Transformer Core Loosening Diagnosis Based on Fusion Feature Extraction and CPO-Optimized CatBoost
Abstract
1. Introduction
2. Materials and Methods
2.1. VMD Decomposition Operation
2.2. Fuzzy Entropy Construction
2.3. WPT-MFCC Feature Extraction Algorithm
2.4. CPO-CatBoost Fault Diagnosis Model
2.4.1. CatBoost Model
2.4.2. CPO Optimization Algorithm
2.4.3. CPO-CatBoost Model Computation Process
- (1)
- Determine the CatBoost parameters to be optimized: iterations number, learning rate, tree depth, and random strength.
- (2)
- Initialize the population in the CPO.
- (3)
- For each individual in the population, train a CatBoost model and calculate the classification error.
- (4)
- Update the population via the CPO’s exploration and exploitation mechanisms, retaining parameter combinations with lower errors.
- (5)
- After reaching the maximum iteration number, output the optimal parameters.
3. Experimental Results and Analysis
3.1. Experimental Platform Setup
3.2. Experimental Diagnosis of Transformer Core Loosening Based on Fusion Feature Extraction and CPO-Optimized CatBoost
3.3. Model Comparison
3.4. Noise Robustness Testing
4. Discussions and Conclusions
- (1)
- Samples were collected in a laboratory setting, lacking validation data from complex operational environments. Additionally, testing was conducted only on four distinct levels of core loosening in transformers. The dataset should be expanded to include greater diversity, and the single fault type should be supplemented to account for scenarios involving multiple concurrent faults.
- (2)
- The current VMD mode number is set to a fixed value. In the future, this parameter may be dynamically adjusted based on the inherent complexity of the signal itself. This will enable more effective filtering of various noise components introduced by complex environments within the signal, thereby adapting to noise reduction processing for signals from different types of transformers. This allows the proposed method to transcend the limitations of laboratory environments and better align with practical application scenarios.
- (3)
- At the industrial application level, technical solutions require further alignment with practical requirements. Given the pronounced shortcomings in rapid processing capabilities of traditional, outdated industrial embedded devices and industrial control systems, subsequent efforts must prioritise optimising the compatibility of these technologies with such equipment and systems. This will ensure their effective implementation and fulfilment of the operational demands of industrial production.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Secic, A.; Krpan, M.; Kuzle, I. Vibro-Acoustic Methods in the Condition Assessment of Power Transformers: A Survey. IEEE Access 2019, 7, 83915–83931. [Google Scholar] [CrossRef]
- Borucki, S. Diagnosis of Technical Condition of Power Transformers Based on the Analysis of Vibroacoustic Signals Measured in Transient Operating Conditions. IEEE Trans. Power Deliv. 2012, 27, 670–676. [Google Scholar] [CrossRef]
- Freire, N.M.A.; Cardoso, A.J.M. Fault detection and condition monitoring of PMSGs in offshore wind turbines. Machines 2021, 9, 260. [Google Scholar] [CrossRef]
- Bagheri, M.; Zollanvari, A.; Nezhivenko, S. Transformer Fault Condition Prognosis Using Vibration Signals Over Cloud Environment. IEEE Access 2018, 6, 9862–9874. [Google Scholar] [CrossRef]
- An, Q.; Li, P.; An, G.; Liu, D. Improved crested porcupine optimizer-VMD method applied to partial discharge signal. Measurement 2025, 258, 119145. [Google Scholar] [CrossRef]
