Social Media in Adolescents: A Retrospective Correlational Study on Addiction
Abstract
:1. Introduction
1.1. Adolescence and the Role of Sociability
1.2. The New Addictions: Internet and Social Media Misuse
- (1)
- Adolescents show a quite moderate prevalence of social media addiction or problematic use;
- (2)
- Adolescents who make greater use of social media obtain higher scores on the CSIQ-A questionnaire (The Classmates Social Isolation Questionnaire for Adolescents) and generally perceive more loneliness;
- (3)
- The problematic use of social media is positively correlated with high levels of anxiety and social isolation, and negatively correlated with self-esteem;
- (4)
- In order to predict social media addiction, we expected anxiety, social isolation, and low self-esteem to result in risk factors.
2. Methods
2.1. Participants and Procedure
2.2. Measures
- Bergen Social Media Addiction Scale (BSMAS), Italian version (Cronbach’s α = 0.88; Monacis et al., 2017) [48]: it assesses the experiences in the use of social media referring to the past year. The scale uses a five-point Likert scale, ranging from 1 (very rarely) to 5 (very often). Examples of items are: You spend a lot of time thinking about social media or planning how to use it; You feel an urge to use social media more and more, etc. [49]. The BSMAS presents six items reflecting core addiction elements: salience, mood modification, tolerance, withdrawal, conflict, and relapse [27]. The scale presented a good reliability in line with previous studies (α = 0.73).
- Rosenberg Self-Esteem Scale (RSES), Italian version (Cronbach’s α = 0.84; Mannarini, 2010) [50]: it is a 10-item scale rated on a 4-point Likert scale ranging from 0 (strongly agree) to 3 (strongly disagree). It was developed by Rosenberg (1965) [51] and assesses both negative and positive feelings about the self, mainly in adolescents [52]. Examples of items are: I feel that I am a person of worth, at least on an equal plane with others; At times I think that I am no good at all (R). In the present study, the scale showed good reliability in line with the previous literature (α = 0.74).
- Classmates Social Isolation Questionnaire for Adolescents (CSIQ-A) (Cronbach’s α = 0.85; Cavicchiolo et al., 2019) [53]: it is a two-dimensional test that assesses in eight items the absence of social relationships with classmates in and out of school contexts [54]. Items should be rated on the following Likert scale: None, Few, Some, Many, All. Item examples are: How many of your classmates do you chat with?; How many of your classmates do you do activities with in your free time?). In the present study, the scale showed very good reliability (α = 0.84) with the previous literature.
- State–Trait Anxiety Inventory (STAI-Y), Italian version (Cronbach’s STAI Y1 α = 0.95; STAI Y2 α = 0.90; Pedrabissi and Santinello, 1989) [55]: designed by Spielberger and co-authors [56], it consists of 40 self-report items on a 4-point Likert scale, divided in two scales, respectively: STAI-Y1 for state anxiety and STAI-Y2 for trait anxiety. Item examples are: I feel that difficulties are piling up so that I cannot overcome them; I am presently worrying over possible misfortunes. This questionnaire was created to evaluate state and trait anxiety in adults. However, it has also been applied in adolescents [57,58]. In the present study, both scales showed very good reliability (STAI Y1 α = 0.86; STAI Y2 α = 0.87).
3. Results
3.1. Data Analysis
3.1.1. Descriptive Analysis
3.1.2. Correlations
3.1.3. Influence of Gender
3.1.4. Regression Model
3.1.5. Analysis of Supplementary Outcome Variables
4. Discussion
- (1)
- Adolescents show a fairly moderate prevalence of social media addiction or problematic use.
- (2)
- Adolescents who make greater use of social media obtain higher scores on the CSIQ-A questionnaire (The Classmates Social Isolation Questionnaire for Adolescents) and generally perceive more loneliness.
- (3)
- The problematic use of social media is positively correlated with high levels of anxiety, and negatively correlated with self-esteem.
