Children with Low Handgrip Strength: A Narrative Review of Possible Exercise Strategies to Improve Its Development
Abstract
:1. Introduction
2. Materials and Methods
3. Findings
3.1. Effect of Family- and School-Based Physical Activity Interventions on Handgrip Strength
3.2. Effect of Upper Body Resistance Training on Handgrip Strength
4. Conclusions and Future Tasks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Rantanen, T.; Guralnik, J.M.; Foley, D.; Masaki, K.; Leveille, S.; Curb, J.D.; White, L. Midlife hand grip strength as a predictor of old age disability. JAMA 1999, 281, 558–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giampaoli, S.; Ferrucci, L.; Cecchi, F.; Lo Noce, C.; Poce, A.; Dima, F.; Santaquilani, A.; Vescio, M.F.; Menotti, A. Hand-grip strength predicts incident disability in non-disabled older men. Age Ageing 1999, 28, 283–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Metter, E.J.; Talbot, L.A.; Schrager, M.; Conwit, R. Skeletal muscle strength as a predictor of all-cause mortality in healthy men. J. Gerontol. A Biol. Sci. Med. Sci. 2002, 57, B359–B365. [Google Scholar] [CrossRef] [Green Version]
- Leong, D.P.; Teo, K.K.; Rangarajan, S.; Lopez-Jaramillo, P.; Avezum, A., Jr.; Orlandini, A.; Seron, P.; Ahmed, S.H.; Rosengren, A.; Kelishadi, R.; et al. Prognostic value of grip strength: Findings from the prospective urban rural epidemiology (PURE) study. Lancet 2015, 386, 266–273. [Google Scholar] [CrossRef]
- Rioux, B.V.; Kuwornu, P.; Sharma, A.; Tremblay, M.S.; McGavock, J.M.; Senechal, M. Association between handgrip muscle strength and cardiometabolic z-score in children 6 to 19 years of age: Results from the Canadian Health Measures Survey. Metab. Syndr. Relat. Disord. 2017, 15, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Chan, D.C.C.; Lee, W.T.K.; Lo, D.H.S.; Leung, J.C.S.; Kwok, A.W.L.; Leung, P.C. Relationship between grip strength and bone mineral density in healthy Hong Kong adolescents. Osteoporos. Int. 2008, 19, 1485–1495. [Google Scholar] [CrossRef]
- Ortega, F.B.; Silventoinen, K.; Tynelius, P.; Rasmussen, F. Muscular strength in male adolescents and premature death: Cohort study of one million participants. BMJ 2012, 345, e7279. [Google Scholar] [CrossRef] [Green Version]
- Buckner, S.L.; Dankel, S.J.; Bell, Z.W.; Abe, T.; Loenneke, J.P. The association of handgrip strength and mortality: What does it tell us and what can we do with it? Rejuvenation Res. 2019, 22, 230–234. [Google Scholar] [CrossRef] [Green Version]
- Ozaki, H.; Abe, T.; Dankel, S.J.; Loenneke, J.P.; Natsume, T.; Deng, P.; Naito, H. The measurement of strength in children: Is the peak value truly maximal? Children 2020, 8, 9. [Google Scholar] [CrossRef]
- Abe, A.; Sanui, R.; Loenneke, J.P.; Abe, T. Is the peak value truly maximal when measuring strength in young children? An updated study. J. Trainol. 2022, 11, 17–21. [Google Scholar] [CrossRef]
- Trudeau, F.; Shephard, R.J.; Arsenault, F.; Laurencelle, L. Tracking of physical fitness from childhood to adulthood. Can. J. Appl. Physiol. 2003, 28, 257–271. [Google Scholar] [CrossRef] [PubMed]
- Fraser, B.J.; Schmidt, M.D.; Huynh, Q.L.; Dwyer, T.; Venn, A.J.; Magnussen, C.G. Tracking of muscular strength and power from youth to young adulthood: Longitudinal findings from the childhood determinants of adult Health Study. J. Sci. Med. Sport 2017, 20, 927–931. [Google Scholar] [CrossRef] [PubMed]
- Fraser, B.J.; Bizzard, L.; Buscot, M.J.; Schmidt, M.D.; Dwyer, T.; Venn, A.J.; Magnussen, C.G. Muscular strength across the life course: The tracking and trajectory patterns of muscular strength between childhood and mid-adulthood in an Australian cohort. J. Sci. Med. Sport 2021, 24, 696–701. [Google Scholar] [CrossRef] [PubMed]
- Kuh, D.; Bassey, J.; Hardy, R.; Sayer, A.A.; Wadsworth, M.; Cooper, C. Birth weight, childhood size, and muscle strength in adult life: Evidence from a Birth Cohort Study. Am. J. Epidemiol. 2002, 156, 627–633. [Google Scholar] [CrossRef] [Green Version]
- Inskip, H.M.; Godfrey, K.M.; Martin, H.J.; Simmonds, S.J.; Cooper, C.; Sayer, A.A.; Southampton Women’s Survey Study Group. Size at birth and its relation to muscle strength in young adult women. J. Intern. Med. 2007, 262, 368–374. [Google Scholar] [CrossRef] [Green Version]
