siqueira-Lima, P.S.; Quintans, J.S.; Quintans-Junior, L.J. A systematic review of the wound-healing effects of monoterpenes and iridoid derivatives. Molecules 2014, 19, 846–862. [Google Scholar]
- Dias, A.M.; Braga, M.E.; Seabra, I.J.; Ferreira, P.; Gil, M.H.; de Sousa, H.C. Development of natural-based wound dressings impregnated with bioactive compounds and using supercritical carbon dioxide. Inter. J. Pharm. 2011, 408, 9–19. [Google Scholar] [CrossRef]
- Mai, L.M.; Lin, C.Y.; Chen, C.Y.; Tsai, Y.C. Synergistic effect of bismuth subgallate and borneol, the major components of sulbogin, on the healing of skin wound. Biomaterials 2003, 24, 3005–3012. [Google Scholar] [CrossRef]
- Anamura, S.; Dohi, T.; Shirakawa, M.; Okamoto, H.; Tsujimoto, A. Effects of phenolic dental medicaments on prostaglandin synthesis by microsomes of bovine tooth pulp and rabbit kidney medulla. Arch. Oral Biol. 1988, 33, 555–560. [Google Scholar] [CrossRef]
- Braga, P.C.; Dal Sasso, M.; Culici, M.; Bianchi, T.; Bordoni, L.; Marabini, L. Anti-inflammatory activity of thymol: Inhibitory effect on the release of human neutrophil elastase. Pharmacology 2006, 77, 130–136. [Google Scholar] [CrossRef]
- Riella, K.R.; Marinho, R.R.; Santos, J.S.; Pereira-Filho, R.N.; Cardoso, J.C.; Albuquerque-Junior, R.L.; Thomazzi, S.M. Anti-inflammatory and cicatrizing activities of thymol, a monoterpene of the essential oil from lippia gracilis, in rodents. J. Ethnopharmacol. 2012, 143, 656–663. [Google Scholar]
- Youdim, K.A.; Deans, S.G. Effect of thyme oil and thymol dietary supplementation on the antioxidant status and fatty acid composition of the ageing rat brain. Br. J. Nutr. 2000, 83, 87–93. [Google Scholar]
- Yanishlieva, N.V.; Marinova, E.M.; Gordon, M.H.; Raneva, V.G. Antioxidant activity and mechanism of action of thymol and carvacrol in two lipid systems. Food Chem. 1999, 64, 59–66. [Google Scholar] [CrossRef]
- Prieto, J.M.I.; Cioni, P.; Chericoni, S. In vitro activity of the essential oils of origanum vulgare, satureja montana and their main constituents in peroxynitrite-induced oxidative processes. Food Chem. 2007, 104, 889–895. [Google Scholar] [CrossRef]
- Haeseler, G.; Maue, D.; Grosskreutz, J.; Bufler, J.; Nentwig, B.; Piepenbrock, S.; Dengler, R.; Leuwer, M. Voltage-dependent block of neuronal and skeletal muscle sodium channels by thymol and menthol. Eur. J. Anaesthesiol. 2002, 19, 571–579. [Google Scholar] [CrossRef]
- Karpanen, T.J.; Worthington, T.; Hendry, E.R.; Conway, B.R.; Lambert, P.A. Antimicrobial efficacy of chlorhexidine digluconate alone and in combination with eucalyptus oil, tea tree oil and thymol against planktonic and biofilm cultures of staphylococcus epidermidis. J. Antimicrob. Chemother. 2008, 62, 1031–1036. [Google Scholar] [CrossRef]
- Tramontina, V.A.; Machado, M.A.; Nogueira Filho Gda, R.; Kim, S.H.; Vizzioli, M.R.; Toledo, S. Effect of bismuth subgallate (local hemostatic agent) on wound healing in rats. Histological and histometric findings. Braz. Dent. J. 2002, 13, 11–16. [Google Scholar]
- Priestley, C.M.; Williamson, E.M.; Wafford, K.A.; Sattelle, D.B. Thymol, a constituent of thyme essential oil, is a positive allosteric modulator of human gaba(a) receptors and a homo-oligomeric gaba receptor from drosophila melanogaster. Br. J. Pharmacol. 2003, 140, 1363–1372. [Google Scholar] [CrossRef]
- Kavoosi, G.; Dadfar, S.M.; Purfard, A.M. Mechanical, physical, antioxidant, and antimicrobial properties of gelatin films incorporated with thymol for potential use as nano wound dressing. J. Food Sci. 2013, 78, E244–E250. [Google Scholar] [CrossRef]
- Khalil, Z.; Pearce, A.L.; Satkunanathan, N.; Storer, E.; Finlay-Jones, J.J.; Hart, P.H. Regulation of wheal and flare by tea tree oil: Complementary human and rodent studies. J. Invest. Dermatol. 2004, 123, 683–690. [Google Scholar]
- Kawata, J.K.; Miyazawa, M. Cyclooxygenase-2 inhibitory effects of monoterpenoids with a p-methane skeleton. Int. J. Essent. Oil Ther. 2008, 2, 145–148. [Google Scholar]
- Hassan, S.B.; Gali-Muhtasib, H.; Goransson, H.; Larsson, R. Alpha terpineol: A potential anticancer agent which acts through suppressing nf-kappab signalling. Anticancer Res. 2010, 30, 1911–1919. [Google Scholar]
- Held, S.; Schieberle, P.; Somoza, V. Characterization of alpha-terpineol as an anti-inflammatory component of orange juice by in vitro studies using oral buccal cells. J. Agric. Food Chem. 2007, 55, 8040–8046. [Google Scholar] [CrossRef]
- De Oliveira, M.G.; Marques, R.B.; de Santana, M.F.; Santos, A.B.; Brito, F.A.; Barreto, E.O.; de Sousa, D.P.; Almeida, F.R.; Badaue-Passos, D., Jr.; Antoniolli, A.R.; et al. Alpha-terpineol reduces mechanical hypernociception and inflammatory response. Basic Clin. Pharmacol. Toxicol. 2012, 111, 120–125. [Google Scholar]
- Park, S.N.; Lim, Y.K.; Freire, M.O.; Cho, E.; Jin, D.; Kook, J.K. Antimicrobial effect of linalool and alpha-terpineol against periodontopathic and cariogenic bacteria. Anaerobe 2012, 18, 369–372. [Google Scholar]
- Park, M.J.; Gwak, K.S.; Yang, I.; Kim, K.W.; Jeung, E.B.; Chang, J.W.; Choi, I.G. Effect of citral, eugenol, nerolidol and alpha-terpineol on the ultrastructural changes of trichophyton mentagrophytes. Fitoterapia 2009, 80, 290–296. [Google Scholar]
