Next Article in Journal
A Robust FOPD Controller That Allows Faster Detection of Defects for Touch Panels
Previous Article in Journal
Testing Homogeneity of Proportion Ratios for Stratified Bilateral Correlated Data
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Global Behavior of Solutions to a Higher-Dimensional System of Difference Equations with Lucas Numbers Coefficients

by
Messaoud Berkal
1,*,
Juan Francisco Navarro
1 and
Raafat Abo-Zeid
2
1
Department of Applied Mathematics, University of Alicante, San Vicente del Raspeig, 03690 Alicante, Spain
2
Department of Basic Science, The Higher Institute for Engineering & Technology, Al-Obour, Cairo 10587, Egypt
*
Author to whom correspondence should be addressed.
Math. Comput. Appl. 2024, 29(2), 28; https://doi.org/10.3390/mca29020028
Submission received: 11 March 2024 / Revised: 24 March 2024 / Accepted: 29 March 2024 / Published: 31 March 2024

Abstract

:
In this paper, we derive the well-defined solutions to a θ -dimensional system of difference equations. We show that, the well-defined solutions to that system are represented in terms of Fibonacci and Lucas sequences. Moreover, we study the global stability of the solutions to that system. Finally, we give some numerical examples which confirm our theoretical results.

1. Introduction

Difference equations and systems of difference equations are of great importance in the field of mathematics as well as in other sciences. The applications of the difference equations appear as discrete mathematical models of many phenomena such as in biology, economics, ecology, control theory, physics, engineering, population dynamics and so forth [1,2,3,4,5,6]. This is the reason why, recently, many scientists have devoted their work to the study of the theory of difference equations, the boundedness, the periodicity and the global asymptotic stability of their solutions [7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31].
In the following, we will use the following notations: N for the set of natural numbers, and N ν for the set { n Z : n ν } . Recently, there has been a growing interest in the study of finding closed-form solutions of difference equations and systems of difference equations. Some of the forms of solutions of these equations are representable via well-known integer sequences such as Fibonacci numbers (see, for example [26,32]), Horadam numbers (see, for example, [30,31]), Lucas numbers (see, for example [25,27,33]), Pell numbers and Padovan numbers (see, for example [34,35,36]), But in this paper, we present the solution in the form of Lucas sequences.
In [32], the authors represented the general solution of the following difference equation
x n + 1 = 1 1 + x n , n N 0 ,
in terms of the initial value x 0 and the Fibonacci sequence. Namely, it was proved by induction that every well-defined solution of Equation (1) can be written in the following form
x n = F n + F n 1 x 0 F n + 1 + F n x 0 , n N 0 ,
where { F n } n = 0 is Fibonacci sequence. They also proved that, every well-defined solution of the equation
x n + 1 = 1 1 + x n , n N 0 ,
can be written in the following form
x n = F n + F ( n 1 ) x 0 F ( n + 1 ) + F n x 0 , n N 0 ,
where the terms of the Fibonacci sequence with negative indices are calculated by the formula
F n = F n + 2 F n + 1 , n N 0 ,
with F 0 = 0 and F 1 = 1 .
Stevic [30] represented the general solution of the following bilinear system of difference equations
x n + 1 = α + β y n γ + σ y n , y n + 1 = α + β x n γ + σ x n ,
in terms of the initial values x 0 , y 0 and the generalized Fibonacci sequence.
In [26], Khelifa and Halim analyzed the general solution to the system of difference equations
x n + 1 ( j ) = F m + 2 + F m + 1 x n k ( ( j + 1 ) mod ( p ) ) F m + 3 + F m + 2 x n k ( ( j + 1 ) mod ( p ) ) ,
where n , m N 0 , j = 1 , , p , and ( F n ) n = 0 + is Fibonacci sequence. They expressed the solution to this system in terms of the Fibonacci sequence.
In this paper, we derive the well-defined solutions to the θ -dimensional system of difference equations of the form
x n + 1 ( q ) = L m + 2 + L m + 1 x n k ( ( q + 1 ) mod ( θ ) ) L m + 3 + L m + 2 x n k ( ( q + 1 ) mod ( θ ) ) , n N 0 ,
where k N 0 , m Z , q = 1 , , θ , θ N , ( L n ) n = 0 + is Lucas sequence, and the initial values x i ( q ) , i = 0 , , k are real numbers, q = 1 , , θ .
Clearly, our system generalizes the equations and systems studied in [25,27,32,33].

