Physical Fitness Variations between Those Playing More and Those Playing Less Time in the Matches: A Case-Control Study in Youth Soccer Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study design
2.2. Setting
2.3. Participants
2.4. Data Collection
2.5. Anthropometry
2.6. Vertical Jumps
2.7. Horizontal Jumps
2.8. Yo-Yo Intermittent Recovery Level 2 (YYIRT)
2.9. Total Score of Athleticism (TSA)
2.10. Independent Variables
2.11. Statistical Procedures
3. Results
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Sarmento, H.; Marques, A.; Field, A.; Martins, J.; Gouveia, É.; Prieto Mondragón, L.; Ordoñez Saavedra, N.; Rodríguez, D.; Clemente, F. Genetic influence on football performance—A systematic review. Hum. Mov. 2020, 21, 1–17. [Google Scholar] [CrossRef]
- Machnacz, W.; Dudkowski, A.; Rokita, A. Dependecies Between the Methods Used in Identifying Player Talent in the Game of Handball. Hum. Mov. 2013, 14, 41–47. [Google Scholar] [CrossRef]
- Vaeyens, R.; Malina, R.M.; Janssens, M.; Van Renterghem, B.; Bourgois, J.; Vrijens, J.; Philippaerts, R.M. A multidisciplinary selection model for youth soccer: The Ghent Youth Soccer Project. Br. J. Sports Med. 2006, 40, 928–934, discussion 934. [Google Scholar] [CrossRef] [Green Version]
- Keller, B.S.; Raynor, A.J.; Iredale, F.; Bruce, L. Tactical skill in Australian youth soccer: Does it discriminate age-match skill levels? Int. J. Sports Sci. Coach. 2018, 13, 1057–1063. [Google Scholar] [CrossRef]
- Dodd, K.D.; Newans, T.J. Talent identification for soccer: Physiological aspects. J. Sci. Med. Sport 2018, 21, 1073–1078. [Google Scholar] [CrossRef]
- Burgess, D.J.; Naughton, G.A. Talent Development in Adolescent Team Sports: A Review. Int. J. Sports Physiol. Perform. 2010, 5, 103–116. [Google Scholar] [CrossRef] [Green Version]
- Vaeyens, R.; Lenoir, M.; Williams, A.M.; Philippaerts, R.M. Talent identification and development programmes in sport. Sport. Med. 2008, 38, 703–714. [Google Scholar] [CrossRef]
- Williams, A.M.; Reilly, T. Talent identification and development in soccer. J. Sports Sci. 2000, 18, 657–667. [Google Scholar] [CrossRef]
- Kelly, A.L.; Williams, C.A. Physical Characteristics and the Talent Identification and Development Processes in Male Youth Soccer: A Narrative Review. Strength Cond. J. 2020, 42, 15–34. [Google Scholar] [CrossRef]
- Unnithan, V.; White, J.; Georgiou, A.; Iga, J.; Drust, B. Talent identification in youth soccer. J. Sports Sci. 2012, 30, 1719–1726. [Google Scholar] [CrossRef]
- Helsen, W.; Van Winckel, J.; Williams, A. The relative age effect in youth soccer across Europe. J. Sports Sci. 2005, 23, 629–636. [Google Scholar] [CrossRef] [Green Version]
- Sarmento, H.; Anguera, M.T.; Pereira, A.; Araújo, D. Talent Identification and Development in Male Football: A Systematic Review. Sport. Med. 2018, 48, 907–931. [Google Scholar] [CrossRef]
