A Comprehensive Optimization of Ultrasound-Assisted Extraction for Lycopene Recovery from Tomato Waste and Encapsulation by Spray Drying
Abstract
:1. Introduction
1.1. Lycopene
1.2. Ultrasound-Assisted Extraction
1.3. Spray Drying
2. Materials and Methods
2.1. Chemicals and Sample Preparation
2.2. Characterization of Tomato Waste
2.3. Ultrasound-Assisted Extraction
2.3.1. Experimental Design
2.3.2. Total Carotenoid Yield
2.3.3. Lycopene Yield
2.3.4. Antiradical Power
2.3.5. Numerical Optimization
2.4. Extract Stabilization by Spray Drying
Product Recovery and Characterization
3. Results and Discussion
3.1. Characterization of Tomato Waste
3.2. Ultrasound-Assisted Extraction Modelling by RSM
3.3. Process Optimization
3.4. Extract Stabilization by Spray Drying
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lenucci, M.S.; De Caroli, M.; Marrese, P.P.; Iurlaro, A.; Rescio, L.; Böhm, V.; Dalessandro, G.; Piro, G. Enzyme-aided extraction of lycopene from high-pigment tomato cultivars by supercritical carbon dioxide. Food Chem. 2015, 170, 193–202. [Google Scholar] [CrossRef]
- Szabo, K.; Emőke Teleky, B.; Ranga, F.; Simon, E.; Lelia Pop, O.; Babalau-Fuss, V.; Kapsalis, N.; Vodnar, D.C. Bioaccessibility of microencapsulated carotenoids, recovered from tomato processing industrial by-products, using in vitro digestion model. LWT 2021, 152, 112285. [Google Scholar] [CrossRef]
- Roldán-Gutiérrez, J.M.; Dolores Luque de Castro, M. Lycopene: The need for better methods for characterization and determination. TrAC—Trends Anal. Chem. 2007, 26, 163–170. [Google Scholar] [CrossRef]
- Grassino, A.N.; Ostojić, J.; Miletić, V.; Djaković, S.; Bosiljkov, T.; Zorić, Z.; Ježek, D.; Rimac Brnčić, S.; Brnčić, M. Application of high hydrostatic pressure and ultrasound-assisted extractions as a novel approach for pectin and polyphenols recovery from tomato peel waste. Innov. Food Sci. Emerg. Technol. 2020, 64, 102424. [Google Scholar] [CrossRef]
- Lianfu, Z.; Zelong, L. Optimization and comparison of ultrasound/microwave assisted extraction (UMAE) and ultrasonic assisted extraction (UAE) of lycopene from tomatoes. Ultrason. Sonochem. 2008, 15, 731–737. [Google Scholar] [CrossRef] [PubMed]
- Luengo, E.; Condón-Abanto, S.; Condón, S.; Álvarez, I.; Raso, J. Improving the extraction of carotenoids from tomato waste by application of ultrasound under pressure. Sep. Purif. Technol. 2014, 136, 130–136. [Google Scholar] [CrossRef]
- Eh, A.L.S.; Teoh, S.G. Novel modified ultrasonication technique for the extraction of lycopene from tomatoes. Ultrason. Sonochem. 2012, 19, 151–159. [Google Scholar] [CrossRef]
- Rahimi, S.; Mikani, M. Lycopene green ultrasound-assisted extraction using edible oil accompany with response surface methodology (RSM) optimization performance: Application in tomato processing wastes. Microchem. J. 2019, 146, 1033–1042. [Google Scholar] [CrossRef]
- Manzoor, M.F.; Zeng, X.; Rahaman, A.; Siddeeg, A.; Aadil, R.M.; Ahmed, Z.; Li, J.; Niu, D. Combined impact of pulsed electric field and ultrasound on bioactive compounds and FT-IR analysis of almond extract. J. Food Sci. Technol. 2019, 56, 2355–2364. [Google Scholar] [CrossRef]