2. Preliminaries

Fibonacci sequence [6,37] is defined by
F n + 1 = F n + F n 1 , n N ,
where F 0 = 0 and F 1 = 1 . The solution to Equation (4) is given by the Binet formula of Fibonacci sequence is given by
F n = α n β n α β ,
where
α = 1 + 5 2 , β = 1 5 2 .
Here, α is the so-called golden number.
Lucas sequence is the sequence of integer numbers defined by the recurrence relation
L n + 1 = L n + L n 1 , n N ,
with initial conditions L 0 = 2 and L 1 = 1 . The Binet formula for the Lucas sequence is given by
L n = α n + β n .
The formula of terms with negative indices in the Lucas sequence is
L n = ( 1 ) n L n , n = 1 , 2 , .
Now, we list a set of properties concerning Fibonacci and Lucas sequences that will be used through the paper [6,37].
Propertiesn 1.
Suppose that ( F n ) n = 0 + and ( L n ) n = 0 + are Fibonacci and Lucas sequences, and let η , κ N . Then
1. 
L η + 1 L ( κ 1 ) η + L η L ( κ 1 ) η 1 = 5 F κ η ,
2. 
L η L ( κ 1 ) η + L η 1 L ( κ 1 ) η 1 = 5 F κ η 1 ,
3. 
F κ + 1 L η κ + F κ L η ( κ + 1 ) = L η ,
4. 
F κ L η + 3 + F κ 1 L η + 2 = L κ + η + 2 ,
5. 
L κ ( η + 2 ) 1 + L κ ( η + 2 ) + 1 = 5 F κ ( η + 2 ) ,
6. 
L κ ( η + 2 ) 2 L κ ( η + 2 ) 1 L κ ( η + 2 ) + 1 = 5 ( 1 ) κ ( η + 2 ) ,
7. 
L κ L η ( κ 1 ) + L ( κ 1 ) L η κ = 5 F η ,
8. 
F κ F η ( κ 1 ) + F κ 1 F η κ = F η ,
Propertiesn 2.
Suppose that ( F n ) n = 0 + and ( L n ) n = 0 + are Fibonacci and Lucas sequences, and let η , κ N . Then
1. 
5 F 2 κ η + ( 1 ) κ L κ + 1 L κ ( 2 η + 1 ) = ( 1 ) κ L κ L κ ( 2 η + 1 ) + 1 ,
2. 
L κ ( 2 η + 1 ) L κ + 1 F 2 κ η = L κ F 2 κ η 1 ,
3. 
L κ ( 2 η 1 ) 1 + ( 1 ) κ L κ + 1 F 2 κ η 1 = ( 1 ) κ L κ F 2 κ η ,
Theorem 3
([26]). Let ( u n ) n θ + 1 be a solution to Equation
u n + 1 = F θ ( m + 2 ) + F θ ( m + 2 ) 1 u n ( θ 1 ) F θ ( m + 2 ) + 1 + F θ ( m + 2 ) u n ( θ 1 ) , n N 0 .
Then for n N 0 ,
u θ n + j = F θ n ( m + 2 ) + F θ n ( m + 2 ) 1 u j F θ n ( m + 2 ) + 1 + F θ n ( m + 2 ) u j ,
where θ , m N , j { 0 , 1 , , θ 1 } .
Proof. 
The proof of this theorem can be found in [26], where it is similar to Equation (17) there. □

3. Main Results

In this section, we establish the form of the solution to system (3).
Using the transformation
X n ( q ) = x ( k + 1 ) n t ( q ) , n N 0 ,
where t { 0 , 1 , , k } and q { 1 , 2 , , θ } , we can write system (3) as
X n + 1 ( 1 ) = L m + 2 + L m + 1 X n ( 2 ) L m + 3 + L m + 2 X n ( 2 ) , X n + 1 ( 2 ) = L m + 2 + L m + 1 X n ( 3 ) L m + 3 + L m + 2 X n ( 3 ) , X n + 1 ( θ ) = L m + 2 + L m + 1 X n ( 1 ) L m + 3 + L m + 2 X n ( 1 ) , n N 0 .

3.1. Solvability of System (8)

In this section, we shall derive the solution to system (8).
If we use the second recurrence relation in system (8) in the first, we obtain
X n + 1 ( 1 ) = F 2 m + 4 + F 2 m + 3 X n 1 ( 3 ) F 2 m + 5 + F 2 m + 4 X n 1 ( 3 ) , n 1 .
The substitution of X n 1 ( 3 ) into X n + 1 ( 1 ) leads to
X n + 1 ( 1 ) = L 3 m + 6 + L 3 m + 5 X n 2 ( 4 ) L 3 m + 7 + L 3 m + 6 X n 2 ( 4 ) , n 2 .
Similarly, if we replace X n 1 ( 4 ) into X n + 1 ( 1 ) , we get
X n + 1 ( 1 ) = F 4 m + 8 + F 4 m + 7 x n 3 ( 5 ) F 4 m + 9 + F 4 m + 8 X n 3 ( 5 ) , n 3 .
Proceeding in the same manner, and using Property 1, system (8) can be written in the following form:
X n + 1 ( 1 ) = F 2 p ( m + 2 ) + F 2 p ( m + 2 ) 1 X n ( 2 p 1 ) ( 1 ) F 2 p ( m + 2 ) + 1 + F 2 p ( m + 2 ) X n ( 2 p 1 ) ( 1 ) , n 2 p 1 ,
when θ = 2 p , and
X n + 1 ( 1 ) = L ( 2 p + 1 ) ( m + 2 ) + L ( 2 p + 1 ) ( m + 2 ) 1 X n 2 p ( 1 ) L ( 2 p + 1 ) ( m + 2 ) + 1 + L ( 2 p + 1 ) ( m + 2 ) X n 2 p ( 1 ) , n 2 p ,
when θ = 2 p + 1 , where p N .

