Bone Deformities through the Prism of the International Classification of Functioning, Disability and Health in Ambulant Children with Cerebral Palsy: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategies and Resources
2.2. Inclusion and Exclusion Criteria
- -
- Included ambulant children aged 0 to 18 years with any type of CP;
- -
- Used an objective measurement (clinical examination or imaging) of at least 1 lower limb bone variable (for instance, neck-shaft angle, tibial torsion, etc.);
- -
- Used a standardized assessment of 1 or more body function (i.e., spasticity, muscle strength, etc.), activity (i.e., moving around in different locations, dressing, etc.), and participation (i.e., shopping, etc.) outcomes;
- -
- Used a statistical analysis of correlations (i.e., statistical report of the relationship with R, R2, etc.) between bone morphology variables and body function, activity, and participation outcomes.
- -
- Included ambulant children aged 0 to 18 years with any type of CP who underwent a single bone surgical procedure;
- -
- Evaluated a single bone surgery (excluding SEMLS);
- -
- Had a pre–post design to assess change after surgery;
- -
- Involved a statistical evaluation of the impact of the procedure on at least 1 body function, activity, and participation outcome (measured using a standardized assessment).
2.3. Quality Evaluation
2.4. Data Extraction
2.5. Analysis
3. Results
3.1. Study Selection
Author | Year | n | Age | CP Type | n | GMFCS (n) | Sex n (%) | Bone Morphology Variable | Assessment |
---|---|---|---|---|---|---|---|---|---|
Teixeira et al. [30] | 2018 | 195 | 10.2 (3–18) | Unilateral | 43 | I (61) II (90) III (44) | Female 86 (44) | TT | PE (TA) |
Bilateral | 152 | Male 109 (56) | |||||||
Westberry et al. [24] | 2018 | 77 | 11.8 (7.2–18.7) | Unilateral | 30 | I–II | Female 28 (36) | FT | EOS |
Bilateral | 47 | Male 49 (64) | |||||||
Cho et al. [22] | 2018 | 57 | At Physical Exam: 3.6 ± 1.6 (2–6) | Unilateral | 10 | I (20) II (13) III (10) IV (11) V (3) | Female 26 (46) | NSA | 3D CT |
At imaging study: 9.2 ± 1.8 (7–14) | Bilateral | 47 | Male 31 (54) | FT | |||||
Presedo et al. [29] | 2017 | 114 | 12.1 ± 0.3 (5.5–19.2) | Bilateral | 114 | I (6) II (67) III (41) | Female 47 (41) | FT | PE (Ruwe) |
Male 67 (59) | TT | PE (TA) | |||||||
Kim et al. [27] | 2017 | 26 | 12.6 (6–16) | Bilateral | 26 | - | Female 12 (46) | FT | 3D CT |
Male 14 (54) | TT | 3D CT, PE (TFA) | |||||||
Karabicak et al. [23] | 2016 | 20 | 12.3 ± 4.5 | Unilateral | 9 | I (1) II (6) III (4) UK (9) | Female 8 (40) | FT | PE (Ruwe) |
Diplegia | 6 | ||||||||
Triplegia | 1 | Male 12 (60) | |||||||
Quadriplegia | 4 | ||||||||
Lee et al. [10] | 2013 | 33 | 9.5 ± 6.9 | Bilateral | 33 | I (15) II (18) | Female 13 (39) | FT | 3D CT |
Male 20 (61) | TT | ||||||||
Desloovere et al. [26] | 2006 | 200 | 8.1 ± 2.4 | Unilateral | 88 | - | - | FT | PE (Ruwe) |
Bilateral | 112 | - | - | ||||||
Kerr et al. [25] | 2003 | 29 | 14.6 (4.6–35.8) | - | - | - | Female 11 (38) | FT | PE (Ruwe) |
- | - | - | Male 18 (62) | ||||||
Aktas et al. [28] | 2000 | 22 | 13.7 (6.4–20.6) | - | - | - | Female 6 (27) | FT | 3D CT |
- | - | - | Male 16 (73) | TT | 3DCT, PE (TA, TFA) | ||||
Boyer et al. [34] | 2017 | 140 | 9.4 ± 4.0 (3.7–17.2) | Bilateral | 140 | I (52) II (55) III (4) | Female 63 (45) | Femoral derotation osteotomy | |
Male 77 (55) | |||||||||
Cimolin et al. [33] | 2011 | 12 | 11.7 ± 3.4 | Bilateral | 12 | - | Female 6 (50) | Femoral derotation osteotomy | |
Male 6 (50) |
3.2. Bone Morphology Variables Evaluated in the Studies Included
3.3. Relationships between Bone Deformity and ICF
3.3.1. Relationships between Lower Limb Bone Deformity and Body Function Outcomes
- Neck-Shaft Angle (NSA)
- Femoral Torsion (FT)
- Tibial Torsion (TT)
3.3.2. Relationships between Deformity and Activity or Participation Outcomes
3.4. Results following Isolated Bone Surgery
Body Function
3.4.2. Activity and Participation
4. Discussion
4.1. Bone Morphology and Body Functions
4.2. Bone Deformities and Activity/Participation Outcomes
4.3. Towards a Paradigm Shift in Bone Deformity Prevention and Interventions for Ambulant Children with CP
4.4. Limitations
5. Conclusions
- -
- Gait parameters (standardized assessment using 3D gait analysis which accurately monitors changes in spatiotemporal, kinematic, and kinetic gait parameters);
- -
- Orthopaedic parameters (e.g., bone deviations, spasticity, muscle strength, and length).
