Next Article in Journal
Time Recurrence Analysis of a Near Singular Billiard
Previous Article in Journal
Inadequate Sampling Rates Can Undermine the Reliability of Ecological Interaction Estimation
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

A Unified Generalization of the Catalan, Fuss, and Fuss—Catalan Numbers

1
College of Mathematics, Inner Mongolia University for Nationalities, Tongliao 028043, China
2
School of Mathematical Sciences, Tianjin Polytechnic University, Tianjin 300387, China
3
Institute of Mathematics, Henan Polytechnic University, Jiaozuo 454010, China
4
Secondary School, Yingxiong Street, Fenyang, Lüliang 032200, China
5
Department of Mathematics and Statistics, La Trobe University, Melbourne, VIC 3086, Australia
*
Author to whom correspondence should be addressed.
Math. Comput. Appl. 2019, 24(2), 49; https://doi.org/10.3390/mca24020049
Submission received: 1 April 2019 / Revised: 30 April 2019 / Accepted: 5 May 2019 / Published: 8 May 2019

Abstract

:
In the paper, the authors introduce a unified generalization of the Catalan numbers, the Fuss numbers, the Fuss–Catalan numbers, and the Catalan–Qi function, and discover some properties of the unified generalization, including a product-ratio expression of the unified generalization in terms of the Catalan–Qi functions, three integral representations of the unified generalization, and the logarithmically complete monotonicity of the second order for a special case of the unified generalization.

1. Introduction

As well known from [1,2], Catalan numbers C n are used in the study of set partitions in different areas of mathematics. In particular, in combinatorial mathematics, the Catalan numbers C n form a sequence of natural numbers that occur in various counting problems, often involving recursively-defined objects. There are many counting problems in combinatorics whose solution is given by the Catalan numbers C n . The book [3] contains a set of exercises which describe 66 different interpretations of the Catalan numbers.
The Catalan numbers C n can be generated by
2 1 + 1 4 x = 1 1 4 x 2 x = n = 0 C n x n = 1 + x + 2 x 2 + 5 x 3 + 14 x 4 + 42 x 5 + 132 x 6 + .
One of the explicit formulas of C n for n 0 reads that
C n = 1 n + 1 2 n n = 4 n Γ ( n + 1 / 2 ) π Γ ( n + 2 ) ,
where
Γ ( z ) = 0 t z 1 e t d t , ( z ) > 0
is the classical Euler gamma function. In [2,4,5] and ([1] pp. 110–111), it was mentioned that there exists an asymptotic expansion
C x 4 x Γ x + 1 2 π Γ ( x + 2 ) 4 x π 1 x 3 / 2 9 8 1 x 5 / 2 + 145 128 1 x 7 / 2 +
for the Catalan function C x . For new developments on (1), see [6] and the review paper in [7], in which there are plenty of closely related references.
A generalization of the Catalan numbers C n was defined in [8,9] by
p d n = 1 n p n n 1 = 1 ( p 1 ) n + 1 p n n
for n , p 1 . It is obvious that C n = 2 d n . In ([1] pp. 375–376), the generalization p + 1 d n of the Catalan numbers C n is denoted by C ( n , p ) for p 0 and is called as the generalized Catalan numbers. In ([1] pp. 377–378), the Fuss numbers
F ( m , n ) = 1 m n + 1 m n + 1 n
were given and discussed. It is apparent that F ( 2 , n ) = C n .
In combinatorial mathematics and statistics, the Fuss–Catalan numbers A n ( p , r ) are defined [10] as numbers of the form
A n ( p , r ) = r n p + r n p + r n = r Γ ( n p + r ) Γ ( n + 1 ) Γ ( n ( p 1 ) + r + 1 ) .
It is easy to see that
A n ( p , 1 ) = F ( p , n ) , A n ( 2 , 1 ) = C n , n 0
and
A n 1 ( p , p ) = p d n = C ( n , p 1 ) , n , p 1 .
There have existed some literature, such as [1,2,11,12,13,14,15,16,17,18,19,20,21], on the investigation of the Fuss–Catalan numbers A n ( p , r ) .
In [22], an alternative and analytical generalization of the Catalan numbers C n and the Catalan function C x was introduced by
C ( a , b ; z ) = Γ ( b ) Γ ( a ) b a z Γ ( z + a ) Γ ( z + b ) , ( a ) , ( b ) > 0 , ( z ) 0 .
For uniqueness and convenience of referring to the quantity C ( a , b ; z ) , we call the quantity C ( a , b ; z ) the Catalan–Qi function and, when taking z = n 0 , call C ( a , b ; n ) the Catalan–Qi numbers. It is not difficult to verify that C 1 2 , 2 ; n = C n and
C ( n + 1 , 2 ; ( m 1 ) n ) = 2 n + 1 ( m 1 ) n m d n = 2 n + 1 ( m 1 ) n C ( n , m 1 )
for m , n 1 . In [22], it was obtained that
C ( a , b ; z ) = Γ ( b ) Γ ( a ) b a z ( z + a ) z ( z + b ) z + b a exp b a + 0 1 t 1 1 e t 1 t a e a t e b t e z t d t
for ( a ) , ( b ) > 0 and ( z ) 0 . Recently, we discovered in ([23] Theorem 1.1) relations between the Fuss–Catalan numbers A n ( p , r ) and the Catalan–Qi numbers C ( a , b ; n ) , one of which reads that
A n ( p , r ) = r n k = 0 p 1 C k + r p , 1 ; n k = 0 p 2 C k + r + 1 p 1 , 1 ; n
for integers n 0 , p > 1 , and r > 0 . In recent papers [6,22,23,24,25,26,27,28,29,30,31,32], among other things, some properties, including the general expression and a generalization of the asymptotic expansion (1), the monotonicity, logarithmic convexity, (logarithmically) complete monotonicity, minimality, Schur-convexity, product and determinantal inequalities, exponential representations, integral representations, a generating function, connections with the Bessel polynomials and the Bell polynomials of the second kind, and identities, of the Catalan numbers C n , the Catalan function C x , the Catalan–Qi numbers C ( a , b ; n ) , the Catalan–Qi function C ( a , b ; z ) , and the Fuss–Catalan numbers A n ( p , r ) were established.
In this paper, we will introduce a unified generalization of the Catalan numbers C n , the generalized Catalan numbers C ( n , k ) , the Fuss numbers F ( k , n ) , the Fuss–Catalan numbers A n ( p , r ) , and the Catalan–Qi function C ( a , b ; z ) . Hereafter, we will find a product-ratio expression, similar to the product-ratio expression (4), of the unified generalization in terms of the Catalan–Qi function C ( a , b ; z ) . Furthermore, based on the integral representation (3), on the Gauss multiplication formula for the gamma function, and on an integral representation for the logarithm of the gamma function Γ ( z ) , we will derive three integral representations of the unified generalization. Finally, we will establish the logarithmically complete monotonicity of the second order for the unified generalization.