- Cravotto, G.; Cintas, P. Power ultrasound in organic synthesis: Moving cavitational chemistry from academia to innovative and large-scale applications. Chem. Soc. Rev. 2006, 35, 180–196. [Google Scholar] [CrossRef]
- Zia, S.; Khan, M.R.; Shabbir, M.A.; Aslam, A.; Kashif, M.; Khan, I.; Nadeem, M.; Ahmed, A.; Din, A.; Aadil, R.M. An inclusive overview of advanced thermal and nonthermal extraction techniques for bioactive compounds in food and food-related matrices. Food Rev. Int. 2020. [Google Scholar] [CrossRef]
- Kumar, K.; Srivastav, S.; Sharanagat, V.S. Ultrasound assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-products: A review. Ultrason. Sonochem. 2021, 70, 105325. [Google Scholar] [CrossRef] [PubMed]
- Chemat, F.; Rombaut, N.; Meullemiestre, A.; Turk, M.; Perino, S.; Abert-vian, M. Review of green food processing techniques. Preservation, transformation, and extraction. Innov. Food Sci. Emerg. Technol. 2017, 41, 357–377. [Google Scholar] [CrossRef]
- Chemat, F.; Vian, M.A.; Cravotto, G. Green extraction of natural products: Concept and principles. Int. J. Mol. Sci. 2012, 13, 8615–8627. [Google Scholar] [CrossRef] [Green Version]
- Tekin, K.; Hao, N.; Karagoz, S.; Ragauskas, A.J. Ethanol: A promising green solvent for the deconstruction of lignocellulose. ChemSusChem 2018, 11, 3559–3575. [Google Scholar] [CrossRef] [PubMed]
- Corrêa-Filho, L.C.; Lourenço, S.C.; Duarte, D.F.; Moldão-Martins, M.; Alves, V.D. Microencapsulation of tomato (Solanum lycopersicum L.) pomace ethanolic extract by spray drying: Optimization of process conditions. Appl. Sci. 2019, 9, 612. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Zeng, X.; Fu, N.; Tang, X.; Sun, Y.; Lin, L. Maltodextrin: A consummate carrier for spray-drying of xylooligosaccharides. Food Res. Int. 2018, 106, 383–393. [Google Scholar] [CrossRef]
- Nair, K.K.; Kharb, S.; Thompkinson, D.K. Inulin dietary fiber with functional and health attributes—A review inulin dietary fiber with functional and health attributes—A Review. Food Rev. Int. 2010, 26, 189–203. [Google Scholar] [CrossRef]
- Svarovsky, L. Characterization of particles suspended in liquids. In Solid-Liquid Separation; Svarovsky, L., Ed.; Butterworth-Heinemann: Oxford, UK, 2000; pp. 30–65. ISBN 0750645687. [Google Scholar]
- Khuri, A.I.; Mukhopadhyay, S. Response surface methodology. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 128–149. [Google Scholar] [CrossRef]
- Amir, B.A.; Pougnet, P.; Hami, A. Embedded Mechatronics Systems 2, Analysis of Failures, Modeling, Simulation, and Optimization, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 157–187. [Google Scholar] [CrossRef]
- Anguelova, T.; Warthesen, J. Lycopene stability in tomato powders. J. Food Sci. 2000, 65, 67–70. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved abts radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Aliakbarian, B.; Palmieri, D.; Casazza, A.A.; Palombo, D.; Perego, P. Antioxidant activity and biological evaluation of olive pomace extract. Nat. Prod. Res. 2012, 26, 2280–2290. [Google Scholar] [CrossRef] [PubMed]