- Jin, J.; Song, M.; Hourston, D.J. Novel chitosan-based films cross-linked by genipin with improved physical properties. Biomacromolecules 2004, 5, 162–168. [Google Scholar]
- Sung, H.W.; Huang, R.N.; Huang, L.L.; Tsai, C.C. In vitro evaluation of cytotoxicity of a naturally occurring cross-linking reagent for biological tissue fixation. J. Biomater. Sci. Polym. Ed. 1999, 10, 63–78. [Google Scholar]
- Wang, G.F.; Wu, S.Y.; Rao, J.J.; Lu, L.; Xu, W.; Pang, J.X.; Liu, Z.Q.; Wu, S.G.; Zhang, J.J. Genipin inhibits endothelial exocytosis via nitric oxide in cultured human umbilical vein endothelial cells. Acta pharmacol. Sin. 2009, 30, 589–596. [Google Scholar] [CrossRef]
- Koo, H.J.; Song, Y.S.; Kim, H.J.; Lee, Y.H.; Hong, S.M.; Kim, S.J.; Kim, B.C.; Jin, C.; Lim, C.J.; Park, E.H. Antiinflammatory effects of genipin, an active principle of gardenia. Eur. J. Pharmacol. 2004, 495, 201–208. [Google Scholar] [CrossRef]
- Parton, L.E.; Ye, C.P.; Coppari, R.; Enriori, P.J.; Choi, B.; Zhang, C.Y.; Xu, C.; Vianna, C.R.; Balthasar, N.; Lee, C.E.; et al. Glucose sensing by pomc neurons regulates glucose homeostasis and is impaired in obesity. Nature 2007, 449, 228–232. [Google Scholar] [CrossRef]
- Bao, D.; Chen, M.; Wang, H.; Wang, J.; Liu, C.; Sun, R. Preparation and characterization of double crosslinked hydrogel films from carboxymethylchitosan and carboxymethylcellulose. Carbohydr. Polym. 2014, 110, 113–120. [Google Scholar] [CrossRef]
- Arteche Pujana, M.; Perez-Alvarez, L.; Cesteros Iturbe, L.C.; Katime, I. Biodegradable chitosan nanogels crosslinked with genipin. Carbohydr. Polym. 2013, 94, 836–842. [Google Scholar]
- Pankongadisak, P.; Ruktanonchai, U.R.; Supaphol, P.; Suwantong, O. Preparation and characterization of silver nanoparticles-loaded calcium alginate beads embedded in gelatin scaffolds. AAPS Pharm. Sci. Tech. 2014. [Google Scholar] [CrossRef]
- Huang, G.P.; Shanmugasundaram, S.; Masih, P.; Pandya, D.; Amara, S.; Collins, G.; Arinzeh, T.L. An investigation of common crosslinking agents on the stability of electrospun collagen scaffolds. J. Biomed. Mater. Res. A 2014. [Google Scholar] [CrossRef]
- Yazdimamaghani, M.; Vashaee, D.; Assefa, S.; Shabrangharehdasht, M.; Rad, A.T.; Eastman, M.A.; Walker, K.J.; Madihally, S.V.; Kohler, G.A.; Tayebi, L. Green synthesis of a new gelatin-based antimicrobial scaffold for tissue engineering. Mater. Sci. Eng. C Mater. Biol. Appl. 2014, 39, 235–244. [Google Scholar]
- Siritientong, T.; Ratanavaraporn, J.; Srichana, T.; Aramwit, P. Preliminary characterization of genipin-cross-linked silk sericin/poly(vinyl alcohol) films as two-dimensional wound dressings for the healing of superficial wounds. Biomed. Res. Int. 2013, 2013, 904314. [Google Scholar]
- Chang, W.H.; Chang, Y.; Lai, P.H.; Sung, H.W. A genipin-crosslinked gelatin membrane as wound-dressing material: In vitro and in vivo studies. J. Biomater. Sci. Polym. Ed. 2003, 14, 481–495. [Google Scholar]
- Zhang, X.; Chen, X.; Yang, T.; Zhang, N.; Dong, L.; Ma, S.; Liu, X.; Zhou, M.; Li, B. The effects of different crossing-linking conditions of genipin on type i collagen scaffolds: An in vitro evaluation. Cell Tissue Banking 2014. [Google Scholar] [CrossRef]
- Wang, M.; Da, L.; Xie, Y.; Xie, H. Application of genipin for modification of natural biomaterials as a crosslinking agent. Chin. J. Reparative Reconstructive Surg. 2013, 27, 580–585. [Google Scholar]
- Mekhail, M.; Jahan, K.; Tabrizian, M. Genipin-crosslinked chitosan/poly-l-lysine gels promote fibroblast adhesion and proliferation. Carbohydr. Polym. 2014, 108, 91–98. [Google Scholar] [CrossRef]
- Chan, K.L.; Khankhel, A.H.; Thompson, R.L.; Coisman, B.J.; Wong, K.H.; Truslow, J.G.; Tien, J. Crosslinking of collagen scaffolds promotes blood and lymphatic vascular stability. J. Biomed. Mater. Res. A 2013. [Google Scholar] [CrossRef]
- Pandit, V.; Zuidema, J.M.; Venuto, K.N.; Macione, J.; Dai, G.; Gilbert, R.J.; Kotha, S.P. Evaluation of multifunctional polysaccharide hydrogels with varying stiffness for bone tissue engineering. Tissue Eng. A 2013, 19, 2452–2463. [Google Scholar] [CrossRef]
- Sun, W.; Incitti, T.; Migliaresi, C.; Quattrone, A.; Casarosa, S.; Motta, A. Genipin-crosslinked gelatin-silk fibroin hydrogels for modulating the behaviour of pluripotent cells. J. Tissue Eng. Regenerative Med. 2014. [Google Scholar] [CrossRef]
- Manickam, B.; Sreedharan, R.; Elumalai, M. “Genipin”—The natural water soluble cross-linking agent and its importance in the modified drug delivery systems: An overview. Curr. Drug Delivery 2014, 11, 139–145. [Google Scholar] [CrossRef]
- Recio, M.C.; Giner, R.M.; Manez, S.; Rios, J.L. Structural considerations on the iridoids as anti-inflammatory agents. Planta Med. 1994, 60, 232–234. [Google Scholar] [CrossRef]
- Shim, K.M.; Choi, S.H.; Jeong, M.J.; Kang, S.S. Effects of aucubin on the healing of oral wounds. In Vivo (Athens, Greece) 2007, 21, 1037–1041. [Google Scholar]
- D’ALESSIO, P.A.; Mirshahi, M.; Bisson, J.F.; Bene, M.C. Skin repair properties of d-limonene and perillyl alcohol in murine models. Anti-inflammatory Anti-allergy Agents Med. Chem. 2014, 13, 29–35. [Google Scholar]
- Anghel, I.; Holban, A.M.; Grumezescu, A.M.; Andronescu, E.; Ficai, A.; Anghel, A.G.; Maganu, M.; Laz, R.V.; Chifiriuc, M.C. Modified wound dressing with phyto-nanostructured coating to prevent staphylococcal and pseudomonal biofilm development. Nanoscale res. Let. 2012, 7, 690. [Google Scholar] [CrossRef]