2. A Unified Generalization of the Catalan and Other Numbers

Does there exist a unified and analytic generalization of the Catalan numbers C n , the Fuss numbers F ( m , n ) = C ( n , m ) , the Fuss–Catalan numbers A n ( p , r ) , and the Catalan–Qi function C ( a , b ; z ) ? What is it concretely? In the early morning of September 15th 2015, a unified generalization was framed out eventually and successfully, and which can be described by a five-variable function
Q ( a , b ; p , q ; z ) = Γ ( b ) Γ ( a ) b a ( q p + 1 ) z [ Γ ( z + 1 ) ] q p Γ ( p z + a ) Γ ( q z + b ) ,
where ( a ) , ( b ) > 0 , ( p ) , ( q ) > 0 , and ( z ) 0 . For uniqueness and convenience of referring to the quantity Q ( a , b ; p , q ; z ) , we call Q ( a , b ; p , q ; z ) the Fuss–Catalan–Qi function and, when taking z = n 0 , call Q ( a , b ; p , q ; n ) the Fuss–Catalan–Qi numbers.
It is easy to see that
Q 1 2 , 2 ; 1 , 1 ; n = Q ( 1 , 2 ; 2 , 1 ; n ) = C n , Q ( r , r + 1 ; p , p 1 ; n ) = A n ( p , r ) , Q ( p , p + 1 ; p , p 1 ; n 1 ) = p d n = C ( n , p 1 ) , Q ( a , b ; 1 , 1 ; z ) = C ( a , b ; z ) .
Accordingly, the Fuss–Catalan–Qi function Q ( a , b ; p , q ; z ) is a unified generalization of the Catalan numbers C n , the generalized Catalan numbers C ( n , m ) , the Fuss numbers F ( m , n ) , the Fuss–Catalan numbers A n ( p , r ) , and the Catalan–Qi function C ( a , b ; z ) .
It is easy to see that the Fuss–Catalan–Qi function Q ( a , b ; p , q ; z ) meets
Q ( b , a ; p , q ; z ) = a b 2 ( q p ) z 1 Q ( a , b ; q , p ; z )
and, when p = q or a = b ,
Q ( a , b ; q , p ; z ) Q ( b , a ; p , q ; z ) = 1 .
If only interchanging the role of a and b, then
Q ( a , b ; p , q ; z ) Q ( b , a ; p , q ; z ) = R ( a , b ; 2 p ; z ) R ( b , a ; 2 q ; z ) , S ( a ; p , q ; z ) S ( b ; p , q ; z ) ,
where
R ( a , b ; r ; z ) = Γ ( r z + a ) Γ ( r z + b ) [ Γ ( z + 1 ) ] r
and
S ( c ; p , q ; z ) = [ Γ ( z + 1 ) ] q p Γ ( p z + c ) Γ ( q z + c ) .
If only swapping p and q, then
Q ( a , b ; p , q ; z ) Q ( a , b ; q , p ; z ) = F ( b ; p , q ; z ) F ( a ; p , q ; z ) , G ( a , b ; p ; z ) G ( a , b ; q ; z ) ,
where
F ( c ; p , q ; z ) = [ c z Γ ( c ) ] 2 Γ ( p z + c ) Γ ( q z + c )
and
G ( a , b ; r ; z ) = Γ ( b ) Γ ( a ) b a z Γ ( r z + a ) Γ ( r z + b ) .

3. A Product-Ratio Expression of the Fuss–Catalan–Qi Function

Motivated by the product-ratio expression (4), we now find out a product-ratio expression of the Fuss–Catalan–Qi function Q ( a , b ; p , q ; z ) .
Theorem 1.
For ( a ) , ( b ) > 0 and ( z ) 0 , when p , q N , we have
Q ( a , b ; p , q ; z ) = b a q p + 1 Γ ( b ) Γ ( p + a ) Γ ( a ) Γ ( q + b ) z k = 0 p 1 C k + a p , 1 ; z k = 0 q 1 C k + b q , 1 ; z .
Proof. 
By the Gauss multiplication formula
Γ ( n z ) = n n z 1 / 2 ( 2 π ) ( n 1 ) / 2 k = 0 n 1 Γ z + k n , n N
in ([33] p. 256, 6.1.20), the Fuss–Catalan–Qi function Q ( a , b ; p , q ; z ) can be written as
Q ( a , b ; p , q ; z ) = Γ ( b ) Γ ( a ) b a ( q p + 1 ) z [ Γ ( z + 1 ) ] q p Γ p z + a p Γ q z + b q = Γ ( b ) Γ ( a ) b a ( q p + 1 ) z [ Γ ( z + 1 ) ] q p p p z + a 1 / 2 ( 2 π ) ( p 1 ) / 2 k = 0 p 1 Γ z + k + a p q q z + b 1 / 2 ( 2 π ) ( q 1 ) / 2 k = 0 q 1 Γ z + k + b q = Γ ( b ) Γ ( a ) b a ( q p + 1 ) z p p z + a 1 / 2 ( 2 π ) ( p 1 ) / 2 k = 0 p 1 Γ z + k + a p Γ ( z + 1 ) q q z + b 1 / 2 ( 2 π ) ( q 1 ) / 2 k = 0 q 1 Γ z + k + b q Γ ( z + 1 ) = Γ ( b ) Γ ( a ) b a ( q p + 1 ) z k = 0 q 1 Γ ( 1 ) Γ k + b q q k + b z k = 0 p 1 Γ ( 1 ) Γ k + a p p k + a z p p z + a 1 / 2 ( 2 π ) ( p 1 ) / 2 k = 0 p 1 Γ ( 1 ) Γ k + a p p k + a z Γ z + k + a p Γ ( z + 1 ) q q z + b 1 / 2 ( 2 π ) ( q 1 ) / 2 k = 0 q 1 Γ ( 1 ) Γ k + b q q k + b z Γ z + k + b q Γ ( z + 1 ) = Γ ( b ) Γ ( a ) b a ( q p + 1 ) z k = 0 p 1 Γ a p + k p k = 0 q 1 Γ b q + k q k = 0 p 1 ( k + a ) z k = 0 q 1 ( k + b ) z q z q p z p p p z + a 1 / 2 ( 2 π ) ( p 1 ) / 2 k = 0 p 1 C k + a p , 1 ; z q q z + b 1 / 2 ( 2 π ) ( q 1 ) / 2 k = 0 q 1 C k + b q , 1 ; z = Γ ( b ) Γ ( a ) b a ( q p + 1 ) z Γ ( a ) ( 2 π ) ( p 1 ) / 2 p a 1 / 2 Γ ( b ) ( 2 π ) ( q 1 ) / 2 q b 1 / 2 k = 0 p 1 ( k + a ) k = 0 q 1 ( k + b ) z p a 1 / 2 ( 2 π ) ( p 1 ) / 2 ( 2 π ) ( q 1 ) / 2 q b 1 / 2 k = 0 p 1 C k + a p , 1 ; z k = 0 q 1 C k + b q , 1 ; z = b a ( q p + 1 ) z k = 0 p 1 ( k + a ) k = 0 q 1 ( k + b ) z k = 0 p 1 C k + a p , 1 ; z k = 0 q 1 C k + b q , 1 ; z = b a ( q p + 1 ) z Γ ( b ) Γ ( p + a ) Γ ( a ) Γ ( q + b ) z k = 0 p 1 C k + a p , 1 ; z k = 0 q 1 C k + b q , 1 ; z .
The identity (7) is thus proved. The proof of Theorem 1 is complete. □
Remark 1.
Before getting (7), we did not appreciate the analytic meanings of the form of the product-ratio expression (4) because before catching sight of the unified generalization (5), we did not appreciate the analytic meanings of the form of the Fuss–Catalan numbers A n ( p , r ) in (2).
Remark 2.
From (6) and (7), we derive the identity (4) and
p d n = C ( n , p 1 ) = p n 1 k = 0 p 1 C 1 + k p , 1 ; n 1 k = 0 p 2 C 1 + k + 2 p 1 , 1 ; n 1 .
Remark 3.
When p = q , the product-ratio expression (7) can be reformulated as
Q ( a , b ; q , q ; z ) = K ( a , q , z ) K ( b , q , z ) ,
where
K ( c , q , z ) = Γ ( q + c ) Γ ( 1 + c ) z k = 0 q 1 C k + c q , 1 ; z .
If taking a = b , then
Q ( a , a ; p , q ; z ) = Γ ( p z + a ) [ Γ ( z + 1 ) ] p Γ ( q z + a ) [ Γ ( z + 1 ) ] q = [ Γ ( p + a ) ] z k = 0 p 1 C k + a p , 1 ; z [ Γ ( q + a ) ] z k = 0 q 1 C k + a q , 1 ; z .