3.1.1. Case θ = 2 p

Here, we consider the case θ = 2 p . Using Theorem 3, the solution of Equation (9) can be written as
X 2 p n + j ( 1 ) = F 2 p n ( m + 2 ) + F 2 p n ( m + 2 ) 1 X j ( 1 ) F 2 p n ( m + 2 ) + 1 + F 2 p n ( m + 2 ) X j ( 1 ) , n N 0 ,
where p N , m Z and j { 0 , 1 , , 2 p } .
Theorem 4.
Let X n ( 1 ) , X n ( 2 ) , , X n ( 2 p ) n 0 be a solution to system (8). Then
X 2 p n + j ( q ) = L 2 p ( m + 2 ) n + j ( m + 2 ) + L 2 p ( m + 2 ) n + j ( m + 2 ) 1 X 0 ( s ) L 2 p ( m + 2 ) n + j ( m + 2 ) + 1 + L 2 p ( m + 2 ) n + j ( m + 2 ) X 0 ( s ) , j { 1 , 3 , , 2 p 1 } ,
and
X 2 p n + j ( q ) = F 2 p ( m + 2 ) n + j ( m + 2 ) + F 2 p ( m + 2 ) n + j ( m + 2 ) 1 X 0 ( s ) F 2 p ( m + 2 ) n + j ( m + 2 ) + 1 + F 2 p ( m + 2 ) n + j ( m + 2 ) X 0 ( s ) , j { 0 , 2 , , 2 p 2 } ,
where n N 0 , s = ( q + j ) mod ( 2 p ) and q { 1 , 2 , , 2 p } .
Proof. 
Let X n ( 1 ) , X n ( 2 ) , , X n 2 p n 0 be a solution to system (8). Then
X 2 p n + j ( 1 ) = F 2 p n ( m + 2 ) + F 2 p n ( m + 2 ) 1 X j ( 1 ) F 2 p n ( m + 2 ) + 1 + F 2 p n ( m + 2 ) X j ( 1 ) , n N 0 .
We consider two different situations, depending on whether j is even or odd.
  • When j is odd, we have that
    X j ( 1 ) = L j ( m + 2 ) + L j ( m + 2 ) 1 X 0 ( 1 + j ) L j ( m + 2 ) + 1 + L j ( m + 2 ) X 0 ( 1 + j ) .
    This implies that for j { 1 , 3 , , 2 p 1 } we get
    X 2 p n + j ( 1 ) = ( L j ( m + 2 ) + 1 + L j ( m + 2 ) X 0 ( 1 + j ) ) L 2 p ( m + 2 ) n + j ( m + 2 ) j ( m + 2 ) ( L j ( m + 2 ) + 1 + L j ( m + 2 ) X 0 ( 1 + j ) ) L 2 p ( m + 2 ) n + j ( m + 2 ) j ( m + 2 ) + 1 + ( L j ( m + 2 ) + L j ( m + 2 ) 1 X 0 ( 1 + j ) ) L 2 p ( m + 2 ) n + j ( m + 2 ) j ( m + 2 ) 1 + ( L j ( m + 2 ) + L j ( m + 2 ) 1 X 0 ( 1 + j ) ) L 2 p ( m + 2 ) n + j ( m + 2 ) j ( m + 2 ) , = L 2 p ( m + 2 ) n + j ( m + 2 ) + L 2 p ( m + 2 ) n + j ( m + 2 ) 1 X 0 ( 1 + j ) L 2 p ( m + 2 ) n + j ( m + 2 ) + 1 + L 2 p ( m + 2 ) n + j ( m + 2 ) X 0 ( 1 + j ) .
  • Similarly, for j { 0 , 2 , , 2 p 2 } , we get
    X 2 p n + j ( 1 ) = F 2 p ( m + 2 ) n + j ( m + 2 ) + F 2 p ( m + 2 ) n + j ( m + 2 ) 1 X 0 ( 1 + j ) F 2 p ( m + 2 ) n + j ( m + 2 ) + 1 + F 2 p ( m + 2 ) n + j ( m + 2 ) X 0 ( 1 + j ) .
Then for the solution X n ( 1 ) , X n ( 2 ) , , X n ( 2 p ) n 0 , we can write
X 2 p n + j ( q ) = L 2 p ( m + 2 ) n + j ( m + 2 ) + L 2 p ( m + 2 ) n + j ( m + 2 ) 1 X 0 ( s ) L 2 p ( m + 2 ) n + j ( m + 2 ) + 1 + L 2 p ( m + 2 ) n + j ( m + 2 ) X 0 ( s ) , j { 1 , 3 , , 2 p 1 } ,
and
X 2 p n + j ( q ) = F 2 p ( m + 2 ) n + j ( m + 2 ) + F 2 p ( m + 2 ) n + j ( m + 2 ) 1 X 0 ( s ) F 2 p ( m + 2 ) n + j ( m + 2 ) + 1 + F 2 p ( m + 2 ) n + j ( m + 2 ) X 0 ( s ) , j { 0 , 2 , , 2 p 2 } ,
where n N 0 , s = ( q + j ) mod ( 2 p ) and q { 1 , 2 , , 2 p } .
This completes the proof. □
Using the preceding arguments, we can provide the main result for the solvability of system (3).
Theorem 5. 
Assume that θ = 2 p and let x n ( 1 ) , x n ( 2 ) , , x n ( 2 p ) n k be a solution to system (3). Then, for all q { 1 , 2 , , 2 p } , the solution to system (3) is
x ( k + 1 ) ( 2 p n + j ) t ( q ) = L 2 p ( m + 2 ) n + j ( m + 2 ) + L 2 p ( m + 2 ) n + j ( m + 2 ) 1 x t ( ( q + j ) mod ( 2 p ) ) L 2 p ( m + 2 ) n + j ( m + 2 ) + 1 + L 2 p ( m + 2 ) n + j ( m + 2 ) x t ( ( q + j ) mod ( 2 p ) ) ,
for j { 1 , 3 , , 2 p 1 } , and
x ( k + 1 ) ( 2 p n + j ) t ( q ) = F 2 p ( m + 2 ) n + j ( m + 2 ) + F 2 p ( m + 2 ) n + j ( m + 2 ) 1 x t ( ( q + j ) mod ( 2 p ) ) F 2 p ( m + 2 ) n + j ( m + 2 ) + 1 + F 2 p ( m + 2 ) n + j ( m + 2 ) x t ( ( q + j ) mod ( 2 p ) ) ,
for j { 0 , 2 , , 2 p 2 } , where t { 0 , 1 , , k } .