- Moghimi, H.R.; Makhmalzadeh, B.S.; Manafi, A. Enhancement effect of terpenes on silver sulphadiazine permeation through third-degree burn eschar. Burns 2009, 35, 1165–1170. [Google Scholar] [CrossRef]
- Aramwit, P.; Palapinyo, S.; Srichana, T.; Chottanapund, S.; Muangman, P. Silk sericin ameliorates wound healing and its clinical efficacy in burn wounds. Arch. Dermatol. Res. 2013, 305, 585–594. [Google Scholar] [CrossRef]
- Siritientong, T.; Angspatt, A.; Ratanavaraporn, J.; Aramwit, P. Clinical potential of a silk sericin-releasing bioactive wound dressing for the treatment of split-thickness skin graft donor sites. Pharm. Res. 2014, 31, 104–116. [Google Scholar]
- Kanokpanont, S.; Damrongsakkul, S.; Ratanavaraporn, J.; Aramwit, P. An innovative bi-layered wound dressing made of silk and gelatin for accelerated wound healing. Int. J. Pharm. 2012, 436, 141–153. [Google Scholar] [CrossRef]
- Siritienthong, T.; Ratanavaraporn, J.; Aramwit, P. Development of ethyl alcohol-precipitated silk sericin/polyvinyl alcohol scaffolds for accelerated healing of full-thickness wounds. Int. J. Pharm. 2012, 439, 175–186. [Google Scholar]
- Aramwit, P.; Siritienthong, T.; Srichana, T.; Ratanavaraporn, J. Accelerated healing of full-thickness wounds by genipin-crosslinked silk sericin/pva scaffolds. Cells Tissues Organs 2013, 197, 224–238. [Google Scholar] [CrossRef]
- Aramwit, P.; Kanokpanont, S.; de-Eknamkul, W.; Srichana, T. Monitoring of inflammatory mediators induced by silk sericin. J. Biosci. Bioeng. 2009, 107, 556–561. [Google Scholar]
- Aramwit, P.; Sangcakul, A. The effects of sericin cream on wound healing in rats. Biosci. Biotech. Biochem. 2007, 71, 2473–2477. [Google Scholar] [CrossRef]
- Nayak, S.; Kundu, S.C. Sericin-carboxymethyl cellulose porous matrices as cellular wound dressing material. J. Biomed. Mater. Res. A 2014, 102, 1928–1940. [Google Scholar] [CrossRef]
- Nayak, S.; Dey, S.; Kundu, S.C. Skin equivalent tissue-engineered construct: Co-cultured fibroblasts/ keratinocytes on 3d matrices of sericin hope cocoons. PLoS One 2013, 8, e74779. [Google Scholar] [CrossRef]
- Zhao, R.; Li, X.; Sun, B.; Zhang, Y.; Zhang, D.; Tang, Z.; Chen, X.; Wang, C. Electrospun chitosan/sericin composite nanofibers with antibacterial property as potential wound dressings. Int. J. Biol. Macromol. 2014, 68, 92–97. [Google Scholar] [CrossRef]
- Teramoto, H.; Kameda, T.; Tamada, Y. Preparation of gel film from bombyx mori silk sericin and its characterization as a wound dressing. Biosci. Biotech. Biochem. 2008, 72, 3189–3196. [Google Scholar] [CrossRef]
- Akturk, O.; Tezcaner, A.; Bilgili, H.; Deveci, M.S.; Gecit, M.R.; Keskin, D. Evaluation of sericin/collagen membranes as prospective wound dressing biomaterial. J. Biosci. Bioeng. 2011, 112, 279–288. [Google Scholar] [CrossRef]
- Villegas, L.F.; Marcalo, A.; Martin, J.; Fernandez, I.D.; Maldonado, H.; Vaisberg, A.J.; Hammond, G.B. (+)epi-Alpha-bisabolol [correction of bisbolol] is the wound-healing principle of peperomia galioides: Investigation of the in vivo wound-healing activity of related terpenoids. J. Nat. Prod. 2001, 64, 1357–1359. [Google Scholar]
- Zhang, K.; Qian, Y.; Wang, H.; Fan, L.; Huang, C.; Yin, A.; Mo, X. Genipin-crosslinked silk fibroin/hydroxybutyl chitosan nanofibrous scaffolds for tissue-engineering application. J. Biomed. Mater. Res. A 2010, 95, 870–881. [Google Scholar]
- Stevenson, P.C.; Simmonds, M.S.J.; Sampson, J.; Houghton, P.J.; Grice, P. The effects of iridoid compounds on wound healing. J. Korean Acad. Oral Med. 1999, 24, 137–142. [Google Scholar]
- Davini, E.; Iavarone, C.; Trogolo, C.; Aureli, P.; Pasolini, B. The quantitative isolation and antimicrobial activity of the aglycone of aucubin. Phytochemistry 1986, 25, 2420–2422. [Google Scholar] [CrossRef]
- Jin, L.; Xue, H.; Jin, L.; Li, S.; Xu, Y. Antioxidative activities of aucubin in vitro. J. Shaanxi Norm. Univ. 2004, 32, 98–101. [Google Scholar]
- Hung, J.Y.; Yang, C.J.; Tsai, Y.M.; Huang, H.W.; Huang, M.S. Antiproliferative activity of aucubin is through cell cycle arrest and apoptosis in human non-small cell lung cancer a549 cells. Clin. Exp. Pharmacol. Physiol. 2008, 35, 995–1001. [Google Scholar] [CrossRef]
- Aramwit, P.; Kanokpanont, S.; Nakpheng, T.; Srichana, T. The effect of sericin from various extraction methods on cell viability and collagen production. Int. J. Mol. Sci. 2010, 11, 2200–2211. [Google Scholar] [CrossRef]
- Tsubouchi, K.; Igarashi, Y.; Takasu, Y.; Yamada, H. Sericin enhances attachment of cultured human skin fibroblasts. Biosci. Biotech. Biochem. 2005, 69, 403–405. [Google Scholar] [CrossRef]
- Terada, S.; Nishimura, T.; Sasaki, M.; Yamada, H.; Miki, M. Sericin, a protein derived from silkworms, accelerates the proliferation of several mammalian cell lines including a hybridoma. Cytotechnology 2002, 40, 3–12. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Hazard Characterization Document, Screening-Level Hazard Characterization, Monoterpene Hydrocarbons Category; Washinton, DC, USA, 2009. [Google Scholar]
- Vacher, D. Autologous epidermal sheets production for skin cellular therapy. Ann. Pharm. Fr. 2003, 61, 203–206. [Google Scholar]