4. Integral Representations of the Fuss–Catalan–Qi Function

Making use of the integral representation (3) and the product-ratio expression (7), we now derive the first integral representation of the Fuss–Catalan–Qi function Q ( a , b ; p , q ; z ) .
Theorem 2.
For ( a ) , ( b ) > 0 , and ( z ) 0 , when p , q N , we have
Q ( a , b ; p , q ; z ) = ( 2 π ) ( q p ) / 2 Γ ( b ) Γ ( a ) p a 1 / 2 q b 1 / 2 ( z + 1 ) ( q p ) ( z + 1 / 2 ) + ( a b ) × b a q p + 1 k = 0 p 1 ( a + p z + k ) k = 0 q 1 ( b + q z + k ) z exp { p q 2 + ( b a ) + 0 e z t t [ 1 1 e t 1 t a p 1 e t 1 e t / p e a t / p p e t 1 1 e t 1 t b q 1 e t 1 e t / q e b t / q q e t e t / p p ( 1 e t / p ) e t 1 e t 1 e t 1 e t / p e a t / p + e t / q q ( 1 e t / q ) e t 1 e t 1 e t 1 e t / q e b t / q + p q 2 e t ] d t } .
Proof. 
Making use of the integral representation (3) leads to
k = 0 p 1 C k + a p , 1 ; z = k = 0 p 1 1 Γ k + a p p k + a z z + k + a p z ( z + 1 ) z + 1 k + a p × exp k = 0 p 1 1 k + a p + k = 0 p 1 0 1 t 1 1 e t 1 t k + a p e k + a p t e t e z t d t = 1 k = 0 p 1 Γ k + a p 1 k = 0 p 1 ( k + a ) z k = 0 p 1 ( p z + k + a ) z ( z + 1 ) p ( z + 1 ) ( z + 1 ) a + k = 0 p 1 k p × exp p a k = 0 p 1 k p + 0 e z t t k = 0 p 1 1 1 e t 1 t k + a p e k + a p t e t d t = 1 k = 0 p 1 Γ a p + k p Γ ( a ) Γ ( p + a ) z Γ ( p ( z + 1 ) + a ) Γ ( p z + a ) z ( z + 1 ) a + ( p 1 ) / 2 ( z + 1 ) p ( z + 1 ) × exp p a p 1 2 + 0 e z t t k = 0 p 1 1 1 e t 1 t k + a p e k + a p t e t d t = p a 1 / 2 ( 2 π ) ( p 1 ) / 2 Γ ( a ) Γ ( a ) Γ ( p ) Γ ( p + a ) z Γ ( p ( z + 1 ) + a ) Γ ( p z + a ) Γ ( p ) z 1 ( z + 1 ) p ( z + 1 / 2 ) a + 1 / 2 × exp { p 2 a + 1 2 + 0 e z t t [ 1 1 e t 1 t a p k = 0 p 1 e k + a p t p e t k = 0 p 1 k p e k + a p t + p 1 2 e t ] d t } = p a 1 / 2 ( 2 π ) ( p 1 ) / 2 Γ ( a ) B ( a , p ) B ( a + p z , p ) z 1 ( z + 1 ) p ( z + 1 / 2 ) a + 1 / 2 × exp { p 2 a + 1 2 + 0 e z t t [ 1 1 e t 1 t a p k = 0 p 1 e k + a p t p e t k = 0 p 1 k p e k + a p t + p 1 2 e t ] d t } = p a 1 / 2 ( 2 π ) ( p 1 ) / 2 Γ ( a ) B ( a , p ) B ( a + p z , p ) z 1 ( z + 1 ) p ( z + 1 / 2 ) a + 1 / 2 × exp { p 2 a + 1 2 + 0 e z t t [ 1 1 e t 1 t a p e a t / p 1 e t 1 e t / p p e t p e t / p 1 e t + ( 1 e t ) e t / p p ( 1 e t / p ) 2 e a t / p + p 1 2 e t ] d t } ,
where B ( p , q ) = Γ ( p ) Γ ( q ) Γ ( p + q ) is the classical beta function. Similarly, we also have
k = 0 q 1 C k + b q , 1 ; z = q b 1 / 2 ( 2 π ) ( q 1 ) / 2 Γ ( b ) B ( b , q ) B ( b + q z , q ) z 1 ( z + 1 ) q ( z + 1 / 2 ) b + 1 / 2 × exp { q 2 b + 1 2 + 0 e z t t [ 1 1 e t 1 t b q e b t / q 1 e t 1 e t / q q e t q e t / q 1 e t + ( 1 e t ) e t / q q ( 1 e t / q ) 2 e b t / q + q 1 2 e t ] d t } .
Consequently, we obtain
k = 0 p 1 C k + a p , 1 ; z k = 0 q 1 C k + b q , 1 ; z = ( 2 π ) ( q p ) / 2 ( z + 1 ) ( q p ) ( z + 1 / 2 ) + ( a b ) Γ ( b ) Γ ( a ) p a 1 / 2 q b 1 / 2 × B ( a , p ) B ( a + p z , p ) B ( b + q z , q ) B ( b , q ) z exp { p q 2 + ( b a ) + 0 e z t t [ 1 1 e t 1 t a p e a t / p 1 e t 1 e t / p p e t 1 1 e t 1 t b q e b t / q 1 e t 1 e t / q q e t p e t / p 1 e t + ( 1 e t ) e t / p p ( 1 e t / p ) 2 e a t / p + q e t / q 1 e t + ( 1 e t ) e t / q q ( 1 e t / q ) 2 e b t / q + p q 2 e t ] d t } .
Substituting this into (5) and simplifying yields the integral representation in Theorem 2. The proof of Theorem 2 is complete. □