- (4)
- In order to predict social media addiction, we expected anxiety, social isolation, and low self-esteem to be risk factors
4.1. Social Media Addiction Prevalence
4.2. Social Media Addiction and Gender
4.3. Social Media Addiction and Psychological Variables
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Questionnaire on Social Media Use
References
- Lozano-Blasco, R.; Robres, A.Q.; Sánchez, A.S. Internet addiction in young adults: A meta-analysis and systematic review. Comput. Hum. Behav. 2022, 130, 107201. [Google Scholar] [CrossRef]
- Muratori, P.; Ciacchini, R. Children and the COVID-19 transition: Psychological reflections and suggestions on adapting to the emergency. Clin. Neuropsychiatry 2020, 17, 131. [Google Scholar]
- Ghosh, R.; Dubey, M.J.; Chatterjee, S.; Dubey, S. Impact of COVID -19 on children: Special focus on the psychosocial aspect. Minerva Pediatr. 2020, 72, 226–235. [Google Scholar] [CrossRef]
- Kuss, D.J.; Griffiths, M.D.; Binder, J.F. Internet addiction in students: Prevalence and risk factors. Comput. Hum. Behav. 2013, 29, 959–966. [Google Scholar] [CrossRef] [Green Version]
- Stevens, M.W.; Dorstyn, D.; Delfabbro, P.H.; King, D.L. Global prevalence of gaming disorder: A systematic review and meta-analysis. Aust. N.Z. J. Psychiatry 2020, 55, 553–568. [Google Scholar] [CrossRef]
- Reer, F.; Festl, R.; Quandt, T. Investigating problematic social media and game use in a nationally representative sample of adolescents and younger adults. Behav. Inf. Technol. 2020, 40, 776–789. [Google Scholar] [CrossRef]
- Moretta, T.; Buodo, G.; Demetrovics, Z.; Potenza, M.N. Tracing 20 years of research on problematic use of the internet and social media: Theoretical models, assessment tools, and an agenda for future work. Compr. Psychiatry 2021, 112, 152286. [Google Scholar] [CrossRef] [PubMed]
- Shaffer, D.R.; Kipp, K. Developmental Psychology: Childhood and Adolescence. Cengage Learning; Nelson Education, Canada, Ltd.: Toronto, ON, Canada, 2013; ISBN 978-0-17-650349-9. [Google Scholar]
- Sawyer, S.M.; Azzopardi, P.S.; Wickremarathne, D.; Patton, G.C. The age of adolescence. Lancet Child. Adolesc. Health 2018, 2, 223–228. [Google Scholar] [CrossRef]
- Jaworska, N.; MacQueen, G. Adolescence as a unique developmental period. J. Psychiatry Neurosci. 2015, 40, 291–293. [Google Scholar] [CrossRef] [PubMed]
- Vijayakumar, N.; de Macks, Z.O.; Shirtcliff, E.A.; Pfeifer, J.H. Puberty and the human brain: Insights into adolescent development. Neurosci. Biobehav. Rev. 2018, 92, 417–436. [Google Scholar] [CrossRef]
- Lieberman, O.J.; McGuirt, A.F.; Tang, G.; Sulzer, D. Roles for neuronal and glial autophagy in synaptic pruning during development. Neurobiol. Dis. 2019, 122, 49–63. [Google Scholar] [CrossRef] [PubMed]
- Romeo, R.D. The teenage brain: The stress response and the adolescent brain. Curr. Dir. Psychol. Sci. 2013, 22, 140–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barone, L. Manuale Di Psicologia Dello Sviluppo; Carocci Editore: Roma, Italy, 2010. [Google Scholar]
- Tanner, J.L.; Arnett, J.J. The emergence of emerging adulthood: The new life stage between adolescence and young adulthood. In Routledge Handbook of Youth and Young Adulthood; Routledge: London, England, 2016; pp. 50–56. [Google Scholar]
- Cozolino, L. II Cervello Sociale; Raffaello Cortina Editore: Milano, Italy, 2006. [Google Scholar]
- Nabavi, R.T. Bandura’s Social Learning Theory & Social Cognitive Learning Theory. 2012. Available online: https://www.researchgate.net/publication/267750204 (accessed on 11 November 2022).