- Buekers, M.; Borry, P.; Rowe, P. Talent in sports. Some reflections about the search for future champions. Mov. Sport. Sci.—Sci. Mot. 2015, 12, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Razali, N.; Mustapha, A.; Yatim, F.A.; Ab Aziz, R. Predicting Player Position for Talent Identification in Association Football. IOP Conf. Ser. Mater. Sci. Eng. 2017, 226, 012087. [Google Scholar] [CrossRef] [Green Version]
- Toohey, K.; MacMahon, C.; Weissensteiner, J.; Thomson, A.; Auld, C.; Beaton, A.; Burke, M.; Woolcock, G. Using transdisciplinary research to examine talent identification and development in sport. Sport Soc. 2018, 21, 356–375. [Google Scholar] [CrossRef]
- Bennett, K.J.M.; Novak, A.R.; Pluss, M.A.; Coutts, A.J.; Fransen, J. Assessing the validity of a video-based decision-making assessment for talent identification in youth soccer. J. Sci. Med. Sport 2019, 22, 729–734. [Google Scholar] [CrossRef]
- Arede, J.; Esteves, P.; Ferreira, A.P.; Sampaio, J.; Leite, N. Jump higher, run faster: Effects of diversified sport participation on talent identification and selection in youth basketball. J. Sports Sci. 2019, 37, 2220–2227. [Google Scholar] [CrossRef]
- Jiménez, I.P.; Pain, M.T.G. Relative age effect in Spanish association football: Its extent and implications for wasted potential. J. Sports Sci. 2008, 26, 995–1003. [Google Scholar] [CrossRef] [Green Version]
- Figueiredo, A.J.; Gonçalves, C.E.; Coelho E Silva, M.J.; Malina, R.M. Youth soccer players, 11–14 years: Maturity, size, function, skill and goal orientation. Ann. Hum. Biol. 2009, 36, 60–73. [Google Scholar] [CrossRef] [Green Version]
- Malina, R.M.; Eisenmann, J.C.; Cumming, S.P.; Ribeiro, B.; Aroso, J. Maturity-associated variation in the growth and functional capacities of youth football (soccer) players 13–15 years. Eur. J. Appl. Physiol. 2004, 91, 555–562. [Google Scholar] [CrossRef]
- Waldron, M.; Worsfold, P. Differences in the game specific skills of elite and sub-elite youth football players: Implications for talent identification. Int. J. Perform. Anal. Sport 2010, 10, 9–24. [Google Scholar] [CrossRef]
- Reilly, T.; Williams, A.M.; Nevill, A.; Franks, A. A multidisciplinary approach to talent identification in soccer. J. Sports Sci. 2000, 18, 695–702. [Google Scholar] [CrossRef] [PubMed]
- Fidelix, Y.L.; Berria, J.; Ferrari, E.P.; Ortiz, J.G.; Cetolin, T.; Petroski, E.L. Somatotype of Competitive Youth Soccer Players from Brazil. J. Hum. Kinet. 2014, 42, 259–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchheit, M.; Mendez-Villanueva, A. Reliability and stability of anthropometric and performance measures in highly-trained young soccer players: Effect of age and maturation. J. Sports Sci. 2013, 31, 1332–1343. [Google Scholar] [CrossRef]
- Reilly, T.; Bangsbo, J.; Franks, A. Anthropometric and physiological predispositions for elite soccer. J. Sports Sci. 2000, 18, 669–683. [Google Scholar] [CrossRef] [PubMed]
- Stolen, T.; Chamari, K.; Castagna, C. Physiology of soccer: An update. Sport. Med. 2005, 35, 501–536. [Google Scholar] [CrossRef]