By the Gauss multiplication formula (8) and an integral representation for the logarithm of the gamma function Γ ( z ) , we can acquire the second integral representation of the Fuss–Catalan–Qi function Q ( a , b ; p , q ; z ) , which is seemingly simpler than the one in Theorem 2.
Theorem 3.
For a , b > 0 and x 0 , when p , q N , we have
Q ( a , b ; p , q ; x ) = ( 2 π ) ( q p ) / 2 e ( p q ) / 2 + b a Γ ( b ) Γ ( a ) b a ( q p + 1 ) x × ( x + 1 ) ( q p ) ( x + 1 / 2 ) p p x + a 1 / 2 q q x + b 1 / 2 k = 0 p 1 x + a + k p x + ( a + k ) / p 1 / 2 k = 0 q 1 x + b + k q x + ( b + k ) / q 1 / 2 × exp 0 β ( t ) ( q p ) e t + 1 e t 1 e t / p e a t / p 1 e t 1 e t / q e b t / q e x t d t ,
where
β ( t ) = 1 t 1 e t 1 1 t + 1 2 .
Proof. 
By Formula (8) and
ln Γ ( z ) = ln 2 π z z 1 / 2 e z + 0 β ( t ) e z t d t
in ([34] (3.22)), we have
ln [ Γ ( x + 1 ) ] q p Γ ( p x + a ) Γ ( q x + b ) = ( q p ) ln Γ ( x + 1 ) + ln Γ p x + a p Γ q x + b q = ( q p ) ln Γ ( x + 1 ) + ln p p x + a 1 / 2 ( 2 π ) ( p 1 ) / 2 k = 0 p 1 Γ x + a + k p q q x + b 1 / 2 ( 2 π ) ( q 1 ) / 2 k = 0 q 1 Γ x + b + k q = ( q p ) ln Γ ( x + 1 ) + ln ( 2 π ) ( q p ) / 2 p p x + a 1 / 2 q q x + b 1 / 2 + k = 0 p 1 ln Γ x + a + k p k = 0 q 1 ln Γ x + b + k q = ( q p ) ln 2 π ( x + 1 ) x + 1 / 2 e ( x + 1 ) + ( q p ) 0 β ( t ) e ( x + 1 ) t d t + ln ( 2 π ) ( q p ) / 2 p p x + a 1 / 2 q q x + b 1 / 2 k = 0 q 1 0 β ( t ) e [ x + ( b + k ) / q ] t d t + k = 0 p 1 ln 2 π x + a + k p x + ( a + k ) / p 1 / 2 e [ x + ( a + k ) / p ] k = 0 q 1 ln 2 π x + b + k q x + ( b + k ) / q 1 / 2 e [ x + ( b + k ) / q ] + k = 0 p 1 0 β ( t ) e [ x + ( a + k ) / p ] t d t = ln ( 2 π ) ( q p ) / 2 p p x + a 1 / 2 q q x + b 1 / 2 ( x + 1 ) ( q p ) ( x + 1 / 2 ) k = 0 p 1 x + a + k p x + ( a + k ) / p 1 / 2 k = 0 q 1 x + b + k q x + ( b + k ) / q 1 / 2 + ( p q ) ( x + 1 ) k = 0 p 1 x + a + k p + k = 0 q 1 x + b + k q + ( q p ) 0 β ( t ) e ( x + 1 ) t d t + 0 β ( t ) e ( x + a / p ) t k = 0 p 1 e k t / p d t 0 β ( t ) e ( x + b / q ) t k = 0 q 1 e k t / q d t = ln ( 2 π ) ( q p ) / 2 p p x + a 1 / 2 q q x + b 1 / 2 ( x + 1 ) ( q p ) ( x + 1 / 2 ) k = 0 p 1 x + a + k p x + ( a + k ) / p 1 / 2 k = 0 q 1 x + b + k q x + ( b + k ) / q 1 / 2 + p q 2 + b a + ( q p ) 0 β ( t ) e ( x + 1 ) t d t + 0 β ( t ) e ( x + a / p ) t 1 e t 1 e t / p d t 0 β ( t ) e ( x + b / q ) t 1 e t 1 e t / q d t = ln ( 2 π ) ( q p ) / 2 p p x + a 1 / 2 q q x + b 1 / 2 ( x + 1 ) ( q p ) ( x + 1 / 2 ) k = 0 p 1 x + a + k p x + ( a + k ) / p 1 / 2 k = 0 q 1 x + b + k q x + ( b + k ) / q 1 / 2 + p q 2 + b a + 0 β ( t ) ( q p ) e t + 1 e t 1 e t / p e a t / p 1 e t 1 e t / q e b t / q e x t d t .
Substituting this into (5) leads to the integral representation (9). □
Only by the integral representation (11), we can establish the third integral representation of the Fuss–Catalan–Qi function Q ( a , b ; p , q ; z ) , which is seemingly simpler than the previous ones.
Theorem 4.
For a , b , p , q > 0 and x 0 , we have
Q ( a , b ; p , q ; x ) = Γ ( b ) Γ ( a ) ( 2 π ) ( q p ) / 2 e p q + b a b a ( q p + 1 ) x ( x + 1 ) ( q p ) ( x + 1 / 2 ) ( p x + a ) p x + a 1 / 2 ( q x + b ) q x + b 1 / 2 × exp 0 β ( t ) ( q p ) e ( x + 1 ) t e ( q x + b ) t + e ( p x + a ) t d t ,
where β ( t ) is defined by (10).
Proof. 
By virtue of (11), we obtain