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
BCP | Bilateral cerebral palsy |
CCS | Checklist for Case Series |
CP | Cerebral palsy |
EOS | Biplanar radiography |
FT | Femoral torsion |
FDO | Femoral derotation osteotomy |
ICF | International classification of functioning, disability and health |
NSA | Neck-shaft angle |
PCA | Principal component analysis |
SEMLS | Single-event multi-level surgery |
TT | Tibial torsion |
UCP | Unilateral cerebral palsy |
UNK | Unknown topography |
yo | Years old |
3DCT | Three-dimensional computed tomography |
3DGA | Three-dimensional gait analysis |
References
- Rosenbaum, P. A report: The definition and classification of cerebral palsy April 2006. Dev. Med. Child Neurol. Suppl. 2007, 109, 8–14. [Google Scholar] [PubMed]
- Graham, H.K.; Rosenbaum, P.; Paneth, N.; Dan, B.; Lin, J.-P.; Damiano, D.L.; Becher, J.G.; Gaebler-Spira, D.; Colver, A.; Reddihough, D.S.; et al. Cerebral palsy. Nat. Rev. Dis. Primer 2016, 2, 15082. [Google Scholar] [CrossRef]
- Novak, I.; Morgan, C.; Fahey, M.; Finch-Edmondson, M.; Galea, C.; Hines, A.; Langdon, K.; Namara, M.M.; Paton, M.C.; Popat, H.; et al. State of the Evidence Traffic Lights 2019: Systematic Review of Interventions for Preventing and Treating Children with Cerebral Palsy. Curr. Neurol. Neurosci. Rep. 2020, 20, 3. [Google Scholar] [CrossRef] [PubMed]
- Oeffinger, D.; Gorton, G.; Hassani, S.; Sison-Williamson, M.; Johnson, B.; Whitmer, M.; Romness, M.; Kryscio, D.; Tylkowski, C.; Bagley, A. Variability explained by strength, body composition and gait impairment in activity and participation measures for children with cerebral palsy: A multicentre study. Clin. Rehabil. 2014, 28, 1053–1063. [Google Scholar] [CrossRef] [PubMed]
- Armand, S.; Decoulon, G.; Bonnefoy-Mazure, A. Gait analysis in children with cerebral palsy. EFORT Open Rev. 2016, 1, 448–460. [Google Scholar] [CrossRef] [PubMed]
- Staheli, L.; Duncan, W.; Schaefer, E. Growth alterations in the hemiplegic child. A study of femoral anteversion, neck-shaft angle, hip rotation, C.E. angle, limb length and circumference in 50 hemiplegic children. Clin. Orthop. 1968, 60, 205–212. [Google Scholar] [PubMed]
- Gose, S.; Sakai, T.; Murase, T.; Sugamoto, K. Morphometric Analysis of the Femur in Cerebral Palsy: 3-dimensional CT Study. J. Pediatr. Orthop. 2010, 30, 7. [Google Scholar] [CrossRef]
- Robin, J. Proximal femoral geometry in cerebral palsy: A population-based cross-sectional study. J. Bone Joint Surg. Br. 2008, 90, 1372–1379. [Google Scholar] [CrossRef]
- Massaad, A.; Assi, A.; Bakouny, Z.; Sauret, C.; Khalil, N.; Skalli, W.; Ghanem, I. Three-dimensional evaluation of skeletal deformities of the pelvis and lower limbs in ambulant children with cerebral palsy. Gait Posture 2016, 49, 102–107. [Google Scholar] [CrossRef]