- Carsin, H.; Ainaud, P.; le Bever, H.; Rives, J.; Lakhel, A.; Stephanazzi, J.; Lambert, F.; Perrot, J. Cultured epithelial autografts in extensive burn coverage of severely traumatized patients: A five year single-center experience with 30 patients. Burns 2000, 26, 379–387. [Google Scholar] [CrossRef]
- Atiyeh, B.S.; Costagliola, M. Cultured epithelial autograft (cea) in burn treatment: Three decades later. Burns 2007, 33, 405–413. [Google Scholar] [CrossRef]
- Horch, R.E.; Kopp, J.; Kneser, U.; Beier, J.; Bach, A.D. Tissue engineering of cultured skin substitutes. J. Cell. Mol. Med. 2005, 9, 592–608. [Google Scholar] [CrossRef]
- Ramos-e-Silva, M.; Ribeiro de Castro, M.C. New dressings, including tissue-engineered living skin. Clin. Dermatol. 2002, 20, 715–723. [Google Scholar] [CrossRef]
- Uccioli, L. A clinical investigation on the characteristics and outcomes of treating chronic lower extremity wounds using the tissuetech autograft system. Int. J. Lower Extremity Wounds 2003, 2, 140–151. [Google Scholar] [CrossRef]
- Ruszczak, Z. Effect of collagen matrices on dermal wound healing. Adv. Drug Delivery Rev. 2003, 55, 1595–1611. [Google Scholar] [CrossRef]
- Andreassi, L.; Pianigiani, E.; Andreassi, A.; Taddeucci, P.; Biagioli, M. A new model of epidermal culture for the surgical treatment of vitiligo. Int. J. Dermatol. 1998, 37, 595–598. [Google Scholar]
- Uccioli, L.; Giurato, L.; Ruotolo, V.; Ciavarella, A.; Grimaldi, M.S.; Piaggesi, A.; Teobaldi, I.; Ricci, L.; Scionti, L.; Vermigli, C.; et al. Two-step autologous grafting using hyaff scaffolds in treating difficult diabetic foot ulcers: Results of a multicenter, randomized controlled clinical trial with long-term follow-up. Int. J. Lower Extremity Wounds 2011, 10, 80–85. [Google Scholar] [CrossRef]
- Monami, M.; Vivarelli, M.; Desideri, C.M.; Ippolito, G.; Marchionni, N.; Mannucci, E. Autologous skin fibroblast and keratinocyte grafts in the treatment of chronic foot ulcers in aging type 2 diabetic patients. J. Am. Podiatric Med. Assoc. 2011, 101, 55–58. [Google Scholar] [CrossRef]
- Lobmann, R.; Pittasch, D.; Muhlen, I.; Lehnert, H. Autologous human keratinocytes cultured on membranes composed of benzyl ester of hyaluronic acid for grafting in nonhealing diabetic foot lesions: A pilot study. J. Diabetes Complicat. 2003, 17, 199–204. [Google Scholar] [CrossRef]
- Pajardi, G.; Rapisarda, V.; Somalvico, F.; Scotti, A.; Russo, G.L.; Ciancio, F.; Sgro, A.; Nebuloni, M.; Allevi, R.; Torre, M.L.; et al. Skin substitutes based on allogenic fibroblasts or keratinocytes for chronic wounds not responding to conventional therapy: A retrospective observational study. Int. Wound J. 2014. [Google Scholar] [CrossRef]
- Lam, P.K.; Chan, E.S.; Liew, C.T.; Lau, C.; Yen, S.C.; King, W.W. Combination of a new composite biocampatible skin graft on the neodermis of artificial skin in an animal model. ANZ J. Sur. 2002, 72, 360–363. [Google Scholar] [CrossRef]
- Chan, E.S.; Lam, P.K.; Liew, C.T.; Lau, H.C.; Yen, R.S.; King, W.W. A new technique to resurface wounds with composite biocompatible epidermal graft and artificial skin. J. Trauma 2001, 50, 358–362. [Google Scholar] [CrossRef]
- Bello, Y.M.; Falabella, A.F.; Eaglstein, W.H. Tissue-engineered skin. Current status in wound healing. Am. J. Clin. Dermatol. 2001, 2, 305–313. [Google Scholar] [CrossRef]
- Kumar, R.J.; Kimble, R.M.; Boots, R.; Pegg, S.P. Treatment of partial-thickness burns: A prospective, randomized trial using transcyte. ANZ J. Sur. 2004, 74, 622–626. [Google Scholar] [CrossRef]
- Demling, R.H.; DeSanti, L. Management of partial thickness facial burns (comparison of topical antibiotics and bio-engineered skin substitutes). Burns 1999, 25, 256–261. [Google Scholar] [CrossRef]
- Lukish, J.R.; Eichelberger, M.R.; Newman, K.D.; Pao, M.; Nobuhara, K.; Keating, M.; Golonka, N.; Pratsch, G.; Misra, V.; Valladares, E.; et al. The use of a bioactive skin substitute decreases length of stay for pediatric burn patients. Journal Pediatr. Surg. 2001, 36, 1118–1121. [Google Scholar] [CrossRef]
- Amani, H.; Dougherty, W.R.; Blome-Eberwein, S. Use of transcyte and dermabrasion to treat burns reduces length of stay in burns of all size and etiology. Burns 2006, 32, 828–832. [Google Scholar] [CrossRef]
- Noordenbos, J.; Dore, C.; Hansbrough, J.F. Safety and efficacy of transcyte for the treatment of partial-thickness burns. J. Burn Care Rehabil. 1999, 20, 275–281. [Google Scholar] [CrossRef]
- Hansen, S.L.; Voigt, D.W.; Wiebelhaus, P.; Paul, C.N. Using skin replacement products to treat burns and wounds. Adv. Skin Wound Care 2001, 14, 37–44; quiz 45–46. [Google Scholar] [CrossRef]
- Van der Veen, V.C.; van der Wal, M.B.; van Leeuwen, M.C.; Ulrich, M.M.; Middelkoop, E. Biological background of dermal substitutes. Burns 2010, 36, 305–321. [Google Scholar] [CrossRef]
- Hansbrough, J.F.; Mozingo, D.W.; Kealey, G.P.; Davis, M.; Gidner, A.; Gentzkow, G.D. Clinical trials of a biosynthetic temporary skin replacement, dermagraft-transitional covering, compared with cryopreserved human cadaver skin for temporary coverage of excised burn wounds. J. Burn Care Rehabil. 1997, 18, 43–51. [Google Scholar] [CrossRef]
- Purdue, G.F.; Hunt, J.L.; Still, J.M., Jr.; Law, E.J.; Herndon, D.N.; Goldfarb, I.W.; Schiller, W.R.; Hansbrough, J.F.; Hickerson, W.L.; Himel, H.N.; et al. A multicenter clinical trial of a biosynthetic skin replacement, dermagraft-tc, compared with cryopreserved human cadaver skin for temporary coverage of excised burn wounds. J. Burn Care Rehabil. 1997, 18, 52–57. [Google Scholar] [CrossRef]