ln [ Γ ( x + 1 ) ] q p Γ ( p x + a ) Γ ( q x + b ) = ( q p ) ln Γ ( x + 1 ) + ln Γ ( p x + a ) ln Γ ( q x + b ) = ( q p ) ln 2 π ( x + 1 ) x + 1 / 2 e ( x + 1 ) + ( q p ) 0 β ( t ) e ( x + 1 ) t d t + ln 2 π ( p x + a ) p x + a 1 / 2 e ( p x + a ) + 0 β ( t ) e ( p x + a ) t d t ln 2 π ( q x + b ) q x + b 1 / 2 e ( q x + b ) 0 β ( t ) e ( q x + b ) t d t = p q + b a + ln ( 2 π ) ( q p ) / 2 ( x + 1 ) ( q p ) ( x + 1 / 2 ) ( p x + a ) p x + a 1 / 2 ( q x + b ) q x + b 1 / 2 + 0 β ( t ) ( q p ) e ( x + 1 ) t + e ( p x + a ) t e ( q x + b ) t d t .
Substituting this into (5) leads to the integral representation (12). The proof of Theorem 4 is complete. □
Remark 4.
From (6) and the integral representation in Theorem 2, we obtain
A n ( p , r ) = 1 2 π r p r 1 / 2 ( p 1 ) r + 1 / 2 1 ( n + 1 ) n + 3 / 2 k = 0 p 1 ( k + r + p v ) k = 0 p 2 ( k + r + ( p 1 ) v + 1 ) n × exp { 3 2 + 0 e v t t [ 1 1 e t 1 t r p e r p t 1 e t 1 e t / p p e t 1 1 e t 1 t r + 1 p 1 e r + 1 p 1 t 1 e t 1 e t / ( p 1 ) ( p 1 ) e t e t / p p ( 1 e t / p ) e t 1 e t 1 e t 1 e t / p e r p t + e t / ( p 1 ) ( p 1 ) ( 1 e t / ( p 1 ) ) e t 1 e t 1 e t 1 e t / ( p 1 ) e r + 1 p 1 t + 1 2 e t ] d t }
and
C ( n , p 1 ) = 1 2 π p p 1 p + 1 / 2 1 ( n + 1 ) n + 1 / 2 k = 1 p 1 ( k + p n ) k = 0 p 2 ( k + ( p 1 ) n + 2 ) n × exp { 3 2 + 0 e ( n 1 ) t t [ 1 1 e t 1 t 1 1 e t 1 e t / p p e t 1 1 e t 1 t p + 1 p 1 e p + 1 p 1 t 1 e t 1 e t / ( p 1 ) ( p 1 ) e t e t / p p ( 1 e t / p ) e t 1 e t 1 e t 1 e t / p e t + e t / ( p 1 ) ( p 1 ) ( 1 e t / ( p 1 ) ) e t 1 e t 1 e t 1 e t / ( p 1 ) e p + 1 p 1 t + 1 2 e t ] d t } .
Remark 5.
When p = q , the integral representation in Theorem 2 is reduced to
Q ( a , b ; q , q ; z ) = Γ ( b ) Γ ( a ) q a b ( z + 1 ) a b b a k = 0 q 1 a + q z + k b + q z + k z × exp { b a + 0 e z t t [ ( a b ) e t + b q e b t / q a q e a t / q 1 e t 1 e t / q + 1 + e t 1 e t e t / q q ( 1 e t / q ) 1 t 1 e t 1 e t / q e a t / q e b t / q ] d t } .
Remark 6.
By the integral representation (12) and the second relation in (6), we find
A n ( p , r ) = e 2 2 π r ( n + 1 ) ( n + 1 / 2 ) ( p n + r ) p n + r 1 / 2 [ ( p 1 ) n + r + 1 ] ( p 1 ) n + r + 1 / 2 × exp 0 β ( t ) e ( p n + r ) t e ( ( p 1 ) n + r + 1 ) t e ( n + 1 ) t d t .
Remark 7.
The function Q ( a , b ; p , q ; z ) defined by (5) can be rewritten as
Q ( a , b ; p , q ; z ) = Γ ( b ) Γ ( a ) b a ( q p + 1 ) z G ( b , q , z ) G ( a , p , z ) ,
where
G ( c , r , z ) = [ Γ ( z + 1 ) ] r Γ ( r z + c ) .
Taking the logarithm of G ( c , r , z ) and differentiating gives
ln G ( c , r , z ) = r ln Γ ( z + 1 ) ln Γ ( r z + c )
and
d d z [ ln G ( c , r , z ) ] = r [ ψ ( z + 1 ) ψ ( r z + c ) ] .
Therefore, we obtain
d d z ln G ( b , q , z ) G ( a , p , z ) = q [ ψ ( z + 1 ) ψ ( q z + b ) ] p [ ψ ( z + 1 ) ψ ( p z + a ) ] = ( q p ) ψ ( z + 1 ) [ q ψ ( q z + b ) p ψ ( p z + a ) ]
and
d k + 1 d z k + 1 ln G ( b , q , z ) G ( a , p , z ) = ( q p ) ψ ( k ) ( z + 1 ) q k + 1 ψ ( k ) ( q z + b ) + p k + 1 ψ ( k ) ( p z + a )
for k { 0 } N . Further making use of (15) arrives at
( 1 ) k + 1 d k + 1 d z k + 1 ln G ( b , q , z ) G ( a , p , z ) = 0 t k 1 e t ( q p ) e ( z + 1 ) t q k + 1 e ( q z + b ) t + p k + 1 e ( p z + a ) t d t
for k N . Consequently, for k N , we have
( 1 ) k + 1 d k + 1 ln Q ( a , b ; p , q ; z ) d z k + 1 = 0 t k 1 e t ( q p ) e ( z + 1 ) t q k + 1 e ( q z + b ) t + p k + 1 e ( p z + a ) t d t .