3.1.2. Case θ = 2 p + 1

Here, we consider the case θ = 2 p + 1 .
Using the transformation
Ψ n j = X ( 2 p + 1 ) n + j ( 1 ) , n N 0 ,
where j { 0 , 1 , 2 , , 2 p } , we can write Equation (10) in the form
Ψ n + 1 j = L ( 2 p + 1 ) ( m + 2 ) + L ( 2 p + 1 ) ( m + 2 ) 1 Ψ n j L ( 2 p + 1 ) ( m + 2 ) + 1 + L ( 2 p + 1 ) ( m + 2 ) Ψ n j , n N 0 ,
where j { 0 , 1 , 2 , , 2 p } .
From Appendix A, the solution to Equation (13) is given by
Ψ 2 n j = F 2 ( 2 p + 1 ) ( m + 2 ) n + F 2 ( 2 p + 1 ) ( m + 2 ) n 1 Ψ 0 j F 2 ( 2 p + 1 ) ( m + 2 ) n + 1 + F 2 ( 2 p + 1 ) ( m + 2 ) n Ψ 0 j , n N 0 , Ψ 2 n + 1 j = L ( 2 p + 1 ) ( m + 2 ) ( 2 n + 1 ) + L ( 2 p + 1 ) ( m + 2 ) ( 2 n + 1 ) 1 Ψ 0 j L ( 2 p + 1 ) ( m + 2 ) ( 2 n + 1 ) + 1 + L ( 2 p + 1 ) ( m + 2 ) ( 2 n + 1 ) Ψ 0 j , n N 0 ,
where j { 0 , 1 , , 2 p } .
Therefore, the solution to Equation (10) is
X 2 ( 2 p + 1 ) n + j ( 1 ) = F 2 ( 2 p + 1 ) ( m + 2 ) n + F 2 ( 2 p + 1 ) ( m + 2 ) n 1 X j ( 1 ) F 2 ( 2 p + 1 ) ( m + 2 ) n + 1 + F 2 ( 2 p + 1 ) ( m + 2 ) n X j ( 1 ) , X ( 2 p + 1 ) ( 2 n + 1 ) + j ( 1 ) = L ( 2 p + 1 ) ( m + 2 ) ( 2 n + 1 ) + L ( 2 p + 1 ) ( m + 2 ) ( 2 n + 1 ) 1 X j ( 1 ) L ( 2 p + 1 ) ( m + 2 ) ( 2 n + 1 ) + 1 + L ( 2 p + 1 ) ( m + 2 ) ( 2 n + 1 ) X j ( 1 ) ,
where n N 0 and j { 0 , 1 , , 2 p } .
Theorem 6.
Let X n ( 1 ) , X n ( 2 ) , , X n ( 2 p + 1 ) n 0 be a solution to system (8). Then for all j { 0 , 2 , , 2 p } ,
X 2 ( 2 p + 1 ) n + j ( q ) = F 2 ( 2 p + 1 ) ( m + 2 ) n + j ( m + 2 ) + F 2 ( 2 p + 1 ) ( m + 2 ) n + j ( m + 2 ) 1 X 0 ( s ) F 2 ( 2 p + 1 ) ( m + 2 ) n + j ( m + 2 ) + 1 + F 2 ( 2 p + 1 ) ( m + 2 ) n + j ( m + 2 ) X 0 ( s ) , X ( 2 p + 1 ) ( 2 n + 1 ) + j ( q ) = L ( 2 p + 1 ) ( m + 2 ) ( 2 n + 1 ) + j ( m + 2 ) + L ( 2 p + 1 ) ( m + 2 ) ( 2 n + 1 ) + j ( m + 2 ) 1 X 0 ( s ) L ( 2 p + 1 ) ( m + 2 ) ( 2 n + 1 ) + j ( m + 2 ) + 1 + L ( 2 p + 1 ) ( m + 2 ) ( 2 n + 1 ) + j ( m + 2 ) X 0 ( s ) ,
and for j { 1 , 3 , , 2 p 1 } ,
X 2 ( 2 p + 1 ) n + j ( q ) = L 2 ( 2 p + 1 ) ( m + 2 ) n + ( j + 1 ) ( m + 2 ) + L 2 ( 2 p + 1 ) ( m + 2 ) n + ( j + 1 ) ( m + 2 ) 1 X 0 ( s ) L 2 ( 2 p + 1 ) ( m + 2 ) n + ( j + 1 ) ( m + 2 ) + 1 + L 2 ( 2 p + 1 ) ( m + 2 ) n + ( j + 1 ) ( m + 2 ) X 0 ( s ) , X ( 2 p + 1 ) ( 2 n + 1 ) + j ( q ) = F ( 2 p + 1 ) ( m + 2 ) ( 2 n + 1 ) + ( j + 1 ) ( m + 2 ) + F ( 2 p + 1 ) ( m + 2 ) ( 2 n + 1 ) + ( j + 1 ) ( m + 2 ) 1 X 0 ( s ) F ( 2 p + 1 ) ( m + 2 ) ( 2 n + 1 ) + ( j + 1 ) ( m + 2 ) + 1 + F ( 2 p + 1 ) ( m + 2 ) ( 2 n + 1 ) + ( j + 1 ) ( m + 2 ) X 0 ( s ) ,
where n N 0 , s = ( q + j ) mod ( 2 p + 1 ) and q { 1 , 2 , , 2 p + 1 } .
Proof. 
Let X n ( 1 ) , X n ( 2 ) , , X n ( 2 p + 1 ) n 0 be a solution to system (8). We consider two different situations, depending on whether j is even or odd.
  • When j is even, we have X j ( 1 ) = F j ( m + 2 ) + F j ( m + 2 ) 1 X 0 ( 1 + j ) F j ( m + 2 ) + 1 + F j ( m + 2 ) X 0 ( 1 + j ) . This implies that