- Marston, W.A.; Hanft, J.; Norwood, P.; Pollak, R. The efficacy and safety of dermagraft in improving the healing of chronic diabetic foot ulcers: Results of a prospective randomized trial. Diabetes Care 2003, 26, 1701–1705. [Google Scholar] [CrossRef]
- Hanft, J.R.; Surprenant, M.S. Healing of chronic foot ulcers in diabetic patients treated with a human fibroblast-derived dermis. J. Foot Ankle Surg. 2002, 41, 291–299. [Google Scholar] [CrossRef]
- Lev-Tov, H.; Li, C.S.; Dahle, S.; Isseroff, R.R. Cellular versus acellular matrix devices in treatment of diabetic foot ulcers: Study protocol for a comparative efficacy randomized controlled trial. Trials 2013, 14, 8. [Google Scholar] [CrossRef]
- Warriner, R.A., 3rd; Cardinal, M.; Investigators, T. Human fibroblast-derived dermal substitute: Results from a treatment investigational device exemption (tide) study in diabetic foot ulcers. Adv. Skin Wound Care 2011, 24, 306–311. [Google Scholar] [CrossRef]
- Gentzkow, G.D.; Iwasaki, S.D.; Hershon, K.S.; Mengel, M.; Prendergast, J.J.; Ricotta, J.J.; Steed, D.P.; Lipkin, S. Use of dermagraft, a cultured human dermis, to treat diabetic foot ulcers. Diabetes Care 1996, 19, 350–354. [Google Scholar]
- Harding, K.; Sumner, M.; Cardinal, M. A prospective, multicentre, randomised controlled study of human fibroblast-derived dermal substitute (dermagraft) in patients with venous leg ulcers. Int. Wound J. 2013, 10, 132–137. [Google Scholar] [CrossRef]
- Omar, A.A.; Mavor, A.I.; Jones, A.M.; Homer-Vanniasinkam, S. Treatment of venous leg ulcers with dermagraft. Eur. J. Vasc. Endovasc. Sur. 2004, 27, 666–672. [Google Scholar]
- Wainwright, D.J. Use of an acellular allograft dermal matrix (alloderm) in the management of full-thickness burns. Burns 1995, 21, 243–248. [Google Scholar] [CrossRef]
- Lynch, M.P.; Chung, M.T.; Rinker, B.D. Dermal autografts as a substitute for acellular dermal matrices (adm) in tissue expander breast reconstruction: A prospective comparative study. J. Plast. Reconstructive aesthetic Sur. 2013, 66, 1534–1542. [Google Scholar] [CrossRef]
- McCarthy, C.M.; Lee, C.N.; Halvorson, E.G.; Riedel, E.; Pusic, A.L.; Mehrara, B.J.; Disa, J.J. The use of acellular dermal matrices in two-stage expander/implant reconstruction: A multicenter, blinded, randomized controlled trial. Plast. Reconstructive Sur. 2012, 130, 57S–66S. [Google Scholar] [CrossRef]
- Bochicchio, G.V.; de Castro, G.P.; Bochicchio, K.M.; Weeks, J.; Rodriguez, E.; Scalea, T.M. Comparison study of acellular dermal matrices in complicated hernia surgery. J. Am. Coll. Sur. 2013, 217, 606–613. [Google Scholar] [CrossRef]
- Deneve, J.L.; Turaga, K.K.; Marzban, S.S.; Puleo, C.A.; Sarnaik, A.A.; Gonzalez, R.J.; Sondak, V.K.; Zager, J.S. Single-institution outcome experience using alloderm(r) as temporary coverage or definitive reconstruction for cutaneous and soft tissue malignancy defects. Am. Sur. 2013, 79, 476–482. [Google Scholar]
- Lattari, V.; Jones, L.M.; Varcelotti, J.R.; Latenser, B.A.; Sherman, H.F.; Barrette, R.R. The use of a permanent dermal allograft in full-thickness burns of the hand and foot: A report of three cases. J. Burn Care Rehabil. 1997, 18, 147–155. [Google Scholar] [CrossRef]
- Tsai, C.C.; Lin, S.D.; Lai, C.S.; Lin, T.M. The use of composite acellular allodermis-ultrathin autograft on joint area in major burn patients—One year follow-up. Kaohsiung J. Med. Sci. 1999, 15, 651–658. [Google Scholar]
- Shi, L.J.; Wang, Y.; Yang, C.; Jiang, W.W. Application of acellular dermal matrix in reconstruction of oral mucosal defects in 36 cases. J. Oral Maxillofac. Surg. 2012, 70, e586–e591. [Google Scholar] [CrossRef]
- Whitaker, I.S.; Prowse, S.; Potokar, T.S. A critical evaluation of the use of biobrane as a biologic skin substitute: A versatile tool for the plastic and reconstructive surgeon. Ann. Plast. Surg. 2008, 60, 333–337. [Google Scholar] [CrossRef]
- Housinger, T.A.; Wondrely, L.; Warden, G.D. The use of biobrane for coverage of the pediatric donor site. J. Burn Care Rehabil. 1993, 14, 26–28. [Google Scholar] [CrossRef]
- Gerding, R.L.; Imbembo, A.L.; Fratianne, R.B. Biosynthetic skin substitute vs. 1% silver sulfadiazine for treatment of inpatient partial-thickness thermal burns. J. Trauma 1988, 28, 1265–1269. [Google Scholar] [CrossRef]
- Arevalo, J.M.; Lorente, J.A. Skin coverage with biobrane* biomaterial for the treatment of patients with toxic epidermal necrolysis. J. Burn Care Rehabil. 1999, 20, 406–410. [Google Scholar] [CrossRef]
- Lesher, A.P.; Curry, R.H.; Evans, J.; Smith, V.A.; Fitzgerald, M.T.; Cina, R.A.; Streck, C.J.; Hebra, A.V. Effectiveness of biobrane for treatment of partial-thickness burns in children. J. Pediatric Sur. 2011, 46, 1759–1763. [Google Scholar] [CrossRef]
- Barret, J.P.; Dziewulski, P.; Ramzy, P.I.; Wolf, S.E.; Desai, M.H.; Herndon, D.N. Biobrane vs. 1% silver sulfadiazine in second-degree pediatric burns. Plast. Reconstructive Sur. 2000, 105, 62–65. [Google Scholar] [CrossRef]
- Farroha, A.; Frew, Q.; El-Muttardi, N.; Philp, B.; Dziewulski, P. The use of biobrane(r) to dress split-thickness skin graft in paediatric burns. Ann. Burns Fire Disasters 2013, 26, 94–97. [Google Scholar]