5. Properties of the Fuss–Catalan–Qi Function

Recall from ([35] Chapter XIII), ([36] Chapter 1), and ([37] Chapter IV) that an infinitely differentiable function f is said to be completely monotonic on an interval I if it satisfies 0 ( 1 ) k f ( k ) ( x ) < on I for all k 0 .
Recall from [38,39] that an infinitely differentiable and positive function f is said to be logarithmically completely monotonic on an interval I if 0 ( 1 ) k [ ln f ( x ) ] ( k ) < holds on I for all k N . For more information on logarithmically completely monotonic functions, please refer to [40,41,42,43] and plenty of references therein.
Recall from [38] that if f ( k ) ( x ) for some nonnegative integer k is completely monotonic on an interval I but f ( k 1 ) ( x ) is not completely monotonic on I, then f ( x ) is called a completely monotonic function of the k-th order on an interval I.
Stimulated by the above definitions and main results in [44], we now introduce the concept of logarithmically completely monotonic functions of the k-th order.
Definition 1.
For a positive function f ( x ) on an interval I, if [ ln f ( x ) ] ( k ) for some nonnegative integer k is completely monotonic on an interval I but [ ln f ( x ) ] ( k 1 ) is not completely monotonic on I, then we call f ( x ) a logarithmically completely monotonic function of the k-th order on I.
In terms of the terminology of logarithmically completely monotonic functions of the k-th order, we can state the main results of this section as the following theorem.
Theorem 5.
The function
Q ( a , b ; q , q ; x ) = Γ ( b ) Γ ( a ) b a x Γ ( q x + a ) Γ ( q x + b ) , a , b , p > 0 , x 0
satisfies the following conclusions:
1. 
if a < b and q ln b ln a ψ ( b ) ψ ( a ) , the function Q ( a , b ; q , q ; x ) is increasing on [ 0 , ) ;
2. 
if a > b and q ln b ln a ψ ( b ) ψ ( a ) , the function Q ( a , b ; q , q ; x ) is decreasing on [ 0 , ) ;
3. 
if a < b and q > ln b ln a ψ ( b ) ψ ( a ) , the function Q ( a , b ; q , q ; x ) has a unique minimum on ( 0 , ) ;
4. 
if a > b and q > ln b ln a ψ ( b ) ψ ( a ) , the function Q ( a , b ; q , q ; x ) has a unique maximum on ( 0 , ) ;
5. 
if and only if a b , the function [ Q ( a , b ; q , q ; x ) ] ± is logarithmically completely monotonic of the second order on [ 0 , ) ; in particular, if and only if a b , the function [ Q ( a , b ; q , q ; x ) ] ± 1 is logarithmically convex on [ 0 , ) .
Proof. 
Taking the logarithm on both sides of Equation (5) and differentiating with respect to x yields
d [ ln Q ( a , b ; p , q ; x ) ] d x = ( q p + 1 ) ln b a + ( q p ) ψ ( x + 1 ) + p ψ ( p x + a ) q ψ ( q x + b )
and
d 2 [ ln Q ( a , b ; p , q ; x ) ] d x 2 = ( q p ) ψ ( x + 1 ) + p 2 ψ ( p x + a ) q 2 ψ ( q x + b ) .
It is not difficult to see that
lim x 0 + d [ ln Q ( a , b ; p , q ; x ) ] d x = ( q p + 1 ) ln b a + ( q p ) ψ ( 1 ) + p ψ ( a ) q ψ ( b )
and
lim x d [ ln Q ( a , b ; p , q ; x ) ] d x = ( q p + 1 ) ln b a + lim x { ( q p ) [ ln ( x + 1 ) 1 2 ( x + 1 ) n = 1 B 2 n 2 n ( x + 1 ) 2 n ] + p [ ln ( p x + a ) 1 2 ( p x + a ) n = 1 B 2 n 2 n ( p x + a ) 2 n ] q ln ( q x + b ) 1 2 ( q x + b ) n = 1 B 2 n 2 n ( q x + b ) 2 n } = ( q p + 1 ) ln b a + lim x [ ( q p ) ln ( x + 1 ) + p ln ( p x + a ) q ln ( q x + b ) ] + lim x { ( p q ) 1 2 ( x + 1 ) + n = 1 B 2 n 2 n ( x + 1 ) 2 n p 1 2 ( p x + a ) + n = 1 B 2 n 2 n ( p x + a ) 2 n + q 1 2 ( q x + b ) + n = 1 B 2 n 2 n ( q x + b ) 2 n } = ( q p + 1 ) ln b a + lim x [ ( q p ) ln ( x + 1 ) + p ln ( p x + a ) q ln ( q x + b ) ] = ( q p + 1 ) ln b a + p ln p q ln q = ln b a q p + 1 p p q q ,
where the asymptotic expansion
ψ ( z ) ln z 1 2 z n = 1 B 2 n 2 n z 2 n
as z in | arg z | < π (see [33] p. 259, 6.3.18) was used, and B k stands for the Bernoulli numbers that are defined by
x e x 1 = k = 0 B k x k k ! .
When p = q , making use of
ψ ( k ) ( z ) = ( 1 ) k + 1 0 t k 1 e t e z t d t , ( z ) > 0 , k N
in ([33] p. 260, 6.4.1) leads to
d 2 [ ln Q ( a , b ; q , q ; x ) ] d x 2 = q 2 [ ψ ( q x + a ) ψ ( q x + b ) ] = q 2 0 t 1 e t e q x t e a t e b t d t ,
which means that the derivative ± d 2 [ ln Q ( a , b ; q , q ; x ) ] d x 2 is completely monotonic on [ 0 , ) if and only if a b . Hence, the first derivative ± d [ ln Q ( a , b ; q , q ; x ) ] d x is increasing on [ 0 , ) if and only if a b . Meanwhile, the limits (13) and (14) become
lim x 0 + d [ ln Q ( a , b ; q , q ; x ) ] d x = ln b a + q [ ψ ( a ) ψ ( b ) ] = [ ψ ( a ) ψ ( b ) ] q ln b ln a ψ ( b ) ψ ( a )
and
lim x d [ ln Q ( a , b ; q , q ; x ) ] d x = ln b a .
As a result,
  • if a < b and q ln b ln a ψ ( b ) ψ ( a ) , the first derivative d [ ln Q ( a , b ; q , q ; x ) ] d x is non-negative on [ 0 , ) ;
  • if a < b and q > ln b ln a ψ ( b ) ψ ( a ) , the first derivative d [ ln Q ( a , b ; q , q ; x ) ] d x has a unique zero, which is a minimum point of ln Q ( a , b ; q , q ; x ) , on ( 0 , ) ;
  • if a > b and q ln b ln a ψ ( b ) ψ ( a ) , the first derivative d [ ln Q ( a , b ; q , q ; x ) ] d x is non-positive on [ 0 , ) ;
  • if a > b and q > ln b ln a ψ ( b ) ψ ( a ) , the first derivative d [ ln Q ( a , b ; q , q ; x ) ] d x has a unique zero, which is a maximum point of ln Q ( a , b ; q , q ; x ) , on ( 0 , ) .
Therefore, the conclusions on Q ( a , b ; q , q ; x ) are thus proved. The proof of Theorem 5 is complete. □

6. Remarks

Finally, we list additional several remarks.
Remark 8.
Combining Theorem 5 and the last relation in (6), we obtain that the Catalan–Qi function C ( a , b ; x ) is a logarithmically completely monotonic function of the second order.
Remark 9.
Similar to the introduction of the Catalan–Qi function C ( a , b ; z ) in [22], we had better leave the combinatorial interpretation of the Fuss–Catalan–Qi function Q ( a , b ; p , q ; z ) to combinatorialists and number theorists.
Remark 10.
In recent years, there were many results on the Catalan numbers C n and the Catalan–Qi numbers C ( a , b ; n ) in [45,46,47,48,49,50,51,52,53] and the closely related references therein.
Remark 11.
This paper is a corrected and revised version of the preprint [54].