- Iaia, F.M.; Ermanno, R.; Bangsbo, J.; Rampinini, E.; Bangsbo, J. High-Intensity Training in Football. Int. J. Sports Physiol. Perform. 2009, 4, 291–306. [Google Scholar] [CrossRef] [Green Version]
- Mohr, M.; Krustrup, P.; Bangsbo, J. Fatigue in soccer: A brief review. J. Sports Sci. 2005, 23, 593–599. [Google Scholar] [CrossRef]
- Dolci, F.; Hart, N.H.; Kilding, A.E.; Chivers, P.; Piggott, B.; Spiteri, T. Physical and Energetic Demand of Soccer: A Brief Review. Strength Cond. J. 2020, 42, 70–77. [Google Scholar] [CrossRef]
- Gil, S.; Ruiz, F.; Irazusta, A.; Gil, J.; Irazusta, J. Selection of young soccer players in terms of anthropometric and physiological factors. J. Sports Med. Phys. Fitness 2007, 47, 25–32. [Google Scholar]
- Emmonds, S.; Till, K.; Jones, B.; Mellis, M.; Pears, M. Anthropometric, speed and endurance characteristics of English academy soccer players: Do they influence obtaining a professional contract at 18 years of age? Int. J. Sports Sci. Coach. 2016, 11, 212–218. [Google Scholar] [CrossRef]
- Malina, R.M.; Ribeiro, B.; Aroso, J.; Cumming, S.P. Characteristics of youth soccer players aged 13–15 years classified by skill level. Br. J. Sports Med. 2007, 41, 290–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deprez, D.N.; Fransen, J.; Lenoir, M.; Philippaerts, R.M.; Vaeyens, R. A Retrospective Study on Anthropometrical, Physical Fitness, and Motor Coordination Characteristics That Influence Dropout, Contract Status, and First-Team Playing Time in High-Level Soccer Players Aged Eight to Eighteen Years. J. Strength Cond. Res. 2015, 29, 1692–1704. [Google Scholar] [CrossRef] [PubMed]
- Gonaus, C.; Müller, E. Using physiological data to predict future career progression in 14- to 17-year-old Austrian soccer academy players. J. Sports Sci. 2012, 30, 1673–1682. [Google Scholar] [CrossRef] [PubMed]
- le Gall, F.; Carling, C.; Williams, M.; Reilly, T. Anthropometric and fitness characteristics of international, professional and amateur male graduate soccer players from an elite youth academy. J. Sci. Med. Sport 2010, 13, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, L.; Gomes, L.; Silva, D.; Gantois, P.; Fialho, J.; Fortes, L.; Fonseca, F. The relative age effect in Brazilian elite soccer depending on age category, playing position, and competitive level. Hum. Mov. 2022, 23, 112–120. [Google Scholar] [CrossRef]
- Gravina, L.; Gil, S.M.; Ruiz, F.; Zubero, J.; Gil, J.; Irazusta, J. Anthropometric and Physiological Differences Between First Team and Reserve Soccer Players Aged 10–14 Years at the Beginning and End of the Season. J. Strength Cond. Res. 2008, 22, 1308–1314. [Google Scholar] [CrossRef] [PubMed]
- Goto, H.; Morris, J.G.; Nevill, M.E. Influence of Biological Maturity on the Match Performance of 8- to 16-Year-Old, Elite, Male, Youth Soccer Players. J. Strength Cond. Res. 2019, 33, 3078–3084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clemente, F.M.; Clark, C.C.T.; Leão, C.; Silva, A.F.; Lima, R.; Sarmento, H.; Figueiredo, A.J.; Rosemann, T.; Knechtle, B. Exploring Relationships Between Anthropometry, Body Composition, Maturation, and Selection for Competition: A Study in Youth Soccer Players. Front. Physiol. 2021, 12, 245. [Google Scholar] [CrossRef]