- Lee, K.M.; Chung, C.Y.; Sung, K.H.; Kim, T.W.; Lee, S.Y.; Park, M.S. Femoral anteversion and tibial torsion only explain 25% of variance in regression analysis of foot progression angle in children with diplegic cerebral palsy. J. Neuroeng. Rehabil. 2013, 10, 56. [Google Scholar] [CrossRef]
- Skoutelis, V.C.; Kanellopoulos, A.D.; Kontogeorgakos, V.A.; Dinopoulos, A.; Papagelopoulos, P.J. The orthopaedic aspect of spastic cerebral palsy. J. Orthop. 2020, 22, 553–558. [Google Scholar] [CrossRef] [PubMed]
- Jackman, M.; Sakzewski, L.; Morgan, C.; Boyd, R.N.; Brennan, S.; Langdon, K.; Toovey, R.; Greaves, S.; Thorley, M.; Novak, I. Interventions to improve physical function for children and young people with cerebral palsy: International clinical practice guideline. Dev. Med. Child Neurol. 2022, 64, 536–549. [Google Scholar] [CrossRef] [PubMed]
- Roquet, M.; Garlantezec, R.; Remy-Neris, O.; Sacaze, E.; Gallien, P.; Ropars, J.; Houx, L.; Pons, C.; Brochard, S. From childhood to adulthood: Health care use in individuals with cerebral palsy. Dev. Med. Child Neurol. 2018, 60, 1271–1277. [Google Scholar] [CrossRef]
- Høiness, P.R.; Capjon, H.; Lofterød, B. Pain and rehabilitation problems after single-event multilevel surgery including bony foot surgery in cerebral palsy. Acta Orthop. 2014, 85, 646–651. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Charrois, T.L. Systematic Reviews: What Do You Need to Know to Get Started? Can. J. Hosp. Pharm. 2015, 68, 144–148. [Google Scholar] [CrossRef]
- Dekkers, O.M.; Egger, M.; Altman, D.G.; Vandenbroucke, J.P. Distinguishing case series from cohort studies. Ann. Intern. Med. Res. Rep. Methods 2012, 156, 37–40. [Google Scholar] [CrossRef]
- Moola, S.; Munn, Z.; Tufunaru, C.; Aromataris, E.; Sears, K.; Sfetcu, R.; Currie, M.; Qureshi, R.; Mattis, P.; Lisy, K.; et al. Chapter 7: Systematic reviews of etiology and risk. In Joanna Briggs Institute Reviewer’s Manual; The Joanna Briggs Institute, 2017; p. 7. [Google Scholar] [CrossRef]
- CHU de Québec-Université Laval, Grille d’études Observationnelles, (n.d.). Available online: https://www.chudequebec.ca/getmedia/671c4421-a94e-4a1c-856e-62ebe9a96e65/GRILLE-etudes-observationnelles-revisitee.aspx (accessed on 16 March 2021).
- Li, T.; Higgins, J.P.; Deeks, J. Chapter 5: Collecting data. In Cochrane Handbook for Systematic Reviews of Interventions Version 6.0 (Updated July 2019), 2nd ed; Higgins, J.P.T., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M.J., Welch, V.A., Eds.; John Wiley & Sons: Chichester, UK, 2019; Available online: www.training.cochrane.org/handbook (accessed on 16 March 2021).