- Liu, H.; Xu, Q.; Han, X.; Wang, B.; Yi, X. Attention on the key modes: Machinery fault diagnosis transformers through variational mode decomposition. Knowl.-Based Syst. 2024, 289, 111479. [Google Scholar] [CrossRef]
- Jian, X.; Hong, M. Transformer winding looseness fault diagnosis based on VMD and WOA—SVM. Electr. Mach. Control. Appl. 2023, 50, 84–90. [Google Scholar]
- Jiao, S.; Shi, W.; Yang, Y. Denoising of UHF partial discharge signals by using VMD based on Shannon entropy and kurtosis-approximation entropy. In Proceedings of the 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA), Xi’an, China, 19–21 June 2019; pp. 1742–1747. [Google Scholar]
- Wibawa, I.; Darmawan, I. Implementation of audio recognition using mel frequency cepstrum coefficient and dynamic time warping in wirama praharsini. J. Phys. Conf. Ser. 2021, 1722, 012014. [Google Scholar] [CrossRef]
- Rezaul, K.M.; Jewel; Islam, S.; Alam Siddiquee, K.N.e.; Barua, N.; Rahman, M.A.; Shan-A-Khuda, M.; Bin Sulaiman, R.; Shaikh, S.I.; Hamim, A.; et al. Enhancing Audio Classification Through MFCC Feature Extraction and Data Augmentation with CNN and RNN Models. Int. J. Adv. Comput. Sci. Appl. 2024, 15, 37–53. [Google Scholar] [CrossRef]
- Nandan, D.; Singh, M.K.; Kumar, S.; Yadav, H.K. Speaker identification based on physical variation of speech signal. Trait. Du Signal 2022, 39, 711. [Google Scholar] [CrossRef]
- Bhardwaj, V.; Ben Othman, M.T.; Kukreja, V.; Belkhier, Y.; Bajaj, M.; Goud, B.S.; Rehman, A.U.; Shafiq, M.; Hamam, H. Automatic speech recognition (asr) systems for children: A systematic literature review. Appl. Sci. 2022, 12, 4419. [Google Scholar] [CrossRef]
- Azim Naz, M.; Sarath, R. Combined classification models for bearing fault diagnosis with improved ICA and MFCC feature set. Adv. Eng. Softw. 2022, 173, 103249. [Google Scholar] [CrossRef]
- Yan, H.; Bai, H.; Zhan, X.; Wu, Z.; Wen, L.; Jia, X. Combination of VMD mapping MFCC and LSTM: A new acoustic fault diagnosis method of diesel engine. Sensors 2022, 22, 8325. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Zheng, J.; Huang, H. Experimental research on power transformer vibration distribution under different winding defect conditions. Electronics 2019, 8, 842. [Google Scholar] [CrossRef]
- Li, H.; Yao, Q.; Li, X. Voiceprint fault diagnosis of converter transformer under load influence based on Multi-Strategy improved Mel-Frequency spectrum coefficient and Temporal convolutional network. Sensors 2024, 24, 757. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Xiao, Y.; Yin, Y.; Zhang, Y. Research on the Fault Diagnosis Method of Rolling Bearings Based on GAVOA–VMD. J. Electr. Comput. Eng. 2025, 2025, 5650232. [Google Scholar] [CrossRef]
- Wang, F.; Wang, S.; Chen, S.; Yuan, G.; Zhang, J. Voiceprint recognition model of power transformers based on improved MFCC and VQ. Proc. CSEE 2017, 37, 289–297. [Google Scholar]
- Cohen, M.X. A better way to define and describe Morlet wavelets for time-frequency analysis. NeuroImage 2019, 199, 81–86. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, G.; Liang, L.; Jiang, K. Detection of weak transient signals based on wavelet packet transform and manifold learning for rolling element bearing fault diagnosis. Mech. Syst. Signal Process. 2015, 54–55, 259–276. [Google Scholar] [CrossRef]
- Mao, M.; Xu, B.; Sun, Y.; Tan, K.; Wang, Y.; Zhou, C.; Zhou, C.; Yang, J. Application of FCEEMD-TSMFDE and adaptive CatBoost in fault diagnosis of complex variable condition bearings. Sci. Rep. 2024, 14, 30448. [Google Scholar] [CrossRef]