- Reilly, T.; George, K.; Marfell-Jones, M.; Scott, M.; Sutton, L.; Wallace, J.A. How well do skinfold equations predict percent body fat in elite soccer players? Int. J. Sports Med. 2009, 30, 607–613. [Google Scholar] [CrossRef]
- Lee, R.C.; Wang, Z.; Heo, M.; Ross, R.; Janssen, I.; Heymsfield, S.B. Total-body skeletal muscle mass: Development and cross-validation of anthropometric prediction models. Am. J. Clin. Nutr. 2000, 72, 796–803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stewart, A.; Marfell-Jones, M.; Inernational Society for Advancement of Kinanthopometry. International Standards for Anthropometric Assessment; The International Society for the Advancement of Kinanthropometry: Underdale, SA, Australia, 2011; ISBN 0620362073. [Google Scholar]
- Ferreira, A.; Enes, C.; Leao, C.; Goncalves, L.; Clemente, F.M.; Lima, R.; Bezerra, P.; Camoes, M. Relationship between power condition, agility, and speed performance among young roller hockey elite players. Hum. Mov. 2019, 20, 24–30. [Google Scholar] [CrossRef]
- Markovic, G.; Dizdar, D.; Jukic, I.; Cardinale, M. Reliability and Factorial Validity of Squat and Countermovement Jump Tests. J. Strength Cond. Res. 2004, 18, 551–555. [Google Scholar] [PubMed]
- Blas, X.; Padullés, J.; Amo, J.; Balic, M. Creation and Validation of Chronojump-Boscosystem: A Free Tool to Measure Vertical Jumps. Int. J. Sport. Sci. 2007, 30, 334–356. [Google Scholar]
- Leão, C.; Silva, A.F.; Badicu, G.; Clemente, F.M.; Carvutto, R.; Greco, G.; Cataldi, S.; Fischetti, F. Body Composition Interactions with Physical Fitness: A Cross-Sectional Study in Youth Soccer Players. Int. J. Environ. Res. Public Health 2022, 19, 3598. [Google Scholar] [CrossRef]
- Lockie, R.G.; Jalilvand, F.; Moreno, M.R.; Orjalo, A.J.; Risso, F.G.; Nimphius, S. Yo-Yo Intermittent Recovery Test Level 2 and Its Relationship With Other Typical Soccer Field Tests in Female Collegiate Soccer Players. J. Strength Cond. Res. 2017, 31, 2667–2677. [Google Scholar] [CrossRef]
- Schmitz, B.; Pfeifer, C.; Kreitz, K.; Borowski, M.; Faldum, A.; Brand, S.M. The Yo-Yo Intermittent Tests: A Systematic Review and Structured Compendium of Test Results. Front. Physiol. 2018, 9, 870. [Google Scholar] [CrossRef] [Green Version]
- Turner, A.N.; Jones, B.; Stewart, P.; Bishop, C.; Parmar, N.; Chavda, S.; Read, P. Total Score of Athleticism. Strength Cond. J. 2019, 41, 91–101. [Google Scholar] [CrossRef]
- Batterham, A.M.; Hopkins, W.G. Making Meaningful Inferences about Magnitudes. Int. J. Sports Physiol. Perform. 2006, 1, 50–57. [Google Scholar] [CrossRef] [Green Version]
- Bangsbo, J.; Iaia, F.M.; Krustrup, P. The Yo-Yo Intermittent Recovery Test. Sport. Med. 2008, 38, 37–51. [Google Scholar] [CrossRef]