    X 2 ( 2 p + 1 ) n + j ( 1 ) = F 2 ( 2 p + 1 ) ( m + 2 ) n + F 2 ( 2 p + 1 ) ( m + 2 ) n 1 X j ( 1 ) F 2 ( 2 p + 1 ) ( m + 2 ) n + 1 + F 2 ( 2 p + 1 ) ( m + 2 ) n X j ( 1 ) , = F 2 ( 2 p + 1 ) ( m + 2 ) n + F 2 ( 2 p + 1 ) ( m + 2 ) n 1 F j ( m + 2 ) + F j ( m + 2 ) 1 X 0 ( 1 + j ) F j ( m + 2 ) + 1 + F j ( m + 2 ) X 0 ( 1 + j ) F 2 ( 2 p + 1 ) ( m + 2 ) n + 1 + F 2 ( 2 p + 1 ) ( m + 2 ) n F j ( m + 2 ) + F j ( m + 2 ) 1 X 0 ( 1 + j ) F j ( m + 2 ) + 1 + F j ( m + 2 ) X 0 ( 1 + j ) , = F 2 ( 2 p + 1 ) ( m + 2 ) n + j ( m + 2 ) + F 2 ( 2 p + 1 ) ( m + 2 ) n + j ( m + 2 ) 1 X 0 ( 1 + j ) F 2 ( 2 p + 1 ) ( m + 2 ) n + j ( m + 2 ) + 1 + F 2 ( 2 p + 1 ) ( m + 2 ) n + j ( m + 2 ) x 0 ( 1 + j ) .
    Similarly,
    X ( 2 p + 1 ) ( 2 n + 1 ) + j ( 1 ) = L ( 2 p + 1 ) ( m + 2 ) ( 2 n + 1 ) + L ( 2 p + 1 ) ( m + 2 ) ( 2 n + 1 ) 1 F j ( m + 2 ) + F j ( m + 2 ) 1 X 0 ( j + 1 ) F j ( m + 2 ) + 1 + F j ( m + 2 ) X 0 ( j + 1 ) L ( 2 p + 1 ) ( m + 2 ) ( 2 n + 1 ) + 1 + L ( 2 p + 1 ) ( m + 2 ) ( 2 n + 1 ) F j ( m + 2 ) + F j ( m + 2 ) 1 X 0 ( j + 1 ) F j ( m + 2 ) + 1 + F j ( m + 2 ) X 0 ( j + 1 ) , = L ( 2 p + 1 ) ( m + 2 ) ( 2 n + 1 ) + j ( m + 2 ) + L ( 2 p + 1 ) ( m + 2 ) ( 2 n + 1 ) + j ( m + 2 ) 1 X 0 ( 1 + j ) L ( 2 p + 1 ) ( m + 2 ) ( 2 n + 1 ) + j ( m + 2 ) + 1 + L ( 2 p + 1 ) ( m + 2 ) ( 2 n + 1 ) + j ( m + 2 ) X 0 ( 1 + j ) .
  • When j is odd, we have X j ( 1 ) = F j ( m + 2 ) + F j ( m + 2 ) 1 X 1 ( j ) F j ( m + 2 ) + 1 + F j ( m + 2 ) X 1 ( j ) . This implies that
    X 2 ( 2 p + 1 ) n + j ( 1 ) = F 2 ( 2 p + 1 ) ( m + 2 ) n + F 2 ( 2 p + 1 ) ( m + 2 ) n 1 F j ( m + 2 ) + F j ( m + 2 ) 1 X 1 ( j ) F j ( m + 2 ) + 1 + F j ( m + 2 ) X 1 ( j ) F 2 ( 2 p + 1 ) ( m + 2 ) n + 1 + F 2 ( 2 p + 1 ) ( m + 2 ) n F j ( m + 2 ) + F j ( m + 2 ) 1 X 1 ( j ) F j ( m + 2 ) + 1 + F j ( m + 2 ) X 1 ( j ) , = F 2 ( 2 p + 1 ) ( m + 2 ) n + j ( m + 2 ) + F 2 ( 2 p + 1 ) ( m + 2 ) n + j ( m + 2 ) 1 X 1 ( j ) F 2 ( 2 p + 1 ) ( m + 2 ) n + j ( m + 2 ) + 1 + F 2 ( 2 p + 1 ) ( m + 2 ) n + j ( m + 2 ) X 1 ( j ) ,
    and
    X ( 2 p + 1 ) ( 2 n + 1 ) + j ( 1 ) = L ( 2 p + 1 ) ( m + 2 ) ( 2 n + 1 ) + L ( 2 p + 1 ) ( m + 2 ) ( 2 n + 1 ) 1 F j ( m + 2 ) + F j ( m + 2 ) 1 X 1 ( j ) F j ( m + 2 ) + 1 + F j ( m + 2 ) X 1 ( j ) L ( 2 p + 1 ) ( m + 2 ) ( 2 n + 1 ) + 1 + L ( 2 p + 1 ) ( m + 2 ) ( 2 n + 1 ) F j ( m + 2 ) + F j ( m + 2 ) 1 X 1 ( j ) F j ( m + 2 ) + 1 + F j ( m + 2 ) X 1 ( j ) , = L θ ( m + 2 ) ( 2 n + 1 ) + j ( m + 2 ) + L ( 2 p + 1 ) ( m + 2 ) ( 2 n + 1 ) + j ( m + 2 ) 1 X 1 ( j ) L ( 2 p + 1 ) ( m + 2 ) ( 2 n + 1 ) + j ( m + 2 ) + 1 + L ( 2 p + 1 ) ( m + 2 ) ( 2 n + 1 ) + j ( m + 2 ) X 1 ( j ) .
    By the same way, for j ∈ {1, 3, 5, ⋯, 2p − 1}, we have X 1 ( j ) = L m + 2 + L m + 1 X 0 ( j + 1 ) L m + 3 + L m + 2 X 0 ( j + 1 ) .
    Then
    X 2 ( 2 p + 1 ) n + j ( 1 ) = L 2 ( 2 p + 1 ) ( m + 2 ) n + ( j + 1 ) ( m + 2 ) + L 2 ( 2 p + 1 ) ( m + 2 ) n + ( j + 1 ) ( m + 2 ) 1 X 0 ( 1 + j ) L 2 ( 2 p + 1 ) ( m + 2 ) n + ( j + 1 ) ( m + 2 ) + 1 + L 2 ( 2 p + 1 ) ( m + 2 ) n + ( j + 1 ) ( m + 2 ) X 0 ( 1 + j ) , X ( 2 p + 1 ) ( 2 n + 1 ) + j ( 1 ) = F ( 2 p + 1 ) ( m + 2 ) ( 2 n + 1 ) + ( j + 1 ) ( m + 2 ) + F ( 2 p + 1 ) ( m + 2 ) ( 2 n + 1 ) + ( j + 1 ) ( m + 2 ) 1 X 0 ( 1 + j ) F ( 2 p + 1 ) ( m + 2 ) ( 2 n + 1 ) + ( j + 1 ) ( m + 2 ) + 1 + F ( 2 p + 1 ) ( m + 2 ) ( 2 n + 1 ) + ( j + 1 ) ( m + 2 ) X 0 ( 1 + j ) .