- Pan, X.; Zhao, D.; Chen, H.; Shen, A.; Wu, K. Incipient fault identification method for 10 kV power cables based on sheath current and DVAE-SAO-CatBoost. Electr. Power Syst. Res. 2025, 245, 111583. [Google Scholar] [CrossRef]
- Yang, X.S. Nature-inspired optimization algorithms: Challenges and open problems. J. Comput. Sci. 2020, 46, 101104. [Google Scholar] [CrossRef]
- Liu, E.J.; Hung, Y.H.; Hong, C.W. Improved metaheuristic optimization algorithm applied to hydrogen fuel cell and photovoltaic cell parameter extraction. Energies 2021, 14, 619. [Google Scholar] [CrossRef]
- Ye, F. Particle swarm optimization-based automatic parameter selection for deep neural networks and its applications in large-scale and high-dimensional data. PLoS ONE 2017, 12, e0188746. [Google Scholar] [CrossRef]
- Adalja, D.; Patel, P.; Mashru, N.; Jangir, P.; Jangid, R.; Gulothungan, G.; Khishe, M. A new multi objective crested porcupines optimization algorithm for solving optimization problems. Sci. Rep. 2025, 15, 14380. [Google Scholar] [CrossRef]
- Dragomiretskiy, K.; Zosso, D. Variational mode decomposition. IEEE Trans. Signal Process. 2013, 62, 531–544. [Google Scholar] [CrossRef]
- Shang, X.-Q.; Huang, T.-L.; Chen, H.-P.; Ren, W.-X.; Lou, M.-L. Recursive variational mode decomposition enhanced by orthogonalization algorithm for accurate structural modal identification. Mech. Syst. Signal Process. 2023, 197, 110358. [Google Scholar] [CrossRef]
- Sharma, A.; Kaul, S. Two-Stage Supervised Learning-Based Method to Detect Screams and Cries in Urban Environments. IEEE/ACM Trans. Audio Speech Lang. Process. 2016, 24, 290–299. [Google Scholar] [CrossRef]
- Domingo, D.; Kareem, A.B.; Okwuosa, C.N.; Custodio, P.M.; Hur, J.-W. Transformer Core Fault Diagnosis via Current Signal Analysis with Pearson Correlation Feature Selection. Electronics 2024, 13, 926. [Google Scholar] [CrossRef]
- Maliuk, A.S.; Ahmad, Z.; Kim, J.M. A technique for bearing fault diagnosis using novel wavelet packet transform-based signal representation and informative factor LDA. Machines 2023, 11, 1080. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, T.; Luo, Z.; Sun, K. A novel rolling bearing fault diagnosis and severity analysis method. Appl. Sci. 2019, 9, 2356. [Google Scholar] [CrossRef]
- Jing, Y.; Wang, X.; Yu, Z.; Wang, C.; Liu, Z.; Li, Y. Diagnostic research for the failure of electrical transformer winding based on digital twin technology. IEEJ Trans. Electr. Electron. Eng. 2022, 17, 1629–1636. [Google Scholar] [CrossRef]
- Prokhorenkova, L.; Gusev, G.; Vorobev, A.; Dorogush, A.V.; Gulin, A. CatBoost: Unbiased boosting with categorical features. In Proceedings of the 32nd International Conference on Neural Information Processing Systems, Montréal, QC, Canada, 3–8 December 2018; Volume 31. [Google Scholar]
- Yang, M.; Liu, W.; Zhang, W.; Wang, M.; Fang, X. Bearing vibration signal fault diagnosis based on LSTM-cascade CatBoost. J. Internet Technol. 2022, 23, 1155–1161. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Mohamed, R.; Abouhawwash, M. Crested Porcupine Optimizer: A new nature-inspired metaheuristic. Knowl.-Based Syst. 2024, 284, 111257. [Google Scholar] [CrossRef]
- Liu, H.; Zhou, R.; Zhong, X.; Yao, Y.; Shan, W.; Yuan, J.; Xiao, J.; Ma, Y.; Zhang, K.; Wang, Z. Multi-strategy enhanced crested porcupine optimizer: CAPCPO. Mathematics 2024, 12, 3080. [Google Scholar] [CrossRef]
- GB/T 1094.10-2003; Power Transformers—Part 10: Determination of Sound Levels. Standards Press of China: Beijing, China, 2003.