- Corsano, P. Adolescenza e solitudini. In Processi di Sviluppo nel Ciclo di vita. Saggi in Onore di Marta Montanini Manfredi; Unicopli: Milan, Italy, 2003; pp. 73–94. [Google Scholar]
- Corvaglia, L.; Majorano, M.; Corsano, P. Persecutori e vittime tra i banchi di scuola. Componenti depressive, autostima e differenze di genere nel bullismo. Età Evol. 2008, 30, 40. [Google Scholar]
- Guazzini, A.; Pesce, A.; Gino, F.; Duradoni, M. How the COVID-19 Pandemic changed adolescents’ use of technologies, sense of community, and loneliness: A retrospective perception analysis. Behav. Sci. 2022, 12, 228. [Google Scholar] [CrossRef]
- Ozturk, F.O.; Ayaz-Alkaya, S. Internet addiction and psychosocial problems among adolescents during the COVID-19 pandemic: A cross-sectional study. Arch. Psychiatr. Nurs. 2021, 35, 595–601. [Google Scholar] [CrossRef]
- Li, Y.-Y.; Sun, Y.; Meng, S.-Q.; Bao, Y.-P.; Cheng, J.-L.; Chang, X.-W.; Ran, M.-S.; Sun, Y.-K.; Kosten, T.; Strang, J.; et al. Internet Addiction Increases in the General Population During COVID-19: Evidence From China. Am. J. Addict. 2021, 30, 389–397. [Google Scholar] [CrossRef]
- Lin, M.-P. Prevalence of Internet Addiction during the COVID-19 Outbreak and Its Risk Factors among Junior High School Students in Taiwan. Int. J. Environ. Res. Public Health 2020, 17, 8547. [Google Scholar] [CrossRef]
- Sarıalioğlu, A.; Atay, T.; Arıkan, D. Determining the relationship between loneliness and internet addiction among adolescents during the covid-19 pandemic in Turkey. J. Pediatr. Nurs. 2021, 63, 117–124. [Google Scholar] [CrossRef]
- Kaplan, A.M.; Haenlein, M. Users of the world, unite! The challenges and opportunities of Social Media. Bus. Horizons 2010, 53, 59–68. [Google Scholar] [CrossRef]
- Keles, B.; McCrae, N.; Grealish, A. A systematic review: The influence of social media on depression, anxiety and psychological distress in adolescents. Int. J. Adolesc. Youth 2019, 25, 79–93. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, M. A ‘components’ model of addiction within a biopsychosocial framework. J. Subst. Use 2005, 10, 191–197. [Google Scholar] [CrossRef]
- Moreno, M.A.; Jelenchick, L.A.; Christakis, D.A. Problematic internet use among older adolescents: A conceptual framework. Comput. Hum. Behav. 2013, 29, 1879–1887. [Google Scholar] [CrossRef]
- Zendle, D.; Bowden-Jones, H. Is excessive use of social media an addiction? BMJ 2019, 365, l2171. [Google Scholar] [CrossRef] [Green Version]
- Block, J.J. Issues for DSM-V: Internet Addiction. Am. J. Psychiatry 2008, 165, 306–307. [Google Scholar] [CrossRef] [Green Version]
- Petry, N.M.; Zajac, K.; Ginley, M.K. Behavioral addictions as mental disorders: To be or not to be? Annu. Rev. Clin. Psychol. 2018, 14, 399. [Google Scholar] [CrossRef]
- Wainner, C.N. Social Media Addiction and its Implications for Communication. Chancellor’s Honors Program Projects. 2018. Available online: https://trace.tennessee.edu/utk_chanhonoproj/2168 (accessed on 10 January 2023).