- Altman, D.G. Practical Statistics for Medical Research. Biometrics 1992, 48, 656. [Google Scholar] [CrossRef]
- Cho, Y.; Park, E.S.; Park, H.K.; Park, J.E.; Rha, D. Determinants of Hip and Femoral Deformities in Children With Spastic Cerebral Palsy. Ann. Rehabil. Med. 2018, 42, 277. [Google Scholar] [CrossRef] [PubMed]
- Karabicak, G.O.; Balci, N.C.; Gulsen, M.; Ozturk, B.; Cetin, N. The effect of postural control and balance on femoral anteversion in children with spastic cerebral palsy. J. Phys. Ther. Sci. 2016, 28, 1696–1700. [Google Scholar] [CrossRef] [PubMed]
- Westberry, D.E.; Wack, L.I.; Davis, R.B.; Hardin, J.W. Femoral anteversion assessment: Comparison of physical examination, gait analysis, and EOS biplanar radiography. Gait Posture 2018, 62, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Kerr, A.M.; Kirtley, S.J.; Hillman, S.J.; van der Linden, M.L.; Hazlewood, M.E.; Robb, J.E. The mid-point of passive hip rotation range is an indicator of hip rotation in gait in cerebral palsy. Gait Posture 2003, 17, 88–91. [Google Scholar] [CrossRef] [PubMed]
- Desloovere, K.; Molenaers, G.; Feys, H.; Huenaerts, C.; Callewaert, B.; de Walle, P.V. Do dynamic and static clinical measurements correlate with gait analysis parameters in children with cerebral palsy? Gait Posture 2006, 24, 302–313. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.Y.; Cha, Y.H.; Chun, Y.S.; Shin, H.S. Correlation of the torsion values measured by rotational profile, kinematics, and CT study in CP patients. Gait Posture 2017, 57, 241–245. [Google Scholar] [CrossRef] [PubMed]
- Aktas, S.; Aiona, M.D.; Orendurff, M. Evaluation of Rotational Gait Abnormality in the Patients Cerebral Palsy. J. Pediatr. Orthop. 2000, 20, 217–220. [Google Scholar] [CrossRef]
- Presedo, A.; Simon, A.-L.; Mallet, C.; Ilharreborde, B.; Mazda, K.; Pennecot, G.-F. Correlation between transverse plan kinematics and foot progression angle in children with spastic diplegia. J. Pediatr. Orthop. B 2017, 26, 211–216. [Google Scholar] [CrossRef]
- Teixeira, F.B.; Júnior, A.R.; de Morais Filho, M.C.; Speciali, D.S.; Kawamura, C.M.; Lopes, J.A.F.; Blumetti, F.C. Correlation between physical examination and three-dimensional gait analysis in the assessment of rotational abnormalities in children with cerebral palsy. Einstein 2018, 16, eAO4247. [Google Scholar] [CrossRef]
- Bailly, R.; Lempereur, M.; Pons, C.; Houx, L.; Thepaut, M.; Borotikar, B.; Gross, R.; Brochard, S. 3-D lower extremity bone morphology in ambulant children with cerebral palsy and its relation to gait. Ann. Phys. Rehabil. Med. 2019, 64, 101254. [Google Scholar] [CrossRef]
- Carriero, A.; Zavatsky, A.; Stebbins, J.; Theologis, T.; Shefelbine, S.J.; Stebbins, J.; Theologis, T.; Shefelbine, S.J. Correlation between lower limb bone morphology and gait characteristics in children with spastic diplegic cerebral palsy. J. Pediatr. Orthop. 2009, 29, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Cimolin, V.; Piccinini, L.; Portinaro, N.; Turconi, A.C.; Albonico, S.; Crivellini, M.; Galli, M. The effects of femoral derotation osteotomy in cerebral palsy: A kinematic and kinetic study. Hip Int. 2011, 21, 657–664. [Google Scholar] [CrossRef] [PubMed]
- Boyer, E.R.; Novacheck, T.F.; Schwartz, M.H. Changes in hip abductor moment 3 or more years after femoral derotation osteotomy among individuals with cerebral palsy. Dev. Med. Child Neurol. 2017, 59, 912–918. [Google Scholar] [CrossRef]