- Chen, J.; Wang, Y.; Kong, L.; Chen, Y.; Chen, M.; Cai, Q.; Sheng, G. A novel method for power transformer fault diagnosis considering imbalanced data samples. Front. Energy Res. 2025, 12, 1500548. [Google Scholar] [CrossRef]
- Huerta-Rosales, J.R.; Granados-Lieberman, D.; Garcia-Perez, A.; Camarena-Martinez, D.; Amezquita-Sanchez, J.P.; Valtierra-Rodriguez, M. Short-circuited turn fault diagnosis in transformers by using vibration signals, statistical time features, and support vector machines on FPGA. Sensors 2021, 21, 3598. [Google Scholar] [CrossRef]
- He, G.; Feng, L.; Yang, G. A new method for bearing fault diagnosis based on adaptive SVMD and RCMDSE-IDHT. IEEE Access 2024, 12, 169467–169486. [Google Scholar] [CrossRef]
- Cui, J.; Ma, H. Transformer Iron Core Looseness Fault Diagnosis Model Based on CEEMDAN-Wavelet-Threshold and 3D-CNN. Electr. Mach. Control. Appl. 2022, 49, 46–52. [Google Scholar]
Tags | Fault Type | Training Set | Validation Set | Test Set |
---|---|---|---|---|
1 | 60% Looseness | 80 | 27 | 27 |
2 | 80% Looseness | 80 | 27 | 27 |
3 | 100% Looseness | 88 | 29 | 29 |
4 | Normal State | 52 | 17 | 17 |
IMF | Energy Proportion (%) | Central Frequency (Hz) | Kurtosis | Fuzzy Entropy |
---|---|---|---|---|
IMF1 | 31.84% | 1522.9 Hz | 2.69 | 0.1488 |
IMF2 | 10.65% | 4279.7 Hz | 2.48 | 0.3810 |
IMF3 | 15.92% | 2901.0 Hz | 2.49 | 0.2016 |
IMF4 | 0.42% | 6619.8 Hz | 4.77 | 3.3226 |
IMF5 | 0.26% | 9892.1 Hz | 4.55 | 4.0540 |
IMF6 | 40.91% | 426.5 Hz | 5.63 | 0.3820 |
Parameter | Iteration Count | Learning Rate | Tree Depth | Random Strength |
---|---|---|---|---|
Optimal Parameters | 107 | 0.1345 | 3 | 3 |
Algorithm Configuration | 60% Looseness | 80% Looseness | 100% Looseness | Normal State | Average |
---|---|---|---|---|---|
VMD-24D MFCC | 100% | 96.0784% | 100% | 100% | 99.0196% |
VMD-39D MFCC | 92.8169% | 96.4813% | 100% | 92.6310% | 95.4823% |
24D MFCC | 93.6815% | 94.8625% | 97.7448% | 87.4353% | 93.3475% |
39D MFCC | 88.4649% | 92.9633% | 96.6890% | 88.9592% | 91.7691% |
Algorithm Configuration | Fold 1 | Fold 2 | Fold 3 | Fold 4 | Fold 5 | Mean ± SD |
---|---|---|---|---|---|---|
VMD-24D MFCC | 97.9167% | 97.9167% | 96.8750% | 100% | 96.8750% | 97.9167% ± 1.2758% |
VMD-39D MFCC | 92.7083% | 92.7083% | 94.7917% | 95.8333% | 94.7917% | 94.1667% ± 1.3975% |
24D MFCC | 86.6432% | 90.7765% | 91.5543% | 93.8876% | 90.8684% | 90.7460% ± 2.6160% |
39D MFCC | 85.2345% | 88.7654% | 91.9543% | 87.5432% | 89.1234% | 88.5242% ± 2.9141% |
Algorithm | Fold 1 | Fold 2 | Fold 3 | Fold 4 | Fold 5 | Mean ± SD |
---|---|---|---|---|---|---|
CPO-CatBoost | 97.9167% | 97.9167% | 96.8750% | 100% | 96.8750% | 97.9167% ± 1.2758% |
CPO-SVM | 96.0000% | 93.9394% | 94.0000% | 94.0000% | 91.0000% | 93.7879% ± 1.7874% |
3D-CNN | 92.5127% | 89.8543% | 91.4632% | 88.4765% | 94.0123% | 91.2638% ± 2.174% |
SVM | 73.0000% | 66.0000% | 74.0000% | 78.0000% | 70.7071% | 72.3414% ± 4.4184% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, Y.; Yin, Y.; Xu, J.; Zhang, Y. Transformer Core Loosening Diagnosis Based on Fusion Feature Extraction and CPO-Optimized CatBoost. Processes 2025, 13, 3247. https://doi.org/10.3390/pr13103247
Xiao Y, Yin Y, Xu J, Zhang Y. Transformer Core Loosening Diagnosis Based on Fusion Feature Extraction and CPO-Optimized CatBoost. Processes. 2025; 13(10):3247. https://doi.org/10.3390/pr13103247
Chicago/Turabian StyleXiao, Yuanqi, Yipeng Yin, Jiaqi Xu, and Yuxin Zhang. 2025. "Transformer Core Loosening Diagnosis Based on Fusion Feature Extraction and CPO-Optimized CatBoost" Processes 13, no. 10: 3247. https://doi.org/10.3390/pr13103247
APA StyleXiao, Y., Yin, Y., Xu, J., & Zhang, Y. (2025). Transformer Core Loosening Diagnosis Based on Fusion Feature Extraction and CPO-Optimized CatBoost. Processes, 13(10), 3247. https://doi.org/10.3390/pr13103247