7. Conclusions

In this paper, we introduce a unified generalization of the Catalan numbers, the Fuss numbers, the Fuss–Catalan numbers, and the Catalan–Qi function, and discover some properties of the unified generalization, including a product-ratio expression of the unified generalization in terms of the Catalan–Qi functions, three integral representations of the unified generalization, and the logarithmically complete monotonicity of the second order for a special case of the unified generalization.

Author Contributions

The authors contributed equally to this work. All authors read and approved the final manuscript.

Funding

This research received no external funding.

Acknowledgments

The authors thank anonymous referees for their careful corrections to and valuable comments on the original version of this paper.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Koshy, T. Catalan Numbers with Applications; Oxford University Press: Oxford, UK, 2009. [Google Scholar]
  2. Stanley, R.P. Catalan Numbers; Cambridge University Press: New York, NY, USA, 2015. [Google Scholar]
  3. Stanley, R.P. Enumerative Combinatorics; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
  4. Graham, R.L.; Knuth, D.E.; Patashnik, O. Concrete Mathematics—A Foundation for Computer Science, 2nd ed.; Addison–Wesley Publishing Company: Reading, MA, USA, 1994. [Google Scholar]
  5. Vardi, I. Computational Recreations in Mathematica; Addison–Wesley: Redwood City, CA, USA, 1991. [Google Scholar]
  6. Qi, F.; Mahmoud, M.; Shi, X.-T.; Liu, F.-F. Some properties of the Catalan–Qi function related to the Catalan numbers. SpringerPlus 2016, 5, 1126. [Google Scholar] [CrossRef]
  7. Elezović, N. Asymptotic expansions of gamma and related functions, binomial coefficients, inequalities and means. J. Math. Inequal. 2015, 9, 1001–1054. [Google Scholar] [CrossRef]
  8. Hilton, P.; Pedersen, J. Catalan numbers, their generalization, and their uses. Math. Intell. 1991, 13, 64–75. [Google Scholar] [CrossRef]
  9. Klarner, D.A. Correspondences between plane trees and binary sequences. J. Combin. Theory 1970, 9, 401–411. [Google Scholar] [CrossRef]
  10. Fuss, N.I. Solutio quaestionis, quot modis polygonum n laterum in polygona m laterum, per diagonales resolvi queat. Nova Acta Acad. Sci. Imp. Petropolitanae 1791, 9, 243–251. [Google Scholar]
  11. Alexeev, N.; Götze, F.; Tikhomirov, A. Asymptotic distribution of singular values of powers of random matrices. Lith. Math. J. 2010, 50, 121–132. [Google Scholar] [CrossRef]
  12. Aval, J.-C. Multivariate Fuss–Catalan numbers. Discret. Math. 2008, 308, 4660–4669. [Google Scholar] [CrossRef]
  13. Gordon, I.G.; Griffeth, S. Catalan numbers for complex reflection groups. Am. J. Math. 2012, 134, 1491–1502. [Google Scholar] [CrossRef]
  14. Bisch, D.; Jones, V. Algebras associated to intermediate subfactors. Invent. Math. 1997, 128, 89–157. [Google Scholar]
  15. Lin, C.-H. Some combinatorial interpretations and applications of Fuss–Catalan numbers. ISRN Discret. Math. 2011, 2011, 534628. [Google Scholar] [CrossRef]
  16. Liu, D.-Z.; Song, C.-W.; Wang, Z.-D. On explicit probability densities associated with Fuss–Catalan numbers. Proc. Am. Math. Soc. 2011, 139, 3735–3738. [Google Scholar] [CrossRef]
  17. Młotkowski, W. Fuss–Catalan numbers in noncommutative probability. Doc. Math. 2010, 15, 939–955. [Google Scholar]
  18. Młotkowski, W.; Penson, K.A.; Zyczkowski, K. Densities of the Raney distributions. Doc. Math. 2013, 18, 1573–1596. [Google Scholar]
  19. Przytycki, J.H.; Sikora, A.S. Polygon dissections and Euler, Fuss, Kirkman, and Cayley numbers. J. Combin. Theory Ser. A 2000, 92, 68–76. [Google Scholar] [CrossRef]
  20. Stump, C. q,t-Fuß-Catalan numbers for complex reflection groups. In Proceedings of the 20th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008), Valparaiso, Chile, 23–27 June 2008; pp. 295–306. [Google Scholar]
  21. Stump, C. q,t-Fuß-Catalan numbers for finite reflection groups. J. Algebr. Combin. 2010, 32, 67–97. [Google Scholar] [CrossRef]
  22. Qi, F.; Shi, X.-T.; Mahmoud, M.; Liu, F.-F. The Catalan numbers: A generalization, an exponential representation, and some properties. J. Comput. Anal. Appl. 2017, 23, 937–944. [Google Scholar]
  23. Qi, F.; Cerone, P. Some properties of the Fuss–Catalan numbers. Mathematics 2018, 6, 277. [Google Scholar] [CrossRef]
  24. Qi, F.; Shi, X.-T.; Liu, F.-F. An integral representation, complete monotonicity, and inequalities of the Catalan numbers. Filomat 2018, 32, 575–587. [Google Scholar] [CrossRef]
  25. Liu, F.-F.; Shi, X.-T.; Qi, F. A logarithmically completely monotonic function involving the gamma function and originating from the Catalan numbers and function. Glob. J. Math. Anal. 2015, 3, 140–144. [Google Scholar] [CrossRef]
  26. Mahmoud, M.; Qi, F. Three identities of the Catalan–Qi numbers. Mathematics 2016, 4, 35. [Google Scholar] [CrossRef]
  27. Qi, F.; Guo, B.-N. Logarithmically complete monotonicity of a function related to the Catalan–Qi function. Acta Univ. Sapientiae Math. 2016, 8, 93–102. [Google Scholar] [CrossRef]
  28. Qi, F.; Guo, B.-N. Logarithmically complete monotonicity of Catalan–Qi function related to Catalan numbers. Cogent Math. 2016, 3, 1179379. [Google Scholar] [CrossRef]