    Now, using the fact that
    X n + 1 ( q ) = L m + 2 + L m + 1 X n ( ( q + 1 ) mod ( 2 p + 1 ) ) L m + 3 + L m + 2 X n ( ( q + 1 ) mod ( 2 p + 1 ) ) , q { 1 , 2 , , 2 p + 1 } ,
and after some calculations, we obtain for j { 0 , 2 , , 2 p } ,
X 2 ( 2 p + 1 ) n + j ( q ) = F 2 ( 2 p + 1 ) ( m + 2 ) n + j ( m + 2 ) + F 2 ( 2 p + 1 ) ( m + 2 ) n + j ( m + 2 ) 1 X 0 ( s ) F 2 ( 2 p + 1 ) ( m + 2 ) n + j ( m + 2 ) + 1 + F 2 ( 2 p + 1 ) ( m + 2 ) n + j ( m + 2 ) X 0 ( s ) , X ( 2 p + 1 ) ( 2 n + 1 ) + j ( q ) = L ( 2 p + 1 ) a ( m + 2 ) ( 2 n + 1 ) + j ( m + 2 ) + L ( 2 p + 1 ) ( m + 2 ) ( 2 n + 1 ) + j ( m + 2 ) 1 X 0 ( s ) L ( 2 p + 1 ) ( m + 2 ) ( 2 n + 1 ) + j ( m + 2 ) + 1 + L ( 2 p + 1 ) ( m + 2 ) ( 2 n + 1 ) + j ( m + 2 ) x 0 ( s ) ,
and for j { 1 , 3 , , 2 p 1 } ,
X 2 ( 2 p + 1 ) n + j ( q ) = L 2 ( 2 p + 1 ) ( m + 2 ) n + ( j + 1 ) ( m + 2 ) + L 2 ( 2 p + 1 ) ( m + 2 ) n + ( j + 1 ) ( m + 2 ) 1 X 0 ( s ) L 2 ( 2 p + 1 ) ( m + 2 ) n + ( j + 1 ) ( m + 2 ) + 1 + L 2 ( 2 p + 1 ) ( m + 2 ) n + ( j + 1 ) ( m + 2 ) X 0 ( s ) , X ( 2 p + 1 ) ( 2 n + 1 ) + j ( q ) = F ( 2 p + 1 ) ( m + 2 ) ( 2 n + 1 ) + ( j + 1 ) ( m + 2 ) + F ( 2 p + 1 ) ( m + 2 ) ( 2 n + 1 ) + ( j + 1 ) ( m + 2 ) 1 X 0 ( s ) F ( 2 p + 1 ) ( m + 2 ) ( 2 n + 1 ) + ( j + 1 ) ( m + 2 ) + 1 + F ( 2 p + 1 ) ( m + 2 ) ( 2 n + 1 ) + ( j + 1 ) ( m + 2 ) X 0 ( s ) ,
where n N 0 , s = ( q + j ) mod ( 2 p + 1 ) and q { 1 , 2 , , 2 p + 1 } .
This completes the proof. □
From all the above arguments, we can state the following theorem:
Theorem 7.
Assume that θ = 2 p + 1 and let x n ( 1 ) , x n ( 2 ) , , x n ( 2 p + 1 ) n k be a solution to system (3). Then for all n N 0 , the solution to system (3) is
x ( k + 1 ) ( 2 ( 2 p + 1 ) n + j ) t ( q ) = F 2 ( 2 p + 1 ) ( m + 2 ) n + j ( m + 2 ) + F 2 ( 2 p + 1 ) ( m + 2 ) n + j ( m + 2 ) 1 x t ( s ) F 2 ( 2 p + 1 ) ( m + 2 ) n + j ( m + 2 ) + 1 + F 2 ( 2 p + 1 ) ( m + 2 ) n + j ( m + 2 ) x t ( s ) , x ( k + 1 ) ( ( 2 p + 1 ) ( 2 n + 1 ) + j ) t ( q ) = L ( 2 p + 1 ) ( m + 2 ) ( 2 n + 1 ) + j ( m + 2 ) + L ( 2 p + 1 ) ( m + 2 ) ( 2 n + 1 ) + j ( m + 2 ) 1 x t ( s ) L ( 2 p + 1 ) ( m + 2 ) ( 2 n + 1 ) + j ( m + 2 ) + 1 + L ( 2 p + 1 ) ( m + 2 ) ( 2 n + 1 ) + j ( m + 2 ) x t ( s ) ,
for all j { 0 , 2 , , 2 p } , and
x ( k + 1 ) ( 2 ( 2 p + 1 ) n + j ) t ( q ) = L 2 ( 2 p + 1 ) ( m + 2 ) n + ( j + 1 ) ( m + 2 ) + L 2 ( 2 p + 1 ) ( m + 2 ) n + ( j + 1 ) ( m + 2 ) 1 x t ( s ) L 2 ( 2 p + 1 ) ( m + 2 ) n + ( j + 1 ) ( m + 2 ) + 1 + L 2 ( 2 p + 1 ) ( m + 2 ) n + ( j + 1 ) ( m + 2 ) x t ( s ) , x ( k + 1 ) ( ( 2 p + 1 ) ( 2 n + 1 ) + j ) t ( q ) = F ( 2 p + 1 ) ( m + 2 ) ( 2 n + 1 ) + ( j + 1 ) ( m + 2 ) + F ( 2 p + 1 ) ( m + 2 ) ( 2 n + 1 ) + ( j + 1 ) ( m + 2 ) 1 x t ( s ) F ( 2 p + 1 ) ( m + 2 ) ( 2 n + 1 ) + ( j + 1 ) ( m + 2 ) + 1 + F ( 2 p + 1 ) ( m + 2 ) ( 2 n + 1 ) + ( j + 1 ) ( m + 2 ) x t ( s ) ,
for all j { 1 , 3 , , 2 p 1 } , where s = ( q + j ) mod ( 2 p + 1 ) , t { 0 , 1 , , k } and q { 1 , 2 , , 2 p + 1 } .
Remark 7.
The well-defined solutions to the θ-dimensional system of difference Equation (3) when θ = 2 p are given by Theorem 5, and when θ = 2 p + 1 are given by Theorem 7.