- World Health Organization (Ed.) International Classification of Functioning, Disability and Health; ICF, World Health Organization: Geneva, Switzerland, 2001. [Google Scholar]
- Theologis, T. Lever arm dysfunction in cerebral palsy gait. J. Child. Orthop. 2013, 7, 379–382. [Google Scholar] [CrossRef]
- Papageorgiou, E.; Simon-Martinez, C.; Molenaers, G.; Ortibus, E.; Van Campenhout, A.; Desloovere, K. Are spasticity, weakness, selectivity, and passive range of motion related to gait deviations in children with spastic cerebral palsy? A statistical parametric mapping study. PLoS ONE 2019, 14, e0223363. [Google Scholar] [CrossRef] [PubMed]
- Pouliot-Laforte, A.; Parent, A.; Hamdy, R.; Marois, P.; Lemay, M.; Ballaz, L. Relationship between lower limb strength and walking capacities in children with spastic bilateral cerebral palsy. Disabil. Rehabil. 2022, 44, 1916–1922. [Google Scholar] [CrossRef]
- Balzer, J.; Marsico, P.; Mitteregger, E.; van der Linden, M.L.; Mercer, T.H.; van Hedel, H.J.A. Influence of trunk control and lower extremity impairments on gait capacity in children with cerebral palsy. Disabil. Rehabil. 2018, 40, 3164–3170. [Google Scholar] [CrossRef]
- Sangeux, M.; Armand, S. Kinematic deviations in children with cerebral palsy. In Orthopedic Management of Children with Cerebral Palsy: A Comprehensive Approach; Canavese, F., Deslances, J., Eds.; Nova Science: New York, NY, USA, 2015; pp. 241–253. [Google Scholar]
- Bickley, C.; Linton, J.; Scarborough, N.; Sullivan, E.; Mitchell, K.; Barnes, D. Correlation of technical surgical goals to the GDI and investigation of post-operative GDI change in children with cerebral palsy. Gait Posture 2017, 55, 121–125. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, J.; Shrader, M.W.; Graham, K.; Veerkamp, M.; Brower, L.; Chambers, H.; Davids, J.R.; Kay, R.M.; Narayanan, U.; Novacheck, T.F.; et al. Establishing surgical indications for hamstring lengthening and femoral derotational osteotomy in ambulatory children with cerebral palsy. J. Child. Orthop. 2020, 14, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Amirmudin, N.A.; Lavelle, G.; Theologis, T.; Thompson, N.; Ryan, J.M. Multilevel Surgery for Children with Cerebral Palsy: A Meta-analysis. Pediatrics 2019, 143, e20183390. [Google Scholar] [CrossRef] [PubMed]
- Almoajil, H.; Theologis, T.; Dawes, H.; Parsonage, J.; Pierce, J.; Hopewell, S.; Toye, F. Patients’ and parents’ views about lower limb orthopaedic surgery for ambulant children and young people with cerebral palsy: A qualitative evidence synthesis. J. Child. Orthop. 2020, 14, 562–573. [Google Scholar] [CrossRef]
- Vella-Baldacchino, M.; Perry, D.C.; Roposch, A.; Nicolaou, N.; Cooke, S.; Ellis, P.; Theologis, T. Research priorities in children requiring elective surgery for conditions affecting the lower limbs: A James Lind Alliance Priority Setting Partnership. BMJ Open 2019, 9, e033233. [Google Scholar] [CrossRef]
- Whitney, D.G.; Bell, S.; Whibley, D.; Van der Slot, W.M.A.; Hurvitz, E.A.; Haapala, H.J.; Peterson, M.D.; Warschausky, S.A. Effect of pain on mood affective disorders in adults with cerebral palsy. Dev. Med. Child Neurol. 2020, 62, 926–932. [Google Scholar] [CrossRef] [PubMed]
- French, Z.; Torres, R.; Whitney, D. Elevated prevalence of osteoarthritis among adults with cerebral palsy. J. Rehabil. Med. 2019, 51, 575–581. [Google Scholar] [CrossRef] [PubMed]