- Del Castillo, E.; Montgomery, D.C.; McCarville, D.R. Modified desirability functions for multiple response optimization. J. Qual. Technol. 1996, 28, 337–345. [Google Scholar] [CrossRef]
- Costa, N.R.; Lourenço, J.; Pereira, Z.L. Desirability function approach: A review and performance evaluation in adverse conditions. Chemom. Intell. Lab. Syst. 2011, 107, 234–244. [Google Scholar] [CrossRef]
- Derringer, G.; Suich, R. Simultaneous optimization of several response variables. J. Qual. Technol. 1980, 12, 214–219. [Google Scholar] [CrossRef]
- Aguiar, J.; Estevinho, B.N.; Santos, L. Microencapsulation of natural antioxidants for food application—The specific case of coffee antioxidants—A review. Trends Food Sci. Technol. 2016, 58, 21–39. [Google Scholar] [CrossRef]
- Mujumdar, A.S. Handbook of Industrial Drying, 3rd ed.; Mujumdar, A.S., Ed.; Taylor & Francis: Boca Raton, FL, USA, 2006. [Google Scholar]
- Robert, P.; Gorena, T.; Romero, N.; Sepulveda, E.; Chavez, J.; Saenz, C. Encapsulation of polyphenols and anthocyanins from pomegranate (Punica granatum) by spray drying. Int. J. Food Sci. Technol. 2010, 45, 1386–1394. [Google Scholar] [CrossRef]
- Ahmed, M.; Akter, M.S.; Lee, J.C.; Eun, J.B. Encapsulation by spray drying of bioactive components, physicochemical and morphological properties from purple sweet potato. LWT—Food Sci. Technol. 2010, 43, 1307–1312. [Google Scholar] [CrossRef]
- Lai, H.M.; Cheng, H.H. Properties of pregelatinized rice flour made by hot air or gum puffing. Int. J. Food Sci. Technol. 2004, 39, 201–212. [Google Scholar] [CrossRef]
- Mangut, V.; Sabio, E.; Gañán, J.; González, J.F.; Ramiro, A.; González, C.M.; Román, S.; Al-Kassir, A. Thermogravimetric study of the pyrolysis of biomass residues from tomato processing industry. Fuel Process. Technol. 2006, 87, 109–115. [Google Scholar] [CrossRef]
- Rossini, G.; Toscano, G.; Duca, D.; Corinaldesi, F.; Foppa Pedretti, E.; Riva, G. Analysis of the characteristics of the tomato manufacturing residues finalized to the energy recovery. Biomass Bioenergy 2013, 51, 177–182. [Google Scholar] [CrossRef]
- Ruiz Celma, A.; Cuadros, F.; López-Rodríguez, F. Characterization of pellets from industrial tomato residues. Food Bioprod. Process. 2012, 90, 700–706. [Google Scholar] [CrossRef]
- Strati, I.F.; Oreopoulou, V. Effect of extraction parameters on the carotenoid recovery from tomato waste. Int. J. Food Sci. Technol. 2011, 46, 23–29. [Google Scholar] [CrossRef]
- Priyadarsani, S.; Patel, A.S.; Kar, A.; Dash, S. Process optimization for the supercritical carbondioxide extraction of lycopene from ripe grapefruit (Citrus paradisi) endocarp. Sci. Rep. 2021, 11, 10273. [Google Scholar] [CrossRef] [PubMed]
- Xi, J. Effect of High pressure processing on the extraction of lycopene in tomato paste waste. Chem. Eng. Technol. 2006, 29, 736–739. [Google Scholar] [CrossRef]
- Kumcuoglu, S.; Yilmaz, T.; Tavman, S. Ultrasound assisted extraction of lycopene from tomato processing wastes. J. Food Sci. Technol. 2014, 51, 4102–4107. [Google Scholar] [CrossRef] [Green Version]