4. Global Stability of the Well-Defined Solutions of System (3)

In this section, we study the global stability of the well-defined solutions to system (3). It is easy to show that system (3) has 2 θ fixed points. We shall study the stability of the fixed point
E = x ( 1 ) ¯ , x ( 2 ) ¯ , , x ( θ ) ¯ = β , β , , β ,
where β = 1 5 2 .
Let us consider the functions
f q : R k + 1 × R k + 1 × × R k + 1 R ,
defined by
f q u 0 ( 1 ) , , u k ( 1 ) , u 0 ( 2 ) , , u k ( 2 ) , , u 0 ( θ ) , , u k ( θ ) = L m + 2 + L m + 1 u k ( ( q + 1 ) mod ( θ ) ) L m + 3 + L m + 2 u k ( ( q + 1 ) mod ( θ ) ) ,
with q { 1 , 2 , , θ } .
The following result is a direct consequence of Theorems A3 and A4 in Appendix B.
Corollary 7.
The fixed point E of system (3) is globally asymptotically stable.

5. Numerical Examples

Example 7.
Consider system (3) with m = 3 , k = 4 and θ = 4 . i.e., the system of difference equations
x n + 1 ( 1 ) = 11 + 7 x n 4 ( 2 ) 18 + 11 x n 4 ( 2 ) , x n + 1 ( 2 ) = 11 + 7 x n 4 ( 3 ) 18 + 11 x n 4 ( 3 ) , x n + 1 ( 3 ) = 11 + 7 x n 4 ( 4 ) 18 + 11 x n 4 ( 4 ) , x n + 1 ( 4 ) = 11 + 7 x n 4 ( 1 ) 18 + 11 x n 4 ( 1 ) , n N 0 .
Figure 1 (left) represents system (15) with initial conditions x 4 ( 1 ) = 19.9 , x 3 ( 1 ) = 2 , x 2 ( 1 ) = 21 , x 1 ( 1 ) = 20 , x 0 ( 1 ) = 0.2 , x 4 ( 2 ) = 21.9 , x 3 ( 2 ) = 23 , x 2 ( 2 ) = 1.6 , x 1 ( 2 ) = 3 , x 0 ( 2 ) = 0.6 , x 4 ( 3 ) = 9.9 , x 3 ( 3 ) = 2.3 , x 2 ( 3 ) = 2.6 , x 1 ( 3 ) = 4.3 , x 0 ( 3 ) = 6 , x 4 ( 4 ) = 11.9 , x 3 ( 4 ) = 42.3 , x 2 ( 4 ) = 12.7 , x 1 ( 4 ) = 3.4 and x 0 ( 4 ) = 8.6
Example 7.
Consider system (3) with m = 6 , k = 7 and θ = 5 . i.e., the system of difference equations
x n + 1 ( 1 ) = 47 + 29 x n 7 ( 2 ) 76 + 47 x n 7 ( 2 ) , x n + 1 ( 2 ) = 47 + 29 x n 7 ( 3 ) 76 + 47 x n 7 ( 3 ) , x n + 1 ( 3 ) = 47 + 29 x n 7 ( 4 ) 76 + 47 x n 7 ( 4 ) , x n + 1 ( 4 ) = 47 + 29 x n 7 ( 5 ) 76 + 47 x n 7 ( 5 ) , x n + 1 ( 5 ) = 47 + 29 x n 7 ( 1 ) 76 + 47 x n 7 ( 1 ) , n N 0 .
Figure 1 (right) represents system (16) with initial conditions x 7 ( 1 ) = 9.9 , x 6 ( 1 ) = 12.0 , x 5 ( 1 ) = 11 , x 4 ( 1 ) = 10 , x 3 ( 1 ) = 0.2 , x 2 ( 1 ) = 6.1 , x 1 ( 1 ) = 10 , x 0 ( 1 ) = 2.2 , x 7 ( 2 ) = 21.9 , x 6 ( 2 ) = 23 , x 5 ( 2 ) = 1.6 , x 4 ( 2 ) = 3 , x 3 ( 2 ) = 0.6 , x 2 ( 2 ) = 2.6 , x 1 ( 2 ) = 10.3 , x 0 ( 2 ) = 2.6   x 7 ( 3 ) = 9.9 , x 6 ( 3 ) = 2.3 , x 5 ( 3 ) = 2.6 , x 4 ( 3 ) = 4.3 , x 3 ( 3 ) = 6 , x 2 ( 3 ) = 4.6 , x 1 ( 3 ) = 4.3 , x 0 ( 3 ) = 3.12 , x 7 ( 4 ) = 1.9 , x 6 ( 4 ) = 5.3 , x 5 ( 4 ) = 2.6 , x 4 ( 4 ) = 3.3 , x 3 ( 4 ) = 9.6 , x 2 ( 4 ) = 12.6 , x 1 ( 4 ) = 6.3 , x 0 ( 4 ) = 3.6 , x 7 ( 5 ) = 14.19 , x 6 ( 5 ) = 2.3 , x 5 ( 5 ) = 2.6 , x 4 ( 5 ) = 9.3 , x 3 ( 5 ) = 1.6 , x 2 ( 5 ) = 11.6 , x 1 ( 5 ) = 4.3 and x 0 ( 5 ) = 2.6 .

6. Conclusions

In this paper, we have derived the solutions to the system of difference equations
x n + 1 ( q ) = L m + 2 + L m + 1 x n k ( ( q + 1 ) mod ( θ ) ) L m + 3 + L m + 2 x n k ( ( q + 1 ) mod ( θ ) ) , n N 0 ,
where k N 0 , m Z , q = 1 , , θ , θ N , and ( L n ) n = 0 + is Lucas sequence.
The above-mentioned system is a more general system to some systems studied recently. The well-defined solutions to that system are represented in terms of Fibonacci and Lucas sequences.
Those well-defined solutions depend on whether θ is even or odd. When θ is even, we invoked the solution of the difference equation
u n + 1 = F θ ( m + 2 ) + F θ ( m + 2 ) 1 u n ( θ 1 ) F θ ( m + 2 ) + 1 + F θ ( m + 2 ) u n ( θ 1 ) , n N 0 ,
that was used in [26].
For odd values of θ , we invoked the solution of the difference equation
Ω n + 1 = L θ ( m + 2 ) + L θ ( m + 2 ) 1 Ω n L θ ( m + 2 ) + 1 + L θ ( m + 2 ) Ω n , n N 0 .
The solution to that equation was derived in Appendix A.
System (3) has 2 θ fixed points; one of these fixed points is locally asymptotically stable. Moreover, we proved that it is globally asymptotically stable.