- West, R.; Turner, L. Introducing Communication Theory; McGraw Hill: New York, NY, USA, 2007. [Google Scholar]
- Ball-Rokeach, S.; DeFleur, M. A Dependency Model of Mass-Media Effects. Commun. Res. 1976, 3, 3–21. [Google Scholar] [CrossRef]
- Shah, J.; Das, P.; Muthiah, N.; Milanaik, R. New age technology and social media: Adolescent psychosocial implications and the need for protective measures. Curr. Opin. Pediatr. 2019, 31, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Bergagna, E.; Tartaglia, S. Self-esteem, social comparison, and Facebook use. Eur. J. Psychol. 2018, 14, 831–845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez-Pecino, R.; Garcia-Gavilán, M. Likes and Problematic Instagram Use: The Moderating Role of Self-Esteem. Cyberpsychol. Behav. Soc. Netw. 2019, 22, 412–416. [Google Scholar] [CrossRef] [Green Version]
- Valkenburg, P.M.; Koutamanis, M.; Vossen, H.G. The concurrent and longitudinal relationships between adolescents’ use of social network sites and their social self-esteem. Comput. Hum. Behav. 2017, 76, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.; Karan, K. Predicting Facebook addiction and state anxiety without Facebook by gender, trait anxiety, Facebook intensity, and different Facebook activities. J. Behav. Addict. 2019, 8, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Primack, B.A.; Shensa, A.; Escobar-Viera, C.G.; Barrett, E.L.; Sidani, J.E.; Colditz, J.B.; James, A.E. Use of multiple social media platforms and symptoms of depression and anxiety: A nationally-representative study among U.S. young adults. Comput. Hum. Behav. 2017, 69, 1–9. [Google Scholar] [CrossRef]
- Muzaffar, N.; Brito, E.B.; Fogel, J.; Fagan, D.; Kumar, K.; Verma, R. The association of adolescent Facebook behaviours with symptoms of social anxiety, generalized anxiety, and depression. J. Can. Acad. Child Adolesc. Psychiatry 2018, 27, 252. [Google Scholar]
- Vannucci, A.; Flannery, K.M.; Ohannessian, C.M. Social media use and anxiety in emerging adults. J. Affect. Disord. 2017, 207, 163–166. [Google Scholar] [CrossRef] [PubMed]
- Thorisdottir, I.E.; Sigurvinsdottir, R.; Asgeirsdottir, B.B.; Allegrante, J.P.; Sigfusdottir, I.D. Active and Passive Social Media Use and Symptoms of Anxiety and Depressed Mood Among Icelandic Adolescents. Cyberpsychol. Behav. Soc. Netw. 2019, 22, 535–542. [Google Scholar] [CrossRef]
- Boursier, V.; Gioia, F.; Griffiths, M.D. Do selfie-expectancies and social appearance anxiety predict adolescents’ problematic social media use? Comput. Hum. Behav. 2020, 110, 106395. [Google Scholar] [CrossRef]
- Choi, D.-H.; Noh, G.-Y. The influence of social media use on attitude toward suicide through psychological well-being, social isolation, and social support. Inf. Commun. Soc. 2019, 23, 1–17. [Google Scholar] [CrossRef]
- You, S.; Kim, E.; Lee, D. Virtually real: Exploring avatar identification in game addiction among massively multiplayer online role-playing games (MMORPG) players. Games Cult. 2017, 12, 56–71. [Google Scholar] [CrossRef]
- Wartberg, L.; Kriston, L.; Thomasius, R. Internet gaming disorder and problematic social media use in a representative sample of German adolescents: Prevalence estimates, comorbid depressive symptoms and related psychosocial aspects. Comput. Hum. Behav. 2019, 103, 31–36. [Google Scholar] [CrossRef]
- Monacis, L.; De Palo, V.; Griffiths, M.D.; Sinatra, M. Social networking addiction, attachment style, and validation of the Italian version of the Bergen Social Media Addiction Scale. J. Behav. Addict. 2017, 6, 178–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andreassen, C.S.; Billieux, J.; Griffiths, M.D.; Kuss, D.J.; Demetrovics, Z.; Mazzoni, E.; Pallesen, S. The relationship between addictive use of social media and video games and symptoms of psychiatric disorders: A large-scale cross-sectional study. Psychol. Addict. Behav. 2016, 30, 252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mannarini, S. Assessing the Rosenberg Self-esteem Scale dimensionality and items functioning in relation to self-efficacy and attachment styles. TPM Test Psychom. Methodol. Appl. Psychol. 2010, 4, 229–242. Available online: https://www.academia.edu/10079482/Rosenberg_italy?bulkDownload=thisPaper-topRelated-sameAuthor-citingThis-citedByThis-secondOrderCitations&from=cover_page (accessed on 15 February 2020).
- Rosenberg, M. Rosenberg self-esteem scale (RSE). Acceptance and commitment therapy. Meas. Package 1965, 61, 18. Available online: https://integrativehealthpartners.org/downloads/ACTmeasures.pdf#page=61 (accessed on 15 February 2020).