  29. Qi, F.; Guo, B.-N. Some properties and generalizations of the Catalan, Fuss, and Fuss–Catalan numbers. Mathematical Analysis and Applications: Selected Topics, 1st ed.; Ruzhansky, M., Dutta, H., Agarwal, R.P., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; Chapter 5; pp. 101–133. [Google Scholar]
  30. Qi, F.; Shi, X.-T.; Liu, F.-F.; Kruchinin, D.V. Several formulas for special values of the Bell polynomials of the second kind and applications. J. Appl. Anal. Comput. 2017, 7, 857–871. [Google Scholar]
  31. Qi, F.; Shi, X.-T.; Mahmoud, M.; Liu, F.-F. Schur-convexity of the Catalan–Qi function related to the Catalan numbers. Tbilisi Math. J. 2016, 9, 141–150. [Google Scholar] [CrossRef]
  32. Shi, X.-T.; Liu, F.-F.; Qi, F. An integral representation of the Catalan numbers. Glob. J. Math. Anal. 2015, 3, 130–133. [Google Scholar] [CrossRef]
  33. Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; National Bureau of Standards: Washington, DC, USA, 1972.
  34. Temme, N.M. Special Functions: An Introduction to Classical Functions of Mathematical Physics; John Wiley & Sons, Inc.: New York, NY, USA, 1996. [Google Scholar]
  35. Mitrinović, D.S.; Pečarić, J.E.; Fink, A.M. Classical and New Inequalities in Analysis; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1993. [Google Scholar]
  36. Schilling, R.L.; Song, R.; Vondraček, Z. Bernstein Functions—Theory and Applications, 2nd ed.; Walter de Gruyter: Berlin, Germany, 2012. [Google Scholar]
  37. Widder, D.V. The Laplace Transform; Princeton University Press: Princeton, NJ, USA, 1941. [Google Scholar]
  38. Atanassov, R.D.; Tsoukrovski, U.V. Some properties of a class of logarithmically completely monotonic functions. Dokladi na Bolgarskata Akademiya na Naukite 1988, 41, 21–23. [Google Scholar]
  39. Qi, F.; Chen, C.-P. A complete monotonicity property of the gamma function. J. Math. Anal. Appl. 2004, 296, 603–607. [Google Scholar] [CrossRef]
  40. Qi, F.; Guo, S.; Guo, B.-N. Complete monotonicity of some functions involving polygamma functions. J. Comput. Appl. Math. 2010, 233, 2149–2160. [Google Scholar] [CrossRef]
  41. Qi, F.; Li, W.-H. A logarithmically completely monotonic function involving the ratio of gamma functions. J. Appl. Anal. Comput. 2015, 5, 626–634. [Google Scholar]
  42. Qi, F.; Luo, Q.-M.; Guo, B.-N. Complete monotonicity of a function involving the divided difference of digamma functions. Sci. China Math. 2013, 56, 2315–2325. [Google Scholar] [CrossRef]
  43. Qi, F.; Wei, C.-F.; Guo, B.-N. Complete monotonicity of a function involving the ratio of gamma functions and applications. Banach J. Math. Anal. 2012, 6, 35–44. [Google Scholar] [CrossRef]
  44. Guo, B.-N.; Qi, F. A property of logarithmically absolutely monotonic functions and the logarithmically complete monotonicity of a power-exponential function. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 2010, 72, 21–30. [Google Scholar]
  45. Yin, L.; Qi, F. Several series identities involving the Catalan numbers. Trans. A. Razmadze Math. Inst. 2018, 172, 466–474. [Google Scholar] [CrossRef]
  46. Qi, F. An improper integral, the beta function, the Wallis ratio, and the Catalan numbers. Probl. Anal. Issues Anal. 2018, 7, 104–115. [Google Scholar] [CrossRef]
  47. Qi, F. Parametric integrals, the Catalan numbers, and the beta function. Elem. Math. 2017, 72, 103–110. [Google Scholar] [CrossRef]
  48. Qi, F. Some properties of the Catalan numbers. Ars Combin. 2022. in press. Available online: https://www.researchgate.net/publication/328891537 (accessed on 4 May 2019).
  49. Qi, F.; Akkurt, A.; Yildirim, H. Catalan numbers, k-gamma and k-beta functions, and parametric integrals. J. Comput. Anal. Appl. 2018, 25, 1036–1042. [Google Scholar]
  50. Qi, F.; Guo, B.-N. Integral representations of the Catalan numbers and their applications. Mathematics 2017, 5, 40. [Google Scholar] [CrossRef]
  51. Qi, F.; Zou, Q.; Guo, B.-N. Some identities and a matrix inverse related to the Chebyshev polynomials of the second kind and the Catalan numbers. Available online: https://doi.org/10.20944/preprints201703.0209.v2 (accessed on 4 May 2019).
  52. Zou, Q. Analogues of several identities and supercongruences for the Catalan–Qi numbers. J. Inequal. Spec. Funct. 2016, 7, 235–241. [Google Scholar]
  53. Zou, Q. The q-binomial inverse formula and a recurrence relation for the q-Catalan–Qi numbers. J. Math. Anal. 2017, 8, 176–182. [Google Scholar]
  54. Qi, F.; Shi, X.-T.; Cerone, P. A unified generalization of the Catalan, Fuss, Fuss–Catalan numbers and Catalan–Qi function. Available online: https://doi.org/10.13140/RG.2.1.3198.6000 (accessed on 4 May 2019).

Share and Cite

MDPI and ACS Style

Qi, F.; Shi, X.-T.; Cerone, P. A Unified Generalization of the Catalan, Fuss, and Fuss—Catalan Numbers. Math. Comput. Appl. 2019, 24, 49. https://doi.org/10.3390/mca24020049

AMA Style

Qi F, Shi X-T, Cerone P. A Unified Generalization of the Catalan, Fuss, and Fuss—Catalan Numbers. Mathematical and Computational Applications. 2019; 24(2):49. https://doi.org/10.3390/mca24020049

Chicago/Turabian Style

Qi, Feng, Xiao-Ting Shi, and Pietro Cerone. 2019. "A Unified Generalization of the Catalan, Fuss, and Fuss—Catalan Numbers" Mathematical and Computational Applications 24, no. 2: 49. https://doi.org/10.3390/mca24020049

Article Metrics

Back to TopTop