A New Approach for the Characterization of Organic Residues from Stone Tools Using GC×GC-TOFMS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Instrumental Analysis
2.3. Data Processing
3. Results and Discussions
3.1. Chromatographic Considerations and Sample Analysis
3.2. Sample Extraction Techniques
3.3. Interferences
3.4. Future Perspectives
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
1D GC | One-dimensional gas chromatography |
1D | First dimension |
2D | Second dimension |
1tR | First dimension retention time |
2tR | Second dimension retention time |
CZC | Cryogenic zone compression |
df | Film thickness |
FR | Fisher ratio |
Fcrit | Critical F-value |
GC-MS | Gas chromatography-mass spectrometry |
GC×GC-TOFMS | Comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry |
i.d. | Inner diameter |
HS-SPME | Headspace solid-phase microextraction |
NIST | National Institute of Standards and Technology |
S/N | Signal-to-noise ratio |
TIC | Total ion current |
UCM | Unresolved complex mixture |
References
- Hamm, S.; Bleton, J.; Connan, J.; Tchapla, A. A chemical investigation by headspace SPME and GC-MS of volatile and semi-volatile terpenes in various olibanum samples. Phytochemistry 2005, 66, 1499–1514. [Google Scholar] [CrossRef] [PubMed]
- Hamm, S.; Lesellier, E.; Bleton, J.; Tchapla, A. Optimization of headspace solid phase microextraction for gas chromatography/mass spectrometry analysis of widely different volatility and polarity terpenoids in olibanum. J. Chromatogr. A 2003, 1018, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Jerković, I.; Marijanović, Z.; Gugić, M.; Roje, M. Chemical profile of the organic residue from ancient amphora found in the Adriatic Sea determined by direct GC and GC-MS analysis. Molecules 2011, 16, 7936–7948. [Google Scholar] [CrossRef] [PubMed]
- Mcgovern, P.E.; Mirzoian, A.; Hall, G.R. Ancient egyption herbal wines. Proc. Natl. Acad. Sci.USA 2009, 106, 7361–7366. [Google Scholar] [CrossRef] [PubMed]
- Regert, M.; Alexandre, V.; Thomas, N.; Lattuati-Derieux, A. Molecular characterisation of birch bark tar by headspace solid-phase microextraction gas chromatography-mass spectrometry: A new way for identifying archaeological glues. J. Chromatogr. A 2006, 1101, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Rafferty, S.M. Identification of Nicotine by Gas Chromatography/Mass Spectroscopy Analysis of Smoking Pipe Residue. J. Archaeol. Sci. 2002, 29, 897–907. [Google Scholar] [CrossRef]
- Pecci, A.; Giorgi, G.; Salvini, L.; Ontiveros, M.Á.C. Identifying wine markers in ceramics and plasters using gas chromatography-mass spectrometry. Experimental and archaeological materials. J. Archaeol. Sci. 2013, 40, 109–115. [Google Scholar] [CrossRef]
- Modugno, F.; Ribechini, E.; Colombini, M.P. Aromatic resin characterisation by gas chromatography-mass spectrometry. Raw and archaeological materials. J. Chromatogr. A 2006, 1134, 298–304. [Google Scholar] [CrossRef] [PubMed]
- Regert, M. Investigating the history of prehistoric glues by gas chromatography-mass spectrometry. J. Sep. Sci. 2004, 27, 244–254. [Google Scholar] [CrossRef] [PubMed]
- Helwig, K.; Monahan, V.; Poulin, J.; Antiquity, A. The Identification of Hafting Adhesive on a Slotted Antler Point from a Southwest Yukon Ice Patch. Am. Anqituity 2014, 73, 279–288. [Google Scholar]
- Regert, M.; Colinart, S.; Degrand, L.; Decavallas, O. Chemical alteration and use of beeswax through time: Accelerated ageing tests and analysis of archaeological samples from various environmental contexts. Archaeometry 2001, 43, 549–569. [Google Scholar] [CrossRef]