- Gerding, R.L.; Emerman, C.L.; Effron, D.; Lukens, T.; Imbembo, A.L.; Fratianne, R.B. Outpatient management of partial-thickness burns: Biobrane vs. 1% silver sulfadiazine. Ann. Emergency Med. 1990, 19, 121–124. [Google Scholar] [CrossRef]
- Martorell-Calatayud, A.; Sanz-Motilva, V.; Nagore, E.; Serra-Guillen, C.; Sanmartin, O.; Echeverria, B.; Guillen-Barona, C. Biosynthetic porcine collagen dressings as an adjunct or definitive tool for the closure of scalp defects without periosteum. Actas Dermo-Sifiliograficas 2012, 103, 887–896. [Google Scholar] [CrossRef]
- Cassidy, C.; St Peter, S.D.; Lacey, S.; Beery, M.; Ward-Smith, P.; Sharp, R.J.; Ostlie, D.J. Biobrane versus duoderm for the treatment of intermediate thickness burns in children: A prospective, randomized trial. Burns 2005, 31, 890–893. [Google Scholar] [CrossRef]
- Prasad, J.K.; Feller, I.; Thomson, P.D. A prospective controlled trial of biobrane versus scarlet red on skin graft donor areas. J. Burn Care Rehabil. 1987, 8, 384–386. [Google Scholar] [CrossRef]
- Beltra Pico, R.; Uroz Tristan, J.; Santana Ramirez, R.; Hernandez Castello, C.; Acosta Merida, A. Our experience with the use of biobrane in the treatment of burns and other injuries in children. Cir. Pediatr. 2002, 15, 107–109. [Google Scholar]
- Klein, RL; Marshall, R.B. Biobrane—A useful adjunct in the therapy of outpatient burns. J. Pediatric Sur. 1984, 19, 846–847. [Google Scholar] [CrossRef]
- Ahmadi, H.; Williams, G. Permanent scarring in a partial thickness scald burn dressed with biobrane. J. Plast. Reconstructive Aesthetic Sur. 2009, 62, 697–698. [Google Scholar] [CrossRef]
- Lal, S.; Barrow, R.E.; Wolf, S.E.; Chinkes, D.L.; Hart, D.W.; Heggers, J.P.; Herndon, D.N. Biobrane improves wound healing in burned children without increased risk of infection. Shock 2000, 14, 314–319. [Google Scholar] [CrossRef]
- Feldman, D.L.; Rogers, A.; Karpinski, R.H. A prospective trial comparing biobrane, duoderm and xeroform for skin graft donor sites. Sur. Gynecol. Obstetrics 1991, 173, 1–5. [Google Scholar]
- Yannas, I.V.; Burke, J.F. Design of an artificial skin. I. Basic design principles. J. Biomed. Mater. Res. 1980, 14, 65–81. [Google Scholar] [CrossRef]
- Heimbach, D.; Luterman, A.; Burke, J.; Cram, A.; Herndon, D.; Hunt, J.; Jordan, M.; McManus, W.; Solem, L.; Warden, G.; et al. Artificial dermis for major burns. A multi-center randomized clinical trial. Ann. Sur. 1988, 208, 313–320. [Google Scholar] [CrossRef]
- Heimbach, D.M.; Warden, G.D.; Luterman, A.; Jordan, M.H.; Ozobia, N.; Ryan, C.M.; Voigt, D.W.; Hickerson, W.L.; Saffle, J.R.; DeClement, F.A.; et al. Multicenter postapproval clinical trial of integra dermal regeneration template for burn treatment. J. Burn Care Rehabil. 2003, 24, 42–48. [Google Scholar] [CrossRef]
- Lagus, H.; Sarlomo-Rikala, M.; Bohling, T.; Vuola, J. Prospective study on burns treated with integra(r), a cellulose sponge and split thickness skin graft: Comparative clinical and histological study—Randomized controlled trial. Burns 2013, 39, 1577–1587. [Google Scholar] [CrossRef]
- Branski, L.K.; Herndon, D.N.; Pereira, C.; Mlcak, R.P.; Celis, M.M.; Lee, J.O.; Sanford, A.P.; Norbury, W.B.; Zhang, X.J.; Jeschke, M.G. Longitudinal assessment of integra in primary burn management: A randomized pediatric clinical trial. Crit. Care Med. 2007, 35, 2615–2623. [Google Scholar] [CrossRef]
- Dantzer, E.; Braye, F.M. Reconstructive surgery using an artificial dermis (integra): Results with 39 grafts. Br. J. Plast. Sur. 2001, 54, 659–664. [Google Scholar] [CrossRef]
- Heitland, A.; Piatkowski, A.; Noah, E.M.; Pallua, N. Update on the use of collagen/glycosaminoglycate skin substitute-six years of experiences with artificial skin in 15 german burn centers. Burns 2004, 30, 471–475. [Google Scholar]
- Peck, M.D.; Kessler, M.; Meyer, A.A.; Bonham Morris, P.A. A trial of the effectiveness of artificial dermis in the treatment of patients with burns greater than 45% total body surface area. J. Trauma 2002, 52, 971–978. [Google Scholar]
- Burke, J.F.; Yannas, I.V.; Quinby, W.C., Jr.; Bondoc, C.C.; Jung, W.K. Successful use of a physiologically acceptable artificial skin in the treatment of extensive burn injury. Ann. Sur. 1981, 194, 413–428. [Google Scholar] [CrossRef]
- Yao, M.; Attalla, K.; Ren, Y.; French, M.A.; Driver, V.R. Ease of use, safety, and efficacy of integra bilayer wound matrix in the treatment of diabetic foot ulcers in an outpatient clinical setting: A prospective pilot study. J. Am. Podiatric Med. Assoc. 2013, 103, 274–280. [Google Scholar] [CrossRef]
- Silverstein, G. Dermal regeneration template in the surgical management of diabetic foot ulcers: A series of five cases. J. Foot Ankle Sur. 2006, 45, 28–33. [Google Scholar] [CrossRef]
- Frame, J.D.; Still, J.; Lakhel-LeCoadou, A.; Carstens, M.H.; Lorenz, C.; Orlet, H.; Spence, R.; Berger, A.C.; Dantzer, E.; Burd, A. Use of dermal regeneration template in contracture release procedures: A multicenter evaluation. Plast. Reconstructive Sur. 2004, 113, 1330–1338. [Google Scholar] [CrossRef]
- Jeschke, M.G.; Rose, C.; Angele, P.; Fuchtmeier, B.; Nerlich, M.N.; Bolder, U. Development of new reconstructive techniques: Use of integra in combination with fibrin glue and negative-pressure therapy for reconstruction of acute and chronic wounds. Plast. Reconstructive Sur. 2004, 113, 525–530. [Google Scholar] [CrossRef]