- Grassino, A.N.; Pedisić, S.; Dragović-Uzelac, V.; Karlović, S.; Ježek, D.; Bosiljkov, T. Insight into high-hydrostatic pressure extraction of polyphenols from tomato peel waste. Plant Foods Hum. Nutr. 2020, 75, 427–433. [Google Scholar] [CrossRef]
- Szabo, K.; Dulf, F.V.; Diaconeasa, Z.; Vodnar, D.C. Antimicrobial and antioxidant properties of tomato processing byproducts and their correlation with the biochemical composition. LWT 2019, 116, 108558. [Google Scholar] [CrossRef]
- Ummat, V.; Tiwari, B.K.; Jaiswal, A.K.; Condon, K.; Garcia-Vaquero, M.; O’Doherty, J.; O’Donnell, C.; Rajauria, G. Optimisation of ultrasound frequency, extraction time and solvent for the recovery of polyphenols, phlorotannins and associated antioxidant activity from brown seaweeds. Mar. Drugs 2020, 18, 250. [Google Scholar] [CrossRef]
- Ali, M.C.; Chen, J.; Zhang, H.; Li, Z.; Zhao, L.; Qiu, H. Effective extraction of flavonoids from Lycium barbarum L. fruits by deep eutectic solvents-based ultrasound-assisted extraction. Talanta 2019, 203, 16–22. [Google Scholar] [CrossRef]
- Borrás-Enríquez, A.J.; Reyes-Ventura, E.; Villanueva-Rodríguez, S.J.; Moreno-Vilet, L. Effect of ultrasound-assisted extraction parameters on total polyphenols and its antioxidant activity from mango residues (Mangifera indica L. var. manililla). Separations 2021, 8, 94. [Google Scholar] [CrossRef]
- Ferrari, P.F.; Pettinato, M.; Casazza, A.A.; De Negri, G.; Palombo, D.; Perego, P.; Pia, O. Polyphenols from Nerone Gold 26/6, a new pigmented rice, via non- conventional extractions: Antioxidant properties and biological validation. J. Chem. Technol. Biotechnol. 2021, 96, 1691–1699. [Google Scholar] [CrossRef]
- Liao, J.; Zheng, N.; Qu, B. An Improved ultrasonic-assisted extraction method by optimizing the ultrasonic frequency for enhancing the extraction efficiency of lycopene from tomatoes. Food Anal. Methods 2016, 9, 2288–2298. [Google Scholar] [CrossRef]
- Mao, Y.; Robinson, J.; Binner, E. Understanding heat and mass transfer processes during microwave- assisted and conventional solvent extraction. Chem. Eng. Sci. 2021, 233, 116418. [Google Scholar] [CrossRef]
- Chemat, F.; Rombaut, N.; Sicaire, A.G.; Meullemiestre, A.; Fabiano-Tixier, A.-S.; Abert-Vian, M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochem. 2017, 34, 540–560. [Google Scholar] [CrossRef]
- Oliveira, V.S.; Rodrigues, S.; Fernandes, F.A.N. Effect of high power low frequency ultrasound processing on the stability of lycopene. Ultrason. Sonochem. 2015, 27, 586–591. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Zhao, S.; Yang, X.; Hou, F.; Fan, L.; Wang, W.; Xu, E.; Cheng, H.; Guo, M.; Liu, D. Evaluation of extraction technologies of lycopene: Hindrance of extraction, effects on isomerization and comparative analysis—A review. Trends Food Sci. Technol. 2021, 115, 285–296. [Google Scholar] [CrossRef]
- Goula, A.M.; Ververi, M.; Adamopoulou, A.; Kaderides, K. Green ultrasound-assisted extraction of carotenoids from pomegranate wastes using vegetable oils. Ultrason. Sonochem. 2017, 34, 821–830. [Google Scholar] [CrossRef] [PubMed]