- Jen, V.; Karagounis, L.G.; Jaddoe, V.W.V.; Franco, O.H.; Voortman, T. Dietary protein intake in school-age children and detailed measures of body composition: The Generation R Study. Int. J. Obes. (Lond) 2018, 42, 1715–1723. [Google Scholar] [CrossRef]
- Leppanen, M.H.; Henriksson, P.; Delisle Nystrom, C.; Henriksson, H.; Ortega, F.B.; Pomeroy, J.; Ruiz, J.R.; Cadenas-Sanchez, C.; Lof, M. Longitudinal physical activity, body composition, and physical fitness in preschoolers. Med. Sci. Sport. Exerc. 2017, 49, 2078–2085. [Google Scholar] [CrossRef] [Green Version]
- Weltman, A.; Janney, C.; Rians, C.B.; Strand, K.; Berg, B.; Tippitt, S.; Wise, J.; Cahill, B.R.; Katch, F.I. The effects of hydraulic resistance strength training in pre-pubertal males. Med. Sci. Sport. Exerc. 1986, 18, 629–638. [Google Scholar] [CrossRef]
- Fukunaga, T.; Funato, K.; Ikegawa, S. The effects of resistance training on muscle area and strength in prepubescent age. Ann. Physiol. Anthrop. 1992, 11, 357–364. [Google Scholar] [CrossRef]
- American College of Sports Medicine Position Stand. The recommended quantity and quality of exercise for developing and maintaining cardiorespiratory and muscular fitness, and flexibility in healthy adults. Med. Sci. Sport. Exerc. 1998, 30, 975–991. [Google Scholar]
- Stricker, P.R.; Faigenbaum, A.D.; McCambridge, T.M.; Council on Sports Medicine and Fitness. Resistance training for children and adolescents. Pediatrics 2020, 145, e20201011. [Google Scholar] [CrossRef] [PubMed]
- Piercy, K.L.; Troiano, R.P.; Ballard, R.M.; Carlson, S.A.; Fulton, J.E.; Galuska, D.A.; George, S.M.; Olson, R.D. The physical activity guidelines for Americans. JAMA 2018, 320, 2020–2028. [Google Scholar] [CrossRef] [PubMed]
- Labayen, I.; Medrano, M.; Arenaza, L.; Maiz, E.; Oses, M.; Martinez-Vizcaino, V.; Ruiz, J.R.; Ortega, F.B. Effects of exercise in addition to a family-based lifestyle intervention program on hepatic fat in children with overweight. Diabetes Care 2020, 43, 306–313. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, R.E.; Blanchard, C.M.; Quinlan, A.; Naylor, P.J.; Warburton, D.E. Family physical activity planning and child physical activity outcomes: A randomized trial. Am. J. Prev. Med. 2019, 57, 135–144. [Google Scholar] [CrossRef]
- Rexen, C.T.; Ersboll, A.K.; Moller, N.C.; Klakk, H.; Wedderkopp, N.; Andersen, L.B. Effects of extra school based physical education on overall physical fitness development—The CHAMPS study DK. Scand. J. Med. Sci. Sport. 2015, 25, 706–715. [Google Scholar]
- Bogataj, S.; Trajkovic, N.; Cadenas-Sanchez, C.; Sember, V. Effects of school-based exercise and nutrition intervention on body composition and physical fitness in overweight adolescent girls. Nutrients 2021, 13, 238. [Google Scholar] [CrossRef] [PubMed]
- Latorre-Roman, P.A.; Mora-Lopez, D.; Garcia-Pinillos, F. Effects of a physical activity programme in the school setting on physical fitness in preschool children. Child Care Health Dev. 2018, 44, 427–432. [Google Scholar] [CrossRef]
- Lofgren, B.; Daly, R.M.; Nilsson, J.A.; Dencker, M.; Karlsson, M.K. An increase in school-based physical education increases muscle strength in children. Med. Sci. Sport. Exerc. 2013, 45, 997–1003. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Vizcaino, V.; Pozuelo-Carrascosa, D.P.; Garcia-Prieto, J.C.; Cavero-Redondo, I.; Solera-Martinez, M.; Garrido-Miguel, M.; Diez-Fernandez, A.; Ruiz-Hermosa, A.; Sanchez-Lopez, M. Effectiveness of a school-based physical activity intervention on adiposity, fitness and blood pressure: MOVI-KIDS study. Br. J. Sport. Med. 2020, 54, 279–285. [Google Scholar] [CrossRef]
- Stenevi-Lundgren, S.; Daly, R.M.; Karlsson, M.K. A school-based exercise intervention program increases muscle strength in prepubertal boys. Int. J. Pediatr. 2010, 2010, 307063. [Google Scholar] [CrossRef] [Green Version]
- Villa-Gonzalez, E.; Ruiz, J.R.; Mendoza, J.A.; Chillon, P. Effects of a school-based intervention on active commuting to school and health-related fitness. BMC Public Health 2017, 17, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faigenbaum, A.D.; Milliken, L.A.; Loud, R.L.; Burak, B.T.; Doherty, C.L.; Westcott, W.L. Comparison of 1 and 2 days per week of strength training in children. Res. Q. Exerc. Sport 2002, 73, 416–424. [Google Scholar] [CrossRef] [PubMed]