- Weigert, R.; Choughri, H.; Casoli, V. Management of severe hand wounds with integra(r) dermal regeneration template. J. Hand Sur. Eur. Volume 2011, 36, 185–193. [Google Scholar] [CrossRef]
- Curran, M.P.; Plosker, G.L. Bilayered bioengineered skin substitute (apligraf): A review of its use in the treatment of venous leg ulcers and diabetic foot ulcers. BioDrugs 2002, 16, 439–455. [Google Scholar] [CrossRef]
- Falabella, A.F.; Valencia, I.C.; Eaglstein, W.H.; Schachner, L.A. Tissue-engineered skin (apligraf) in the healing of patients with epidermolysis bullosa wounds. Arch. Dermatol. 2000, 136, 1225–1230. [Google Scholar]
- Jones, J.E.; Nelson, E.A.; Al-Hity, A. Skin grafting for venous leg ulcers. Cochrane Database Syst. Rev. 2013, 1, CD001737. [Google Scholar]
- Falanga, V.J. Tissue engineering in wound repair. Adv. Skin Wound Care 2000, 13, 15–19. [Google Scholar]
- Falanga, V.; Sabolinski, M. A bilayered living skin construct (apligraf) accelerates complete closure of hard-to-heal venous ulcers. Wound Repair Regen. 1999, 7, 201–207. [Google Scholar]
- Waymack, P.; Duff, R.G.; Sabolinski, M. The effect of a tissue engineered bilayered living skin analog, over meshed split-thickness autografts on the healing of excised burn wounds. The apligraf burn study group. Burns 2000, 26, 609–619. [Google Scholar]
- Hu, S.; Kirsner, R.S.; Falanga, V.; Phillips, T.; Eaglstein, W.H. Evaluation of apligraf persistence and basement membrane restoration in donor site wounds: A pilot study. Wound Repair Regen. 2006, 14, 427–433. [Google Scholar] [CrossRef]
- Enoch, S.; Shaaban, H.; Dunn, K.W. Informed consent should be obtained from patients to use products (skin substitutes) and dressings containing biological material. J. Med. Ethics 2005, 31, 2–6. [Google Scholar] [CrossRef]
- Edmonds, M. Apligraf in the treatment of neuropathic diabetic foot ulcers. Int. J. Lower Extremity Wounds 2009, 8, 11–18. [Google Scholar] [CrossRef]
- Veves, A.; Falanga, V.; Armstrong, D.G.; Sabolinski, M.L. Graftskin, a human skin equivalent, is effective in the management of noninfected neuropathic diabetic foot ulcers: A prospective randomized multicenter clinical trial. Diabetes Care 2001, 24, 290–295. [Google Scholar] [CrossRef]
- Redekop, W.K.; McDonnell, J.; Verboom, P.; Lovas, K.; Kalo, Z. The cost effectiveness of apligraf treatment of diabetic foot ulcers. PharmacoEconomics 2003, 21, 1171–1183. [Google Scholar] [CrossRef]
- Donohue, K.G.; Carson, P.; Iriondo, M.; Zhou, L.; Saap, L.; Gibson, K.; Falanga, V. Safety and efficacy of a bilayered skin construct in full-thickness surgical wounds. J. Dermatol. 2005, 32, 626–631. [Google Scholar] [CrossRef]
- Griffiths, M.; Ojeh, N.; Livingstone, R.; Price, R.; Navsaria, H. Survival of apligraf in acute human wounds. Tissue Eng. 2004, 10, 1180–1195. [Google Scholar] [CrossRef]
- Still, J.; Glat, P.; Silverstein, P.; Griswold, J.; Mozingo, D. The use of a collagen sponge/living cell composite material to treat donor sites in burn patients. Burns 2003, 29, 837–841. [Google Scholar] [CrossRef]
- Papanas, N.; Eleftheriadou, I.; Tentolouris, N.; Maltezos, E. Advances in the topical treatment of diabetic foot ulcers. Curr. Diabetes Rev. 2012, 8, 209–218. [Google Scholar] [CrossRef]
- Winters, C.L.; Brigido, S.A.; Liden, B.A.; Simmons, M.; Hartman, J.F.; Wright, M.L. A multicenter study involving the use of a human acellular dermal regenerative tissue matrix for the treatment of diabetic lower extremity wounds. Adv. Skin Wound Care 2008, 21, 375–381. [Google Scholar] [CrossRef]
- Reyzelman, A.; Crews, R.T.; Moore, J.C.; Moore, L.; Mukker, J.S.; Offutt, S.; Tallis, A.; Turner, W.B.; Vayser, D.; Winters, C.; et al. Clinical effectiveness of an acellular dermal regenerative tissue matrix compared to standard wound management in healing diabetic foot ulcers: A prospective, randomised, multicentre study. Int. Wound J. 2009, 6, 196–208. [Google Scholar] [CrossRef]
- Brigido, S.A.; Boc, S.F.; Lopez, R.C. Effective management of major lower extremity wounds using an acellular regenerative tissue matrix: A pilot study. Orthopedics 2004, 27, S145–S149. [Google Scholar]
- Brigido, S.A. The use of an acellular dermal regenerative tissue matrix in the treatment of lower extremity wounds: A prospective 16-week pilot study. Int. Wound J. 2006, 3, 181–187. [Google Scholar] [CrossRef]
- Brigido, S.A.; Schwartz, E.; McCarroll, R.; Hardin-Young, J. Use of an acellular flowable dermal replacement scaffold on lower extremity sinus tract wounds: A retrospective series. Foot Ankle Specialist 2009, 2, 67–72. [Google Scholar] [CrossRef]
- Martin, B.R.; Sangalang, M.; Wu, S.; Armstrong, D.G. Outcomes of allogenic acellular matrix therapy in treatment of diabetic foot wounds: An initial experience. Int. Wound J. 2005, 2, 161–165. [Google Scholar] [CrossRef]
- Purdue, G.F. Dermagraft-tc pivotal efficacy and safety study. J. Burn Care Rehabil. 1997, 18, S13–S14. [Google Scholar] [CrossRef]
- Hart, C.E.; Loewen-Rodriguez, A.; Lessem, J. Dermagraft: Use in the treatment of chronic wounds. Adv. Wound Care 2012, 1, 138–141. [Google Scholar] [CrossRef]
- Mansbridge, J.N.; Liu, K.; Pinney, R.E.; Patch, R.; Ratcliffe, A.; Naughton, G.K. Growth factors secreted by fibroblasts: Role in healing diabetic foot ulcers. Diabetes Obesity Metab. 1999, 1, 265–279. [Google Scholar] [CrossRef]