- Hammar, G.R.; Ozolins, A.; Idvall, E.; Rudebeck, C.E. Body image in adolescents with cerebral palsy. J. Child Health Care 2009, 13, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Miyahara, M.; Piek, J. Self-Esteem of Children and Adolescents with Physical Disabilities: Quantitative Evidence from Meta-Analysis. J. Dev. Phys. Disabil. 2006, 18, 219–234. [Google Scholar] [CrossRef]
- Wiegerink, D.; Roebroeck, M.; Donkervoort, M.; Cohen-Kettenis, P.; Stam, H. The Transition Research Group South West Netherlands, Social, intimate and sexual relationships of adolescents with cerebral palsy compared with able-bodied age-mates. J. Rehabil. Med. 2008, 40, 112–118. [Google Scholar] [CrossRef]
Authors | Year | Body Function | Correlation | Bone Morphology Variable | |||||
---|---|---|---|---|---|---|---|---|---|
Denomination | ICF Code | Assessment | Denomination | ICF Code | Assessment | ||||
Cho et al. [22] | 2018 | Age at imaging study | −0.33 | NSA | s750 | Radiographic measurement | |||
Spasticity of hamstring muscles: R1 (Muscle reaction) | b735 | Modified Tardieu Scale | 0.25 | ||||||
Spasticity of hamstring muscles: R2 (Full PROM) | 0.18 | ||||||||
Spasticity of adductor muscles: R1 with knee extension | −0.45 | ||||||||
Spasticity of adductor muscles: R2 with knee extension | −0.56 | ||||||||
Spasticity of adductor muscles: R1 with knee flexion | −0.47 | ||||||||
Spasticity of adductor muscles: R2 with knee flexion | −0.36 | ||||||||
Cho et al. [22] | 2018 | Spasticity of hamstring muscles: R1 (Muscle reaction) | b735 | Modified Tardieu Scale | −0.20 | Femoral Torsion | s750 | 3D CT | |
Spasticity of hamstring muscles: R2 (Full PROM) | 0.07 | ||||||||
Spasticity of adductor muscles: R1 with knee extension | 0.14 | ||||||||
Spasticity of adductor muscles: R2 with knee extension | 0.17 | ||||||||
Spasticity of adductor muscles: R1 with knee flexion | 0.07 | ||||||||
Spasticity of adductor muscles: R2 with knee flexion | 0.16 | ||||||||
Karabicak et al. [23] | 2016 | TCMS—Total | b755 | Functional Balance Evaluation | 0.28 | Physical Exam. | |||
TCMS—Static sitting balance | 0.07 | ||||||||
TCMS -Selective movement control | 0.26 | ||||||||
TCMS—Dynamic Reaching (dynamic trunk control) | 0.46 | ||||||||
PBS | 0.25 | ||||||||
Westberry et al. [24] | 2018 | Internal Hip Rotation | b710 | Clinical examination | 0.25 | EOS | |||
External Hip Rotation | b710 | −0.30 | |||||||
Hip Rotation Static Motion | b755 | 3DGA | 0.12 | EOS | |||||
Hip Rotation Dynamic Motion | b770 | 0.07 | |||||||
Kerr et al. [25] | 2003 | Max internal hip rotation throughout the gait cycle (maxIR) | 3DGA | 0.43 | Physical Exam. | ||||
Max internal hip rotation in the stance phase (maxIRst) | 0.47 | ||||||||
Mean hip rotation in gait (mean) | 0.44 | ||||||||
Mean hip rotation in stance (meanst) | 0.46 | ||||||||
Minimum internal (or maximum external) hip rotation in gait (minIR) | 0.46 | ||||||||
Minimum internal (or maximum external) hip rotation in stance (minIRst) | 0.46 | ||||||||
Desloovere et al. [26] | 2006 | Hip rotation angle at IC | 3DGA | 0.28 | Physical Exam. | ||||
Hip rotation angle at TO | 0.29 | ||||||||
Kim et al. [27] | 2017 | Hip Rotation | 3DGA | 0.30 | 3D CT | ||||
Aktas et al. [28] | 2000 | Hip Rotation | 3DGA | 0.01 | 3D CT | ||||
Lee et al. [10] | 2013 | Hip Rotation | 3DGA | 0.38 | 3DCT | ||||
Pelvic Rotation | −0.29 | ||||||||
Knee Rotation | 0.05 | ||||||||
Foot Progression Angle | 0.22 | ||||||||
Adjusted Foot Progression Angle | 0.35 | ||||||||
Presedo et al. [29] | 2017 | Foot Progr: Internal Group (n = 140 limbs) | 3DGA | 0.10 | Physical Exam. | ||||