- Preece, K.E.; Hooshyar, N.; Krijgsman, A.J.; Fryer, P.J.; Zuidam, N.J. Pilot-scale ultrasound-assisted extraction of protein from soybean processing materials shows it is not recommended for industrial usage. J. Food Eng. 2017, 206, 1–12. [Google Scholar] [CrossRef]
- Kulkarni, V.M.; Rathod, V.K. Mapping of an ultrasonic bath for ultrasound assisted extraction of mangiferin from Mangifera indica leaves. Ultrason. Sonochem. 2014, 21, 606–611. [Google Scholar] [CrossRef]
- Eun, J.; Maruf, A.; Das, P.R.; Nam, S. A review of encapsulation of carotenoids using spray drying and freeze drying A review of encapsulation of carotenoids using spray drying and freeze drying. Crit. Rev. Food Sci. Nutr. 2019, 60, 3547–3572. [Google Scholar] [CrossRef] [PubMed]
- De Barros Fernandes, R.V.; Borges, S.V.; Botrel, D.A. Gum arabic/starch/maltodextrin/inulin as wall materials on the microencapsulation of rosemary essential oil. Carbohydr. Polym. 2014, 101, 524–532. [Google Scholar] [CrossRef]
- Pettinato, M.; Aliakbarian, B.; Casazza, A.A.A.; Perego, P. Encapsulation of antioxidants from spent coffee ground extracts by spray drying. Chem. Eng. Trans. 2017, 57, 1219–1224. [Google Scholar] [CrossRef]
- Nishad, J.; Mir, S.A.; Walia, K. Optimization of spray drying technology for sugarcane juice using natural and synthetic encapsulating agents. Sugar Tech 2019, 21, 749–755. [Google Scholar] [CrossRef]
- Ma, W.; Zhang, J.; Shu, L.; Tan, X.; An, Y.; Yang, X.; Wang, D.; Gao, Q. Optimization of spray drying conditions for the green manufacture of γ-aminobutyric acid-rich powder from Lactobacillus brevis fermentation broth. Biochem. Eng. J. 2020, 156, 107499. [Google Scholar] [CrossRef]
- Chasekioglou, A.N.; Goula, A.M.; Adamopoulos, K.G.; Lazarides, H.N. An approach to turn olive mill wastewater into a valuable food by-product based on spray drying in dehumidified air using drying aids. Powder Technol. 2017, 311, 376–389. [Google Scholar] [CrossRef]
- Shu, B.; Yu, W.; Zhao, Y.; Liu, X. Study on microencapsulation of lycopene by spray-drying. J. Food Eng. 2006, 76, 664–669. [Google Scholar] [CrossRef]
- Souza, A.L.R.; Hidalgo-Chávez, D.W.; Pontes, S.M.; Gomes, F.S.; Cabral, L.M.C.; Tonon, R.V. Microencapsulation by spray drying of a lycopene-rich tomato concentrate: Characterization and stability. LWT—Food Sci. Technol. 2018, 91, 286–292. [Google Scholar] [CrossRef]
- Mahdi, S.; Ghalegi, M.; Dehnad, D. Influence of spray drying on water solubility index, apparent density, and anthocyanin content of pomegranate juice powder. Powder Technol. 2017, 311, 59–65. [Google Scholar] [CrossRef]
- Yousf, N.; Nazir, F.; Salim, R.; Ahsan, H.; Sirwal, A. Water solubility index and water absorption index of extruded product from rice and carrot blend. J. Pharmacogn. Phytochem. 2017, 6, 2165–2168. [Google Scholar]
T (°C) | t (min) | L/S (mL/g) | A (%) | on (s) | V (mL) | TC (µgLE/gDB) | LY (µg/gDB) | ARP (μgTE/kgDB) |
---|---|---|---|---|---|---|---|---|
50 | 35 | 54 | 48 | 50 | 32 | 1268 ± 7 | 788 ± 3 | 41.31 ± 1.48 |
35 | 50 | 80 | 30 | 30 | 45 | 1223 ± 60 | 579 ± 6 | 35.83 ± 2.62 |
35 | 20 | 80 | 30 | 30 | 90 | 845 ± 11 | 257 ± 5 | 28.22 ± 2.25 |