- Prezza, M.; Trombaccia, F.R.; Armento, L. La scala dell’autostima di Rosenberg: Traduzione e validazione Italiana. Giunti Organ. Spec. 1997. [Google Scholar]
- Cavicchiolo, E.; Girelli, L.; Lucidi, F.; Manganelli, S.; Alivernini, F. The Classmates Social Isolation Questionnaire for Adolescents (CSIQ-A): Validation and Invariance across Immigrant Background, Gender and Socioeconomic Level. ECPS-Educ. Cult. Psychol. Stud. 2019, 19, 163–174. [Google Scholar] [CrossRef]
- Alivernini, F.; Manganelli, S. The classmates social isolation questionnaire (CSIQ): An initial validation. Eur. J. Dev. Psychol. 2016, 13, 264–274. [Google Scholar] [CrossRef]
- Pedrabissi, L.; Santinello, M. Verifica della validità dello STAI forma Y di Spielberger. Giunti Organ. Spec. 1989, 191–192, 11–14. [Google Scholar]
- Spielberger, C.D. State-Trait Anxiety Inventory for Adults; Mind Garden: Redwood City, CA, USA, 1983. [Google Scholar] [CrossRef]
- Rainone, N.; Chiodi, A.; Lanzillo, R.; Magri, V.; Napolitano, A.; Morra, V.B.; Valerio, P.; Freda, M.F. Affective disorders and Health-Related Quality of Life (HRQoL) in adolescents and young adults with Multiple Sclerosis (MS): The moderating role of resilience. Qual. Life Res. 2016, 26, 727–736. [Google Scholar] [CrossRef]
- Barcaccia, B.; Balestrini, V.; Saliani, A.M.; Baiocco, R.; Mancini, F.; Schneider, B.H. Dysfunctional eating behaviors, anxiety, and depression in Italian boys and girls: The role of mass media. Rev. Bras. de Psiquiatr. 2017, 40, 72–77. [Google Scholar] [CrossRef] [Green Version]
- Boer, M.; Van den Eijnden, R.J.; Boniel-Nissim, M.; Wong, S.-L.; Inchley, J.C.; Badura, P.; Craig, W.M.; Gobina, I.; Kleszczewska, D.; Klanšček, H.J.; et al. Adolescents’ Intense and Problematic Social Media Use and Their Well-Being in 29 Countries. J. Adolesc. Health 2020, 66, S89–S99. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Xiong, D.; Jiang, T.; Song, L.; Wang, Q. Social media addiction: Its impact, mediation, and intervention. Cyberpsychol. J. Psychosoc. Res. Cyberspace 2019, 13. [Google Scholar] [CrossRef] [Green Version]
- Molinaro, S.; Vincente, J.; Benedetti, E.; Cerrai, S.; Colasante, E.; Arpa, S.; Skarupova, K. ESPAD Report 2019: Results from European School Survey Project on Alcohol and Other Drugs; ESPAD: Lisabon, Portugal, 2020. [Google Scholar] [CrossRef]
- Marino, C.; Lenzi, M.; Canale, N.; Pierannunzio, D.; Dalmasso, P.; Borraccino, A.; Cappello, N.; Lemma, P.; Vieno, A. Problematic social media use: Associations with health complaints among adolescents. Ann. Dell’istituto Super. Sanità 2020, 56, 514–521. [Google Scholar] [CrossRef]
- Chua, T.H.H.; Chang, L. Follow me and like my beautiful selfies: Singapore teenage girls’ engagement in self-presentation and peer comparison on social media. Comput. Hum. Behav. 2016, 55, 190–197. [Google Scholar] [CrossRef]
- Magee, W.; Upenieks, L. Gender differences in self-esteem, unvarnished self-evaluation, future orientation, self-enhancement and self-derogation in a U.S. national sample. Pers. Individ. Differ. 2019, 149, 66–77. [Google Scholar] [CrossRef]
- Carmassi, C.; Stratta, P.; Massimetti, G.; Bertelloni, C.A.; Conversano, C.; Cremone, I.M.; Miccoli, M.; Baggiani, A.; Rossi, A.; Dell’Osso, L. New DSM-5 maladaptive symptoms in PTSD: Gender differences and correlations with mood spectrum symptoms in a sample of high school students following survival of an earthquake. Ann. Gen. Psychiatry 2014, 13, 28. [Google Scholar] [CrossRef] [PubMed]