- Mathe, C.; Culioli, G.; Archier, P.; Vieillescazes, C. Characterization of archaeological frankincense by gas chromatography-mass spectrometry. J. Chromatogr. A 2004, 1023, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Boëda, E.; Connan, J.; Dessort, D.; Muhesen, S.; Mercier, N.; Valladas, H.; Tisnérat, N. Bitumen as a hafting material on Middle Palaeolithic artefacts. Nature 1996, 380, 336–338. [Google Scholar] [CrossRef]
- Evershed, R.P.; Heron, C.; Goad, J. Analysis of organic residues of archaeological origin by high-temperature gas chromatography and gas chromatography mass spectrometry. Analyst 1990, 115, 1339–1342. [Google Scholar] [CrossRef]
- Patterson, D.G.; Welch, S.M.; Turner, W.E.; Sjödin, A.; Focant, J.F. Cryogenic zone compression for the measurement of dioxins in human serum by isotope dilution at the attogram level using modulated gas chromatography coupled to high resolution magnetic sector mass spectrometry. J. Chromatogr. A 2011, 1218, 3274–3281. [Google Scholar] [CrossRef] [PubMed]
- Perrault, K.A.; Nizio, K.D.; Forbes, S.L. A comparison of one-dimensional and comprehensive two-dimensional gas chromatography for decomposition odour profiling using inter-year replicate field trials. Chromatographia 2015, 78, 1057–1070. [Google Scholar] [CrossRef]
- Stefanuto, P.-H.; Perrault, K.; Stadler, S.; Pesesse, R.; Brokl, M.; Forbes, S.; Focant, J.-F. Reading cadaveric decomposition chemistry with a new pair of glasses. ChemPlusChem 2014, 79, 786–789. [Google Scholar] [CrossRef]
- Perrault, K.A.; Stefanuto, P.-H.; Stuart, B.H.; Rai, T.; Focant, J.-F.; Forbes, S.L. Reducing variation in decomposition odour profiling using comprehensive two-dimensional gas chromatography. J. Sep. Sci. 2015, 38, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Perrault, K.A.; Rai, T.; Stuart, B.H.; Forbes, S.L. Seasonal comparison of carrion volatiles in decomposition soil using comprehensive two-dimensional gas chromatography—Time of flight mass spectrometry. Anal. Methods 2014, 7, 690–698. [Google Scholar] [CrossRef]
- Forbes, S.L.; Troobnikoff, A.N.; Ueland, M.; Nizio, K.D.; Perrault, K.A. Profiling the decomposition odour at the grave surface before and after probing. Forensic Sci. Int. 2016, 259, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Sampat, A.; Lopatka, M.; Sjerps, M.; Vivo-truyols, G.; Schoenmakers, P.; van Asten, A. The forensic potential of comprehensive two-dimensional gas chromatography. TrAC Trends Anal. Chem. 2016, 80, 345–363. [Google Scholar] [CrossRef]
- Das, M.K.; Bishwal, S.C.; Das, A.; Dabral, D.; Varshney, A.; Badireddy, V.K.; Nanda, R. Investigation of gender-specific exhaled breath volatome in humans by GC×GC-TOF-MS. Anal. Chem. 2014, 86, 1229–1237. [Google Scholar] [CrossRef] [PubMed]
- Cordero, C.; Liberto, E.; Bicchi, C.; Rubiolo, P.; Reichenbach, S.E.; Tian, X.; Tao, Q.; Giuria, V.P.; Torino, I. Targeted and non-targeted approaches for complex natural sample profiling by GC×GC-qMS. J. Chromatogr. Sci. 2010, 48, 251–262. [Google Scholar] [CrossRef] [PubMed]
- Tranchida, P.Q.; Donato, P.; Cacciola, F.; Beccaria, M.; Dugo, P.; Mondello, L. Potential of comprehensive chromatography in food analysis. Trends Anal. Chem. 2013, 52, 186–205. [Google Scholar] [CrossRef]
- Fullagar, R.; Hayes, E.; Stephenson, B.; Field, J.; Matheson, C.; Stern, N.; Fitzsimmons, K. Evidence for Pleistocene seed grinding at Lake Mungo, south-eastern Australia. Archaeol. Ocean. 2015, 50, 3–19. [Google Scholar] [CrossRef]
- Fullagar, R. Residues and usewear. In Archaeology in Practice: A student Guide to Archaeological Analyses; Balme, J., Paterson, A., Eds.; John Wiley & Sons: New York, NY, USA, 2014; pp. 232–265. [Google Scholar]
- Brokl, M.; Bishop, L.; Wright, C.G.; Liu, C.; McAdam, K.; Focant, J.-F. Multivariate analysis of mainstream tobacco smoke particulate phase by headspace solid-phase micro extraction coupled with comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. J. Chromatogr. A 2014, 1370, 216–229. [Google Scholar] [CrossRef] [PubMed]