50 | 35 | 54 | 48 | 50 | 68 | 890 ± 26 | 523 ± 21 | 30.28 ± 0.98 |
35 | 20 | 80 | 65 | 70 | 90 | 761 ± 11 | 442 ± 15 | 31.07 ± 1.45 |
65 | 20 | 27 | 65 | 30 | 45 | 1252 ± 15 | 655 ± 6 | 25.90 ± 1.77 |
35 | 20 | 27 | 30 | 30 | 45 | 700 ± 24 | 391 ± 20 | 16.69 ± 0.58 |
65 | 20 | 80 | 65 | 30 | 90 | 1206 ± 21 | 1008 ± 41 | 39.16 ± 1.80 |
50 | 35 | 54 | 20 | 50 | 68 | 818 ± 26 | 510 ± 14 | 29.43 ± 1.34 |
50 | 35 | 54 | 48 | 50 | 68 | 991 ± 11 | 665 ± 0 | 32.42 ± 2.74 |
27 | 35 | 54 | 48 | 50 | 68 | 764 ± 28 | 587 ± 26 | 23.76 ± 0.85 |
35 | 50 | 80 | 65 | 70 | 45 | 1093 ± 75 | 770 ± 10 | 40.27 ± 2.44 |
50 | 35 | 54 | 48 | 81 | 68 | 1038 ± 31 | 806 ± 12 | 37.78 ± 1.34 |
50 | 35 | 54 | 75 | 50 | 68 | 1206 ± 25 | 1011 ± 16 | 39.59 ± 2.18 |
65 | 50 | 27 | 65 | 30 | 90 | 1553 ± 20 | 1035 ± 48 | 34.14 ± 2.60 |
65 | 20 | 80 | 30 | 70 | 90 | 1155 ± 51 | 801 ± 54 | 28.85 ± 2.39 |
35 | 50 | 27 | 30 | 30 | 90 | 826 ± 24 | 556 ± 41 | 14.98 ± 0.65 |
50 | 58 | 54 | 48 | 50 | 68 | 1217 ± 8 | 1016 ± 39 | 27.82 ± 2.25 |
50 | 12 | 54 | 48 | 50 | 68 | 1112 ± 13 | 818 ± 23 | 23.86 ± 0.81 |
50 | 35 | 54 | 48 | 19 | 68 | 1174 ± 42 | 785 ± 23 | 25.90 ± 0.98 |
65 | 50 | 80 | 65 | 30 | 45 | 1024 ± 28 | 704 ± 8 | 36.15 ± 2.39 |
50 | 35 | 54 | 48 | 50 | 103 | 856 ± 23 | 693 ± 39 | 26.11 ± 1.21 |
50 | 35 | 54 | 48 | 50 | 68 | 752 ± 5 | 723 ± 45 | 23.65 ± 0.18 |
50 | 35 | 12 | 48 | 50 | 68 | 751 ± 4 | 344 ± 2 | 9.51 ± 0.30 |
50 | 35 | 54 | 48 | 50 | 68 | 796 ± 8 | 531 ± 39 | 24.93 ± 1.03 |
65 | 20 | 27 | 30 | 70 | 45 | 817 ± 33 | 476 ± 13 | 17.01 ± 1.43 |
35 | 20 | 27 | 65 | 70 | 45 | 555 ± 4 | 312 ± 12 | 16.9 ± 1.07 |
50 | 35 | 95 | 48 | 50 | 68 | 787 ± 37 | 532 ± 0 | 25.23 ± 1.63 |
50 | 35 | 54 | 48 | 50 | 68 | 732 ± 36 | 493 ± 5 | 23.65 ± 1.21 |
35 | 50 | 27 | 65 | 70 | 90 | 648 ± 10 | 242 ± 47 | 19.42 ± 1.12 |
65 | 50 | 80 | 30 | 70 | 45 | 723 ± 12 | 552 ± 10 | 30.60 ± 1.37 |
65 | 50 | 27 | 30 | 70 | 90 | 700 ± 16 | 473 ± 0 | 21.78 ± 0.33 |
73 | 35 | 54 | 48 | 50 | 68 | 895 ± 35 | 710 ± 11 | 33.92 ± 0.98 |
Source | Coefficient Coded Value | Cofficient −95% C.I. | Cofficient +95% C.I. | p-Value |
---|---|---|---|---|
Model | 0.0032 | |||
Intercept | 0.96 | 0.92 | 1.01 | |
T | 0.023 | −0.047 | 0.093 | 0.4965 |
t | 0.016 | −0.018 | 0.050 | 0.3317 |
L/S | 6.464 × 10−3 | −0.064 | 0.077 | 0.8480 |
A | 0.040 | 5.532 × 10−3 | 0.074 | 0.0254 |
on | −0.021 | −0.091 | 0.050 | 0.5430 |
V | −0.064 | −0.13 | 6.222 × 10−3 | 0.0712 |
T·t | −0.048 | −0.087 | −8.696 × 10−3 | 0.0196 |
T·L/S | −0.046 | −0.085 | −7.073 × 10−3 | 0.0234 |
T·A | 0.048 | −0.033 | 0.13 | 0.2249 |
T·V | 0.036 | −2.667 × 10−3 | 0.075 | 0.0658 |
T·L/S | −0.074 | −0.15 | 6.224 × 10−3 | 0.0682 |
t·V | −0.031 | −0.11 | 0.050 | 0.4293 |
L/S·on | 0.032 | −7.062E × 10−3 | 0.071 | 0.1019 |
A·on | −0.034 | −0.11 | 0.046 | 0.3764 |
t2 | 0.042 | 6.013 × 10−4 | 0.083 | 0.0471 |
L/S2 | −0.041 | −0.082 | 5.692 × 10−4 | 0.0529 |
R2 | 0.8081 | |||
AdjR2 | 0.6162 | |||
Lack of Fit | 0.3020 |
Source | Coefficient Coded Value | Cofficient −95% C.I. | Cofficient +95% C.I. | p-Value |
---|---|---|---|---|
Model | 0.0001 | |||
Intercept | 25.79 | 24.40 | 27.18 | |
T | 0.77 | −1.50 | 3.05 | 0.4855 |