- Siebers, T.; Beyens, I.; Pouwels, J.L.; Valkenburg, P.M. Social Media and Distraction: An Experience Sampling Study among Adolescents. Media Psychol. 2021, 25, 343–366. [Google Scholar] [CrossRef]
- Twenge, J.M.; Spitzberg, B.H.; Campbell, W.K. Less in-person social interaction with peers among U.S. adolescents in the 21st century and links to loneliness. J. Soc. Pers. Relationships 2019, 36, 1892–1913. [Google Scholar] [CrossRef]
- Neff, K.D. Self-compassion, self-esteem, and well-being. Soc. Personal. Psychol. Compass 2011, 5, 1–12. [Google Scholar] [CrossRef]
- Alexander, B.; David, E.; Grills, N. High prevalence of anxiety disorders among adolescent Tibetan refugees. Asian J. Psychiatry 2013, 6, 218–221. [Google Scholar] [CrossRef]
- Coyne, S.M.; Rogers, A.A.; Zurcher, J.D.; Stockdale, L.; Booth, M. Does time spent using social media impact mental health?: An eight year longitudinal study. Comput. Hum. Behav. 2019, 104, 106160. [Google Scholar] [CrossRef]
- Turel, O.; Cavagnaro, D.R. Effect of Abstinence from Social Media on Time Perception: Differences between Low- and At-Risk for Social Media “Addiction” Groups. Psychiatr. Q. 2018, 90, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Shahnawaz, M.G.; Rehman, U. Social Networking Addiction Scale. Cogent Psychol. 2020, 7, 1832032. [Google Scholar] [CrossRef]
- Ghiroldi, S.; Scafuto, F.; Montecucco, N.F.; Presaghi, F.; Iani, L. Effectiveness of a School-Based Mindfulness Intervention on Children’s Internalizing and Externalizing Problems: The Gaia Project. Mindfulness 2020, 11, 2589–2603. [Google Scholar] [CrossRef]
- Scafuto, F. Individual and social-psychological factors to explain climate change efficacy: The role of mindfulness, sense of global community, and egalitarianism. J. Community Psychol. 2021, 49, 2003–2022. [Google Scholar] [CrossRef] [PubMed]
- Robinson, J.M.; Ladd, B.O.; Anderson, K.G. When you see it, let it be: Urgency, mindfulness and adolescent substance use. Addict. Behav. 2014, 39, 1038–1041. [Google Scholar] [CrossRef] [Green Version]
- Broderick, P.C.; Jennings, P.A. Mindfulness for adolescents: A promising approach to supporting emotion regulation and preventing risky behavior. New Dir. Youth Dev. 2012, 2012, 111–126. [Google Scholar] [CrossRef]
- Bağatarhan, T.; Siyez, D.M. The Effectiveness of a Cognitive-Behavioral Prevention Program for Internet Addiction. J. Ration. Cogn. Ther. 2022, 40, 767–792. [Google Scholar] [CrossRef]
- Arslan, G. Psychological maltreatment, forgiveness, mindfulness, and internet addiction among young adults: A study of mediation effect. Comput. Hum. Behav. 2017, 72, 57–66. [Google Scholar] [CrossRef]
- Conversano, C.; Orrù, G.; Pozza, A.; Miccoli, M.; Ciacchini, R.; Marchi, L.; Gemignani, A. Is Mindfulness-Based Stress Reduction Effective for People with Hypertension? A Systematic Review and Meta-Analysis of 30 Years of Evidence. Int. J. Environ. Res. Public Health 2021, 18, 2882. [Google Scholar] [CrossRef]
- Scafuto, F.; Ghiroldi, S.; Montecucco, N.F.; Iani, L.; Presaghi, F. The Mindfulness-based Gaia program reduces internalizing problems in high-school adolescents: A cluster randomized controlled trial. Mindfulness 2022, 13, 1804–1815. [Google Scholar] [CrossRef]