- Di Salvo, V.; Baron, R.; Tschan, H.; Calderon Montero, F.J.; Bachl, N.; Pigozzi, F. Performance characteristics according to playing position in elite soccer. Int. J. Sport. Med. 2007, 28, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Nobari, H.; Alves, A.R.; Clemente, F.M.; Pérez-Gómez, J.; Clark, C.C.T.; Granacher, U.; Zouhal, H. Associations Between Variations in Accumulated Workload and Physiological Variables in Young Male Soccer Players Over the Course of a Season. Front. Physiol. 2021, 12, 638180. [Google Scholar] [CrossRef]
- Lago-Peñas, C.; Rey, E.; Casáis, L.; Gómez-López, M. Relationship Between Performance Characteristics and the Selection Process in Youth Soccer Players. J. Hum. Kinet. 2014, 40, 189–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amonette, W.E.; Brown, D.; Dupler, T.L.; Xu, J.; Tufano, J.J.; De Witt, J.K. Physical Determinants of Interval Sprint Times in Youth Soccer Players. J. Hum. Kinet. 2014, 40, 113–120. [Google Scholar] [CrossRef] [Green Version]
- Turner, A.N. Total Score of Athleticism: A strategy for assessing an athlete’s athleticism. Professional Strength Cond. 2014, 33, 13–17. [Google Scholar]
- Vandendriessche, J.B.; Vaeyens, R.; Vandorpe, B.; Lenoir, M.; Lefevre, J.; Philippaerts, R.M. Biological maturation, morphology, fitness, and motor coordination as part of a selection strategy in the search for international youth soccer players (age 15–16 years). J. Sports Sci. 2012, 30, 1695–1703. [Google Scholar] [CrossRef] [PubMed]
- Nobari, H.; Vahabidelshad, R.; Pérez-Gómez, J.; Ardigò, L.P. Variations of Training Workload in Micro- and Meso-Cycles Based on Position in Elite Young Soccer Players: A Competition Season Study. Front. Physiol. 2021, 12, 529. [Google Scholar] [CrossRef]
- Castillo, D.; Arcos, A.L.; Martínez-Santos, R. Aerobic endurance performance does not determine the professional career of elite youth soccer players. J. Sports Med. Phys. Fit. 2018, 58, 392–398. [Google Scholar] [CrossRef]
- Nobari, H.; Oliveira, R.; Clemente, F.M.; Jorge, P.; Pardos-mainer, E.; Paolo, L. Somatotype, Accumulated Workload, and Fitness Parameters in Elite Youth Players: Associations with Playing Position. Children 2021, 8, 375. [Google Scholar] [CrossRef]
All Athletes (n = 87) | Athletes Included in Analysis (n = 66) | |||||
---|---|---|---|---|---|---|
U-16 (n = 29) | U-17 (n = 28) | U-19 (n = 30) | U-16 (n = 21) | U-17 (n = 19) | U-19 (n = 26) | |
Age (years) | 15.4 ± 0.3 | 16.3 ± 0.2 | 17.8 ± 0.6 | 15.4 ± 0.4 | 16.3 ± 0.3 | 17.8 ± 0.7 |
Height (m) | 1.7 ± 0.1 | 1.8 ± 0.1 | 1.8 ± 0.1 | 1.7 ± 0.1 | 1.7 ± 0.1 | 1.8 ± 0.1 |
Body mass (kg) | 61.6 ± 7.8 | 67.7 ± 7.4 | 71.1 ± 6.8 | 61.6 ± 8.0 | 65.8 ± 5.6 | 71.6 ± 6.3 |
BMI (kg.m2) | 21.1 ± 2.0 | 22.1 ± 0.9 | 22.6 ± 1.4 | 21.3 ± 1.9 | 21.6 ± 1.7 | 22.5 ± 1.4 |
Skinfold Sum (mm) | 71.0 ± 22.1 | 73.0 ± 22.7 | 67.7 ± 12.3 | 75.8 ± 23.8 | 72.2 ± 24.2 | 67.7 ± 13.0 |
Lower Time of Play | Higher Time of Play | % Difference (Higher–Lower) | t | p | Cohen’s d (Higher–Lower) | |