- Stefanuto, P.-H.; Perrault, K.A.; Lloyd, R.M.; Stuart, B.H.; Rai, T.; Forbes, S.L.; Focant, J.-F. Exploring new dimensions in cadaveric decomposition odour analysis. Anal. Method. 2015, 7, 2287–2294. [Google Scholar] [CrossRef]
- Armstrong, P.; Nizio, K.D.; Perrault, K.A.; Forbes, S.L. Establishing the volatile profile of pig carcasses as analogues for human decomposition during the early postmortem period. Heliyon 2016, 2, e00070. [Google Scholar] [CrossRef]
- Rots, V. Towards an understanding of hafting: the macro- and microscopic evidence. Antiquity 2003, 77, 805–815. [Google Scholar] [CrossRef]
- Barham, L. From Hand to Handle: The First Industrial Revolution; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Wynn, T. Hafted spears and the archaeology of mind. Proc. Natl. Acad. Sci. 2009, 106, 9544–9545. [Google Scholar] [CrossRef] [PubMed]
- Wadley, L. Compound-adhesive manufacture as a behavioral proxy for complex cognition in the middle stone age. Curr. Anthropol. 2010, 51, S111–S119. [Google Scholar] [CrossRef]
- Eggert, G. Plastiline: Another unsuspected danger in display causing black spots on bronzes. Verb. der Restaur. zur Erhalt. von Kunst-und Kult. 2006, 2, 112–116. [Google Scholar]
Sample Name | Mode of Preparation | Approximate Age (If Known) |
---|---|---|
Ivory (dry) | Water extraction | 3 years |
Ivory powder | Manually placed in vial | |
Bone (dry) | Water extraction | 3 years |
Bone powder | Manually placed in vial | |
Sediment & bone powder | Mixture of sediment and powder manually placed in vial | |
Meat & starch | Water extraction | |
Meat & starch | Water extraction/ultrasonic bath | |
Meat, blood & fat | Water extraction | |
Meat, blood & fat | Solvent extraction | |
Sample name | Mode of preparation | Approximate age (if known) |
Hide (fresh) | Water extraction | 4 months frozen |
Hide (fresh) | Solvent extraction | 4 months frozen |
Hide (fresh) | Piece manually placed in tube | 4 months frozen |
Hand residue 1 | Water extraction | |
Hand residue | Solvent extraction | |
Resin 2 & beeswax 3 mixture | 1:1 mixture prepared by heating until liquid and mixing together, 2 g of final mixture was manually placed in vial | |
Resin & beeswax mixture (Heated 1 h) | Prepared as above but heated for an additional 1 h after mixing | |
Plastiline 4 | Water extraction | |
Antler | Water extraction | |
Leather from binding | Water extraction | |
Sediment | Water extraction/ultrasonic bath | 33,000 years |
Blank vial | N/A |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perrault, K.A.; Stefanuto, P.-H.; Dubois, L.; Cnuts, D.; Rots, V.; Focant, J.-F. A New Approach for the Characterization of Organic Residues from Stone Tools Using GC×GC-TOFMS. Separations 2016, 3, 16. https://doi.org/10.3390/separations3020016
Perrault KA, Stefanuto P-H, Dubois L, Cnuts D, Rots V, Focant J-F. A New Approach for the Characterization of Organic Residues from Stone Tools Using GC×GC-TOFMS. Separations. 2016; 3(2):16. https://doi.org/10.3390/separations3020016
Chicago/Turabian StylePerrault, Katelynn A., Pierre-Hugues Stefanuto, Lena Dubois, Dries Cnuts, Veerle Rots, and Jean-François Focant. 2016. "A New Approach for the Characterization of Organic Residues from Stone Tools Using GC×GC-TOFMS" Separations 3, no. 2: 16. https://doi.org/10.3390/separations3020016
APA StylePerrault, K. A., Stefanuto, P.-H., Dubois, L., Cnuts, D., Rots, V., & Focant, J.-F. (2016). A New Approach for the Characterization of Organic Residues from Stone Tools Using GC×GC-TOFMS. Separations, 3(2), 16. https://doi.org/10.3390/separations3020016