- Buckner, S.L.; Dankel, S.J.; Mouser, J.G.; Mattocks, K.T.; Jessee, M.B.; Loenneke, J.P. Chasing the top quartile of cross-sectional data: Is it possible with resistance training? Med. Hypotheses 2017, 108, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Labott, B.K.; Bucht, H.; Morat, M.; Morat, T.; Donath, L. Effects of exercise training on handgrip strength in older adults: A meta-analytical review. Gerontology 2019, 65, 686–698. [Google Scholar] [CrossRef]
- Yaginuma, Y.; Abe, T.; Thiebaud, R.S.; Kitamura, T.; Kawanishi, M.; Fukunaga, T. Can handgrip strength improve following body mass-based lower body exercise? Biores. Open Access 2017, 6, 19–27. [Google Scholar] [CrossRef] [Green Version]
- Siegel, J.A.; Camaione, D.N.; Manfredi, T.G. The effects of upper body resistance training on prepubescent children. Pediatr. Exerc. Sci. 1989, 1, 145–154. [Google Scholar] [CrossRef]
- Karatrantou, K.; Katsoula, C.; Tsiakaras, N.; Ioakimidis, P.; Gerodimos, V. Strength training induces greater increase in handgrip strength than wrestling training per se. Int. J. Sport. Med. 2020, 41, 533–538. [Google Scholar] [CrossRef]
- Macak, D.; Popovic, B.; Cadenas-Sanchez, C.; Madic, D.M.; Trajkovic, N. The effects of daily physical activity intervention on physical fitness in preschool children. J. Sport. Sci. 2022, 40, 146–155. [Google Scholar] [CrossRef]
- Wick, K.; Kriemler, S.; Granacher, U. Effects of a strength-dominated exercise program on physical fitness and cognitive performance in preschool children. J. Strength Cond. Res. 2021, 35, 983–990. [Google Scholar] [CrossRef]
- Mendonca, F.R.; de Faria, W.F.; da Silva, J.M.; Massuto, R.B.; dos Santos, G.C.; Correa, R.C.; dos Santos, C.F.; Sasaki, J.E.; Neto, A.S. Effects of aerobic exercise combined with resistance training on health-related physical fitness in adolescents: A randomized controlled trial. J. Exerc. Sci. Fit. 2022, 20, 182–189. [Google Scholar] [CrossRef]
- Ben Othman, A.; Behm, D.G.; Chaouachi, A. Evidence of homologous and heterologous effects after unilateral leg training in youth. Appl. Physiol. Nutr. Metab. 2018, 43, 282–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magdi, H.R.; Maroto-Izquierdo, S.; de Paz, J.A. Ipsilateral lower-to-upper limb cross-transfer effect on muscle strength, mechanical power, and lean tissue mass after accentuated eccentric loading. Medicina 2021, 57, 445. [Google Scholar] [CrossRef]
- Willems, S.M.; Wright, D.J.; Day, F.R.; Trajanoska, K.; Joshi, P.K.; Morris, J.A.; Matteini, A.M.; Garton, F.C.; Grarup, N.; Oskolkov, N.; et al. Large-scale GWAS identifies multiple loci for hand grip strength providing biological insights into muscular strength. Nat. Commun. 2017, 8, 16015. [Google Scholar] [CrossRef] [Green Version]
- Rantanen, T.; Volpato, S.; Ferrucci, L.; Heikkinen, E.; Fried, L.P.; Guralnik, J.M. Handgrip strength and cause-specific and total mortality in older disabled women: Exploring the mechanism. J. Am. Geriatr. Soc. 2003, 51, 636–641. [Google Scholar] [CrossRef] [PubMed]
- McGrath, R.P.; Vincent, B.M.; Lee, I.M.; Kraemer, W.J.; Peterson, M.K. Handgrip strength, function, and mortality in older adults: A time-varying approach. Med. Sci. Sport. Exerc. 2018, 50, 2259–2266. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abe, T.; Thiebaud, R.S.; Ozaki, H.; Yamasaki, S.; Loenneke, J.P. Children with Low Handgrip Strength: A Narrative Review of Possible Exercise Strategies to Improve Its Development. Children 2022, 9, 1616. https://doi.org/10.3390/children9111616
Abe T, Thiebaud RS, Ozaki H, Yamasaki S, Loenneke JP. Children with Low Handgrip Strength: A Narrative Review of Possible Exercise Strategies to Improve Its Development. Children. 2022; 9(11):1616. https://doi.org/10.3390/children9111616
Chicago/Turabian StyleAbe, Takashi, Robert S. Thiebaud, Hayao Ozaki, Sakiya Yamasaki, and Jeremy P. Loenneke. 2022. "Children with Low Handgrip Strength: A Narrative Review of Possible Exercise Strategies to Improve Its Development" Children 9, no. 11: 1616. https://doi.org/10.3390/children9111616