Foot Progr: Internal Group, Plantar Contact (n = 60 limbs) | 0.04 | ||||||||
Foot Progr: Internal Group, Forefoot Contact (n = 80 limbs) | 0.18 | ||||||||
Foot Progr: External Group (n = 33 limbs) | 0.30 | ||||||||
Foot Progr: External Group, Plantar Contact (n = 15 limbs) | 0.48 | ||||||||
Foot Progr: External Group, Forefoot Contact (n = 18 limbs) | 0.32 | ||||||||
Desloovere et al. [26] | 2006 | Timing of Toe Off | 3DGA | 0.21 | Physical Exam. | ||||
Foot mean alignment ST | 0.29 | ||||||||
Hip timing of 0 moment | 0.20 | ||||||||
Cadence | NS | ||||||||
Velocity | NS | ||||||||
Step Length | NS | ||||||||
Kinetics parameters (Hip timing at 0 moment) | NS to 0.2 | ||||||||
Lee et al. [10] | 2013 | Pelvic Rotation | b770 | 3DGA | 0.06 | Tibial Torsion | s750 | 3D CT | |
Hip Rotation | 0.22 | ||||||||
Knee Rotation | −0.21 | ||||||||
Kim et al. [27] | 2017 | Knee Rotation | 3DGA | 0.62 | 3D CT | ||||
Knee Rotation | 0.72 | Physical Exam. Thigh Foot Angle | |||||||
Aktas et al. [28] | 2000 | Tibial rotation in Gait | 3DGA | 0.70 | 3D CT | ||||
Tibial rotation in Gait | 0.65 | Physical Exam. Transmalleolar Axis | |||||||
Tibial rotation in Gait | 0.61 | Physical Exam. Thigh Foot Angle | |||||||
Teixeira et al. [30] | 2018 | Foot progression at IC | 3DGA | 0.44 | Physical Exam. Transmalleolar Axis Left Side | ||||
Mean foot progression in St | 0.49 | ||||||||
Mean foot progression in single support | 0.5 | ||||||||
Max foot progression (Int Rot) | 0.46 | ||||||||
Min foot progression (Ext rot) | 0.51 | ||||||||
Mean foot progression in swing | 0.48 | ||||||||
Foot progression at IC | 3DGA | 0.49 | Physical Exam. Transmalleolar Axis Right Side | ||||||
Mean foot progression in St | 0.54 | ||||||||
Mean foot progression in single support | 0.54 | ||||||||
Max foot progression (Int Rot) | 0.52 | ||||||||
Min foot progression (Ext rot) | 0.56 | ||||||||
Mean foot progression in swing | 0.54 | ||||||||
Presedo et al. [29] | 2017 | Foot Progr: Internal Group (n = 140 limbs) | 3DGA | −0.24 | 3 D CT | ||||
Foot Progr: Internal Group, Plantar Contact (n = 60 limbs) | −0.33 | ||||||||
Foot Progr: Internal Group, Forefoot Contact (n = 80 limbs) | −0.29 | ||||||||
Foot Progr: External Group (n = 33 limbs) | −0.27 | ||||||||
Foot Progr: External Group, Plantar Contact (n = 15 limbs) | −0.46 | ||||||||
Foot Progr: External Group, Forefoot Contact (n = 18 limbs) | −0.15 | ||||||||
Lee et al. [10] | 2013 | Foot Progression Angle | 3DGA | −0.34 | 3D CT | ||||
Adjusted Foot Progression Angle | −0.33 | ||||||||
Absence of study | Activity | Unknown | |||||||
Absence of study | Participation | Unknown |
Surgical Intervention | Spatiotemporal Variable | Kinematic Variable | Bone Measurement | ||||||||||||||||
Trunk | Pelvis | Hip | |||||||||||||||||
Surgical Procedure | Study | Q-Score /100 | n | Group | Velocity | Step Length | Step Width | Cadence | Trunk.Mean.Obl | Pelv.Mean.Obl | Pelv.Mean.Tilt | Pelv.Mean.Rot | Hip.Flex.Ext.IC | Hip.Min.Flex.St | Hip.Mean.Rot.Int.Ext | Hip.Add.Abd | Values | Assessment Method | Bone Variable |
Femoral Derotation Osteotomy | Boyer et al., 2017 [34] | 60 | n = 140 | Preoperative | 0.38 ± 0.09 | 0.71 ± 0.14 | - | 0.55 ± 0.08 | −4.4 ± 5.5 | 1.4 ± 5.2 | - | - | - | - | 10.9 ± 13.1 | - | 50 ± 15 | PE (Ruwe) | FT |
n = 140 | Short Term (9–24 m post-op) | 0.37 ± 0.08 * | 0.65 ± 0.14 * | - | 0.55 ± 0.08 | −5.7 ± 7.5 | 0.8 ± 4.8 | - | - | - | - | −2.0 ± 12.5 | - | 15 ± 10 * | |||||