- Wainwright, D.; Madden, M.; Luterman, A.; Hunt, J.; Monafo, W.; Heimbach, D.; Kagan, R.; Sittig, K.; Dimick, A.; Herndon, D. Clinical evaluation of an acellular allograft dermal matrix in full-thickness burns. J. Burn Care Rehabil. 1996, 17, 124–136. [Google Scholar] [CrossRef]
- Boyce, S.T.; Kagan, R.J.; Greenhalgh, D.G.; Warner, P.; Yakuboff, K.P.; Palmieri, T.; Warden, G.D. Cultured skin substitutes reduce requirements for harvesting of skin autograft for closure of excised, full-thickness burns. J. Trauma 2006, 60, 821–829. [Google Scholar]
- Greer, N.; Foman, N.A.; MacDonald, R.; Dorrian, J.; Fitzgerald, P.; Rutks, I.; Wilt, T.J. Advanced wound care therapies for nonhealing diabetic, venous, and arterial ulcers: A systematic review. An. Int. Med. 2013, 159, 532–542. [Google Scholar] [CrossRef]
- Adly, O.A.; Moghazy, A.M.; Abbas, A.H.; Ellabban, A.M.; Ali, O.S.; Mohamed, B.A. Assessment of amniotic and polyurethane membrane dressings in the treatment of burns. Burns 2010, 36, 703–710. [Google Scholar] [CrossRef]
- Dovi, J.V.; He, L.K.; DiPietro, L.A. Accelerated wound closure in neutrophil-depleted mice. J. Leukocyte Biol. 2003, 73, 448–455. [Google Scholar]
- Fraser, J.F.; Cuttle, L.; Kempf, M.; Phillips, G.E.; Hayes, M.T.; Kimble, R.M. A randomised controlled trial of amniotic membrane in the treatment of a standardised burn injury in the merino lamb. Burns 2009, 35, 998–1003. [Google Scholar] [CrossRef]
- Williams, J.Z.; Barbul, A. Nutrition and wound healing. Sur. Clin. North Am. 2003, 83, 571–596. [Google Scholar] [CrossRef]
- Akita, S.; Akino, K.; Imaizumi, T.; Tanaka, K.; Anraku, K.; Yano, H.; Hirano, A. A polyurethane dressing is beneficial for split-thickness skin-graft donor wound healing. Burns 2006, 32, 447–451. [Google Scholar] [CrossRef]
- Rennekampff, H.O.; Hansbrough, J.F.; Kiessig, V.; Abiezzi, S.; Woods, V., Jr. Wound closure with human keratinocytes cultured on a polyurethane dressing overlaid on a cultured human dermal replacement. Surgery 1996, 120, 16–22. [Google Scholar] [CrossRef]
- Frade, M.A.; Assis, R.V.; Coutinho Netto, J.; Andrade, T.A.; Foss, N.T. The vegetal biomembrane in the healing of chronic venous ulcers. Anais Brasileiros Dermatologia 2012, 87, 45–51. [Google Scholar] [Green Version]
- O’Loughlin, A.; Kulkarni, M.; Vaughan, E.E.; Creane, M.; Liew, A.; Dockery, P.; Pandit, A.; O’Brien, T. Autologous circulating angiogenic cells treated with osteopontin and delivered via a collagen scaffold enhance wound healing in the alloxan-induced diabetic rabbit ear ulcer model. Stem Cell Res. Ther. 2013, 4, 158. [Google Scholar]
- Vaughan, E.E.; Liew, A.; Mashayekhi, K.; Dockery, P.; McDermott, J.; Kealy, B.; Flynn, A.; Duffy, A.; Coleman, C.; O’Regan, A.; et al. Pretreatment of endothelial progenitor cells with osteopontin enhances cell therapy for peripheral vascular disease. Cell Transplantation 2012, 21, 1095–1107. [Google Scholar] [CrossRef]
- Sweeney, S.M.; DiLullo, G.; Slater, S.J.; Martinez, J.; Iozzo, R.V.; Lauer-Fields, J.L.; Fields, G.B.; San Antonio, J.D. Angiogenesis in collagen i requires alpha2beta1 ligation of a gfp*ger sequence and possibly p38 mapk activation and focal adhesion disassembly. J. Biol. Chem. 2003, 278, 30516–30524. [Google Scholar] [CrossRef]
- Ehashi, T.; Takemura, T.; Hanagata, N.; Minowa, T.; Kobayashi, H.; Ishihara, K.; Yamaoka, T. Comprehensive genetic analysis of early host body reactions to the bioactive and bio-inert porous scaffolds. PLoS One 2014, 9, e85132. [Google Scholar]
- Jin, G.; Prabhakaran, M.P.; Ramakrishna, S. Photosensitive and biomimetic core-shell nanofibrous scaffolds as wound dressing. Photochem. Photobiol. 2014, 90, 673–681. [Google Scholar] [CrossRef]
- Fu, L.; Zhang, J.; Yang, G. Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohydr. Polym. 2013, 92, 1432–1442. [Google Scholar] [CrossRef]
- Groeber, F.; Holeiter, M.; Hampel, M.; Hinderer, S.; Schenke-Layland, K. Skin tissue engineering—In vivo and in vitro applications. Adv. Drug Delivery Rev. 2011, 63, 352–366. [Google Scholar]
- Portal, O.; Clark, W.A.; Levinson, D.J. Microbial cellulose wound dressing in the treatment of nonhealing lower extremity ulcers. Wounds 2009, 21, 1–3. [Google Scholar]
- Morimoto, N.; Yoshimura, K.; Niimi, M.; Ito, T.; Aya, R.; Fujitaka, J.; Tada, H.; Teramukai, S.; Murayama, T.; Toyooka, C.; et al. Novel collagen/gelatin scaffold with sustained release of basic fibroblast growth factor: Clinical trial for chronic skin ulcers. Tissue Eng. A 2013, 19, 1931–1940. [Google Scholar] [CrossRef] [Green Version]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Vyas, K.S.; Vasconez, H.C. Wound Healing: Biologics, Skin Substitutes, Biomembranes and Scaffolds. Healthcare 2014, 2, 356-400. https://doi.org/10.3390/healthcare2030356
Vyas KS, Vasconez HC. Wound Healing: Biologics, Skin Substitutes, Biomembranes and Scaffolds. Healthcare. 2014; 2(3):356-400. https://doi.org/10.3390/healthcare2030356
Chicago/Turabian StyleVyas, Krishna S., and Henry C. Vasconez. 2014. "Wound Healing: Biologics, Skin Substitutes, Biomembranes and Scaffolds" Healthcare 2, no. 3: 356-400. https://doi.org/10.3390/healthcare2030356
APA StyleVyas, K. S., & Vasconez, H. C. (2014). Wound Healing: Biologics, Skin Substitutes, Biomembranes and Scaffolds. Healthcare, 2(3), 356-400. https://doi.org/10.3390/healthcare2030356