---|---|---|---|---|---|---|
Body fat (%) | 11.0 ± 1.8 | 10.8 ± 1.7 | −1.8 | 0.458 | 0.649 | 0.113 |
CMJ (cm) | 35.5 ± 6.3 | 36.2 ± 5.0 | 2.0 | −0.506 | 0.615 | −0.125 |
TH bilateral (m) | 6.9 ± 0.7 | 6.9 ± 0.6 | 0.0 | −0.105 | 0.917 | −0.026 |
TH right leg (m) | 6.2 ± 0.6 | 6.4 ± 0.5 | 3.2 | −1.127 | 0.264 | −0.277 |
TH left leg (m) | 6.3 ± 0.6 | 6.3 ± 0.5 | 0.0 | −0.225 | 0.823 | −0.055 |
YYIRT (m) | 341.3 ± 127.3 | 437.4 ± 159.4 | 28.2 | −2.696 | 0.009 * | −0.664 |
Body fat z-score | 0.0 ± 1.1 | −0.2 ± 1.0 | −700 | 0.775 | 0.441 | 0.191 |
CMJ z-score | −0.1 ± 1.2 | 0.2 ± 0.9 | −300 | −0.963 | 0.339 | −0.237 |
TH bilateral z-score | 0.0 ± 1.1 | 0.1 ± 0.9 | 100 | −0.110 | 0.913 | −0.027 |
TH right leg z-score | −0.3 ± 1.1 | 0.1 ± 0.8 | −133.3 | −1.633 | 0.107 | −0.402 |
TH left leg z-score | −0.2 ± 1.0 | 0.0 ± 1.0 | −100.0 | −0.512 | 0.611 | −0.126 |
YYIRT z-score | −0.4 ± 0.9 | 0.4 ± 0.9 | −200.0 | −3.681 | <0.001 ** | −0.907 |
TSA (A.U.) | −0.8 ± 3.9 | 0.7 ± 3.9 | −187.5 | −1.844 | 0.070 | −0.454 |
BF | CMJ | TH Bilateral | TH Right Leg | TH Left Leg | YYIRT | TSA | |
---|---|---|---|---|---|---|---|
Under-16 | 0.035 [−0.403;0.460] | 0.176 [−0.277;0.565] | −0.076 [−0.492;0.368] | 0.158 [−0.293;0.552] | 0.234 [−0.219;0.605] | 0.359 [−0.086;0.684] | 0.202 [−0.251;0.583] |
Under-17 | −0.332 [−0.683;0.144] | 0.352 [−0.122;0.695] | 0.386 [−0.083;0.715] | 0.219 [−0.262;0.612] | 0.041 [−0.421;0.486] | 0.402 [−0.064;0.724] | 0.473 * [0.024;0.723] |
Under-19 | −0.141 [−0.501;0.261] | −0.017 [−0.401;0.373] | −0.235 [−0.570;0.168] | 0.048 [0.346;0.428] | −0.104 [−0.473;0.295] | 0.423 * [0.042;0.696] | 0.021 [−0.370;0.405] |
Overall | −0.161 [−0.388;0.084] | 0.174 [−0.071;0.399] | 0.095 [−0.151;0.329] | 0.184 [−0.061;0.408] | 0.071 [−0.174;0.307] | 0.401 ** [0.176;0.586] | 0.168 [−0.078;0.394] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, A.F.; Clemente, F.M.; Leão, C.; Oliveira, R.; Badicu, G.; Nobari, H.; Poli, L.; Carvutto, R.; Greco, G.; Fischetti, F.; et al. Physical Fitness Variations between Those Playing More and Those Playing Less Time in the Matches: A Case-Control Study in Youth Soccer Players. Children 2022, 9, 1786. https://doi.org/10.3390/children9111786
Silva AF, Clemente FM, Leão C, Oliveira R, Badicu G, Nobari H, Poli L, Carvutto R, Greco G, Fischetti F, et al. Physical Fitness Variations between Those Playing More and Those Playing Less Time in the Matches: A Case-Control Study in Youth Soccer Players. Children. 2022; 9(11):1786. https://doi.org/10.3390/children9111786
Chicago/Turabian StyleSilva, Ana Filipa, Filipe Manuel Clemente, César Leão, Rafael Oliveira, Georgian Badicu, Hadi Nobari, Luca Poli, Roberto Carvutto, Gianpiero Greco, Francesco Fischetti, and et al. 2022. "Physical Fitness Variations between Those Playing More and Those Playing Less Time in the Matches: A Case-Control Study in Youth Soccer Players" Children 9, no. 11: 1786. https://doi.org/10.3390/children9111786