n = 29 | Preoperative | 0.39 ± 0.10 | 0.72 ± 0.14 | - | 0.55 ± 0.12 | −4.6 ± 2.5 | 1.9 ± 7.1 | - | - | - | - | 11.3 ± 12.8 | - | 50 ± 15 | |||||
n = 29 | Short Term (9–24 m post-op) | 0.37 ± 0.11 | 0.62 ± 0.08 | - | 0.58 ± 0.12 | −6.0 ± 6.2 | 1.1 ± 5.2 | - | - | - | - | −2.7 ± 11.7 * | - | 15 ± 10 * | |||||
n = 29 | Mid-Term (>36 m post op) | 0.34 ± 0.06 † ◊ | 0.60 ± 0.12 † | - | 0.54 ± 0.06 | −6.2 ± 6.8 | 2.9 ± 5.6 | - | - | - | - | 5.6 ± 19.8 ◊ | - | 20 ± 11 † ◊ | |||||
Cimolin et al., 2011 [33] | 59 | n = 12 | Preoperative (n = 12) | 0.54 ± 0.26 | 0.33 ± 0.12 | 0.17 ± 0.04 | - | - | 7.44 ± 2.24 | 7.92 ± 1.98 | 14.36 ± 4.52 | 43.18 ± 9.48 | 13.55 ± 8.66 | 15.83 ± 7.43 | 9.03 ± 3.24 | - | |||
n = 12 | Short Term (10 m post-op) | 0.84 ± 0.29 * | 0.35 ± 0.11 | 0.13 ± 0.04 * | - | - | 8.74 ± 2.96 | 8.68 ± 2.17 | 15.72 ± 7.77 | 40.66 ± 6.96 | 7.07 ± 7.93 * | 5.02 ± 6.72 * | 7.86 ± 3.26 * | - | |||||
Surgical Intervention | Kinematic Variable | Kinetic Variable | Bone Measurement | ||||||||||||||||
Knee | Ankle | Foot | |||||||||||||||||
Surgical Procedure | Study | Q-Score /100 | n | Group | K.Flex.Ext.IC | K.Min.Flex.St | K.Max.Flex.Sw | K.Amp.Flex.Ext | Ankle.Flex.Ext.IC | Ankle.Flex.St | Ankle.Min.St | Ankle.Flex.Ext | Foot.Mean.Progr.Adj | Hip.Ext.Max.Mm | Hip.Mean.Abd.Mm | Values | Assessment Method | Bone Variable | |
Femoral Derotation Osteotomy | Boyer et al., 2017 [34] | 60 | n = 140 | Preoperative | - | - | - | - | - | - | - | - | - | 0.031 ± 0.029 | 50 ± 15 | PE (Ruwe) | FT | ||
n = 140 | Short Term (9–24 m post-op) | - | - | - | - | - | - | - | - | - | 0.032 ± 0.031 | 15 ± 10 * | |||||||
n = 29 | Preoperative | - | - | - | - | - | - | - | - | - | 0.036 ± 0.035 | 50 ± 15 | |||||||
n = 29 | Short Term (9–24 m post-op) | - | - | - | - | - | - | - | - | - | 0.038 ± 0.038 | 15 ± 10 * | |||||||
n = 29 | Mid-Term (>36 m post op) | - | - | - | - | - | - | - | - | - | 0.040 ± 0.029 † | 20 ± 11 † ◊ | |||||||
Cimolin et al., 2011 [33] | 59 | n = 12 | Preoperative (n = 12) | 27.46 ± 7.12 | 14.15 ± 5.62 | 48.78 ± 6.27 | 32.07 ± 7.27 | 3.75 ± 6.95 | 11.98 ± 5.42 | −0.28 ± 5.49 | 12.26 ± 5.75 | −0.81 ± 6.01 | 0.67 ± 0.19 | - | |||||
n = 12 | Short Term (10 m post-op) | 24.87 ± 5.67 | 14.05 ± 6.70 | 50.56 ± 5.83 | 34.25 ± 6.93 | 2.95 ± 5.73 | 12.47 ± 6.33 | −1.44 ± 8.09 | 13.91 ± 5.57 | −9.39 ± 5.77 * | 1.11 ± 0.17 * | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bailly, R.; Pons, C.; Haes, A.-C.; Nguyen, L.; Thepaut, M.; Houx, L.; Lempereur, M.; Brochard, S. Bone Deformities through the Prism of the International Classification of Functioning, Disability and Health in Ambulant Children with Cerebral Palsy: A Systematic Review. Children 2024, 11, 257. https://doi.org/10.3390/children11020257
Bailly R, Pons C, Haes A-C, Nguyen L, Thepaut M, Houx L, Lempereur M, Brochard S. Bone Deformities through the Prism of the International Classification of Functioning, Disability and Health in Ambulant Children with Cerebral Palsy: A Systematic Review. Children. 2024; 11(2):257. https://doi.org/10.3390/children11020257
Chicago/Turabian StyleBailly, Rodolphe, Christelle Pons, Anne-Charlotte Haes, Lisa Nguyen, Matthias Thepaut, Laëtitia Houx, Mathieu Lempereur, and Sylvain Brochard. 2024. "Bone Deformities through the Prism of the International Classification of Functioning, Disability and Health in Ambulant Children with Cerebral Palsy: A Systematic Review" Children 11, no. 2: 257. https://doi.org/10.3390/children11020257