- Scafuto, F. Climate Risk for the self and community: The role of Nature Relatedness, Personal Control and Mindfulness. In Rivista di Studi Sulla Sostenibilità: IX; Franco Angeli: Milano, Italy, 2020; pp. 89–108. [Google Scholar] [CrossRef]
- Scafuto, F.; La Barbera, F. Protest Against Waste Contamination in the ‘Land of Fires’: Psychological Antecedents for Activists and Non-activists. J. Community Appl. Soc. Psychol. 2016, 26, 481–495. [Google Scholar] [CrossRef]
- Iasevoli, M.; Giantin, V.; Voci, A.; Valentini, E.; Zurlo, A.; Maggi, S.; Manzato, E. Discussing end-of-life care issues with terminally ill patients and their relatives: Comparisons among physicians, nurses and psychologists. Aging Clin. Exp. Res. 2012, 24 (Suppl. S3), 35–42. [Google Scholar] [PubMed]
- Dell’Osso, L.; Bazzichi, L.; Baroni, S.; Falaschi, V.; Conversano, C.; Carmassi, C.; Marazziti, D. The inflammatory hypothesis of mood spectrum broadened to fibromyalgia and chronic fatigue syndrome. Ann. Rheum. Dis. 2015, 33 (Suppl. S88), S109–S116. [Google Scholar]
Total Sample | Social Media Addicts | |||
---|---|---|---|---|
Variables | Frequencies (%) | M (SD) | Frequencies (%) | M (SD) |
Sex | M = 42.25 | M = 41.38 | ||
F = 57.75 | F = 58.62 | |||
Age | 17.42 (1.73) | 17.86 (1.48) | ||
School failure | No = 64.73 | No = 75.86 | ||
Yes = 35.27 | Yes = 24.14 | |||
BSMAS | 13.07 (4.48) | 21.76 (2.46) | ||
RSES | 16.59 (5) | 16.17 (4.90) | ||
CSIQ-A | 21.35 (5.14) | 19.45 (4.95) | ||
STAI-Y1 | 42.67 (9.93) | 46.86 (10.67) | ||
STAI-Y2 | 45.88 (10.22) | 52.52 (11.50) |
Age | BSMAS | RSES | CSIQ-A | STAI-Y1 | STAI-Y2 | |
---|---|---|---|---|---|---|
Age | 0.02 | 0.01 | −0.07 | 0.24 ** | 0.12 | |
BSMAS | −0.30 ** | −0.06 | 0.30 ** | 0.41 ** | ||
RSES | 0.26 ** | −0.51 ** | −0.75 ** | |||
CSIQ-A | −0.10 | −0.20 ** | ||||
STAI-Y1 | 0.72 ** | |||||
STAI-Y2 |
Age | BSMAS | RSES | CSIQ-A | STAI-Y1 | STAI-Y2 | |
---|---|---|---|---|---|---|
Age | 0.09 | 0.18 | −0.09 | 0.18 | −0.11 | |
BSMAS | 0.12 | 0.22 | −0.05 | 0.13 | ||
RSES | 0.31 | −0.44 * | −0.81 ** | |||
CSIQ-A | −0.38 * | −0.37 * | ||||
STAI-Y1 | 0.43 * | |||||
STAI-Y2 |
Variables | B | SE | t | p-Value | Lower (95%) CI | Upper 95% CI |
---|---|---|---|---|---|---|
Constant | 2.84 | 2.84 | 0.99 | 0.32 | −5.04 | 6.04 |
Sex (Female) | 2.15 | 0.53 | 4.03 | 0.00 | 1.10 | 3.20 |
RSES | 0.07 | 0.07 | 0.98 | 0.32 | −0.07 | 0.21 |
CSIQ-A | 0.005 | 0.05 | 0.10 | 0.92 | −0.09 | 0.10 |
STAI-Y1 | −0.03 | 0.03 | −0.92 | 0.35 | −0.10 | 0.04 |
STAI-Y2 | 0.20 | 0.04 | 4.45 | 0.00 | 0.11 | 0.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciacchini, R.; Orrù, G.; Cucurnia, E.; Sabbatini, S.; Scafuto, F.; Lazzarelli, A.; Miccoli, M.; Gemignani, A.; Conversano, C. Social Media in Adolescents: A Retrospective Correlational Study on Addiction. Children 2023, 10, 278. https://doi.org/10.3390/children10020278
Ciacchini R, Orrù G, Cucurnia E, Sabbatini S, Scafuto F, Lazzarelli A, Miccoli M, Gemignani A, Conversano C. Social Media in Adolescents: A Retrospective Correlational Study on Addiction. Children. 2023; 10(2):278. https://doi.org/10.3390/children10020278
Chicago/Turabian StyleCiacchini, Rebecca, Graziella Orrù, Elisa Cucurnia, Silvia Sabbatini, Francesca Scafuto, Alessandro Lazzarelli, Mario Miccoli, Angelo Gemignani, and Ciro Conversano. 2023. "Social Media in Adolescents: A Retrospective Correlational Study on Addiction" Children 10, no. 2: 278. https://doi.org/10.3390/children10020278