t | 0.86 | −0.24 | 1.97 | 0.1174 |
L/S | 1.34 | 0.24 | 2.45 | 0.0194 |
A | 1.61 | 0.51 | 2.71 | 0.0065 |
on | 0.12 | −2.16 | 2.39 | 0.9147 |
V | 0.035 | −1.07 | 1.14 | 0.9482 |
T·t | −1.25 | −2.51 | 0.014 | 0.0523 |
T·A | 1.50 | −1.10 | 4.10 | 0.2426 |
T·V | 1.85 | 0.59 | 3.11 | 0.0062 |
L/S·on | 1.66 | 0.40 | 2.92 | 0.0125 |
A·on | −2.10 | −4.70 | 0.50 | 0.1077 |
t2 | 1.09 | −0.25 | 2.42 | 0.1052 |
L/S2 | −2.77 | −4.10 | −1.43 | 0.0004 |
R2 | 0.8226 | |||
AdjR2 | 0.7013 | |||
Lack of Fit | 0.3792 |
Source | Coefficient Coded Value | Cofficient −95% C.I. | Cofficient +95% C.I. | p-Value |
---|---|---|---|---|
Model | <0.0001 | |||
Intercept | 5.25 | 5.11 | 5.40 | |
T | 0.22 | 0.11 | 0.33 | 0.0004 |
t | 0.16 | 0.051 | 0.27 | 0.0064 |
L/S | 0.63 | 0.52 | 0.74 | <0.0001 |
A | 0.29 | 0.18 | 0.40 | <0.0001 |
on | 0.26 | 0.032 | 0.48 | 0.0273 |
V | −0.42 | −0.65 | −0.19 | 0.0010 |
T·L/S | −0.21 | −0.33 | −0.081 | 0.0027 |
T·A | 0.40 | 0.15 | 0.66 | 0.0040 |
T·V | 0.17 | 0.047 | 0.30 | 0.0098 |
t·L/S | −0.42 | −0.68 | −0.16 | 0.0029 |
L/S2 | −0.51 | −0.64 | −0.37 | <0.0001 |
A2 | 0.23 | 0.097 | 0.37 | 0.0019 |
V2 | 0.19 | 0.060 | 0.33 | 0.0069 |
R2 | 0.9448 | |||
AdjR2 | 0.9070 | |||
Lack of Fit | 0.9885 |
Variables | Optimized Values | Response Variable Values Predicted by Model | Response Variable Values Experimentally Verified |
---|---|---|---|
T (°C) | 65 | ||
t (min) | 20 | ||
L/S (mL/g) | 72 | ||
A (%) | 65 | ||
on (s) | 33 | ||
V (mL) | 90 | ||
TC (µgLE/g) | 1402 | 1408 ± 14 | |
LY (µg/g) | 1140.39 | 1536 ± 53 | |
ARP (µgTE/kg) | 39.8 | 36.1 ± 0.9 |
21.7% Inulin | 50% Inulin | 78.3% Inulin | |
---|---|---|---|
Product recovery (%) | 73 ± 4 | 64 ± 3 | 63 ± 3 |
Moisture (%) | 3.2 ± 0.1 | 2.5 ± 0.4 | 2.9 ± 0.3 |
Water activity (-) | 0.239 ± 0.001 | 0.217 ± 0.023 | 0.220 ± 0.000 |
Total lycopene content (µg/g dry powder) | 15.6 ± 2.9 | 0.8 ± 0.3 | 1.1 ± 0.1 |
Superficial lycopene (µg/g dry powder) | 0.30 ± 0.02 | 0.7 ± 0.2 | 1.1 ± 0.1 |
Encapsulated lycopene (µg/g dry powder) | 15.3 ± 2.9 | 0.1 ± 0.4 | 0.0 ± 0.1 |
Water solubility index (WSI) | 0.935 ± 0.007 | 0.858 ± 0.006 | 0.643 ± 0.012 |
Water absorption index (WAI) | 0.376 ± 0.027 | 0.800 ± 0.050 | 1.78 ± 0.002 |
Swelling capacity (SWC) | 5.79 ± 0.25 | 5.635 ± 0.315 | 4.98 ± 0.17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Pettinato, M.; Casazza, A.A.; Perego, P. A Comprehensive Optimization of Ultrasound-Assisted Extraction for Lycopene Recovery from Tomato Waste and Encapsulation by Spray Drying. Processes 2022, 10, 308. https://doi.org/10.3390/pr10020308
Li J, Pettinato M, Casazza AA, Perego P. A Comprehensive Optimization of Ultrasound-Assisted Extraction for Lycopene Recovery from Tomato Waste and Encapsulation by Spray Drying. Processes. 2022; 10(2):308. https://doi.org/10.3390/pr10020308
Chicago/Turabian StyleLi, Junyang, Margherita Pettinato, Alessandro Alberto Casazza, and Patrizia Perego. 2022. "A Comprehensive Optimization of Ultrasound-Assisted Extraction for Lycopene Recovery from Tomato Waste and Encapsulation by Spray Drying" Processes 10, no. 2: 308. https://doi.org/10.3390/pr10020308