Author Contributions

Conceptualization, M.B.; Methodology, M.B.; software, M.B.; validation, M.B.; investigation, M.B., J.F.N. and R.A.-Z.; resources, M.B.; writing—original draft, M.B.; Writing—review and editing, M.B., J.F.N. and R.A.-Z.; visualization, M.B.; supervision, M.B.; funding acquisition, M.B. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

Data are contained within the article.

Conflicts of Interest

The authors declare no conflicts of interest.

Appendix A. (Solvability of Equation (13))

Consider the difference equation
Ω n + 1 = L θ ( m + 2 ) + L θ ( m + 2 ) 1 Ω n L θ ( m + 2 ) + 1 + L θ ( m + 2 ) Ω n , n N 0 .
Using the change of variables
Ω n = 1 L θ ( m + 2 ) Φ n L θ ( m + 2 ) + 1 , n = 0 , 1 , ,
we get
Φ n + 1 = L θ ( m + 2 ) 2 + L θ ( m + 2 ) 1 Φ n L θ ( m + 2 ) + 1 Φ n + L θ ( m + 2 ) + 1 = Φ n L θ ( m + 2 ) 1 + L θ ( m + 2 ) + 1 + L θ ( m + 2 ) 2 L θ ( m + 2 ) 1 L θ ( m + 2 ) + 1 Φ n , n N 0 .
Using the Properties 1, Equation (A1) is changed into
Φ n + 1 = 5 F θ ( m + 2 ) Φ n + 5 ( 1 ) θ ( m + 2 ) Φ n , n N 0 .
To solve Equation (A1), we introduce the following Lemma:
Lemma A1.
Consider the linear difference equation
ω n + 1 5 F r ω n + 5 ( 1 ) r + 1 ω n 1 = 0 , n N 0 ,
with initial conditions ω 1 , ω 0 R . Then the solution to Equation (A4) is
ω n = 5 n ( 1 ) r L r 5 ω 1 N r n + ( 1 ) r ω 0 N r ( n + 1 ) ,
where F n n = 0 + is the Fibonacci sequence, L n n = 0 + is the Lucas sequence,
N r n = α r n ( 1 ) n β r n , α = 1 + 5 2 , β = 1 5 2 ,
and
N ( 2 p + 1 ) n = 5 F r n if n is even , L r n if n is odd .
Proof. 
The equation
ω n + 1 5 F r ω n + 5 ( 1 ) r + 1 ω n 1 = 0 , n N 0 ,
is a homogeneous linear second order difference equation with constant coefficients, and initial conditions ω 0 , ω 1 R . We can obtain its solution by using the characteristic roots τ 1 and τ 2 of the characteristic polynomial τ 2 5 F r τ + 5 ( 1 ) r + 1 = 0 .
Using the identity
5 F η 2 = L η 2 4 ( 1 ) η , η = 0 , 1 , ,
we get
τ 1 = 5 L r + 5 F r 2 = 5 α r , τ 2 = 5 L r 5 F r 2 = 5 β r .
Then
ω n = e 1 τ 1 n + e 2 τ 2 n .
Using the initial conditions ω 0 and ω 1 , and after some calculations, we get
e 1 = 5 ( 1 ) r + 1 L r z 1 ω 0 5 ( 1 ) r + 1 τ 1 , e 2 = 5 ( 1 ) r + 1 L r ω 0 5 ( 1 ) r + 1 τ 2 ω 1 .
Therefore,
ω n = 5 ( 1 ) r + 1 L r ω 1 τ 1 n τ 2 n ω 0 5 ( 1 ) r + 1 τ 1 n + 1 τ 2 n + 1 = 5 ( 1 ) r + 1 L r ( ω 1 ( 5 ) n α r n ( 1 ) n β r n + ω 0 ( 5 ) n + 1 ( 5 ) 2 × ( 1 ) r α r ( n + 1 ) ( 1 ) n + 1 β r ( n + 1 ) ) .
By defining
N r n : = α r n ( 1 ) n β r n ,
we can write the solution to Equation (A4) as
ω n = ( 5 ) n ( 1 ) r L r ω 1 5 N r n + ω 0 ( 1 ) r N r ( n + 1 ) .
This completes the proof. □
Using Lemma A1, we get
Φ n = 5 ( ω 1 5 N r n + ω 0 ( 1 ) r N r ( n + 1 ) ) ω 1 5 N r ( n 1 ) + ω 0 ( 1 ) r N r n .
Therefore, the general solution to Equation (A3) is
Φ 2 n = 5 F 2 r n + ( 1 ) r Φ 0 L r ( 2 n + 1 ) L r ( 2 n 1 ) + ( 1 ) r Φ 0 F 2 r n , n N 0 ,
Φ 2 n + 1 = 5 L r ( 2 n + 1 ) + ( 1 ) r 5 Φ 0 F 2 r ( n + 1 ) 5 F 2 r n + ( 1 ) r Φ 0 L r ( 2 n + 1 ) , n N 0 ,
with r = θ ( m + 2 ) .
Using Lemma A1 and Equations (A6) and (A7), we can state the following theorem:
Theorem A1.
Let ( Ω n ) n 0 be a solution to Equation (A1). Then for all n N 0 , the solution to Equation (A1) is
Ω 2 n = F 2 θ ( m + 2 ) n + F 2 θ ( m + 2 ) n 1 Ω 0 F 2 θ ( m + 2 ) n + 1 + F 2 θ ( m + 2 ) n Ω 0 , Ω 2 n + 1 = L θ ( m + 2 ) ( 2 n + 1 ) + L θ ( m + 2 ) ( 2 n + 1 ) 1 Ω 0 L θ ( m + 2 ) ( 2 n + 1 ) + 1 + L θ ( m + 2 ) ( 2 n + 1 ) Ω 0 ,
where L n n = 0 + is Lucas sequence and F n n = 0 + is Fibonacci sequence.
Proof. 
According to the change of variable (A2), using Property 2, we get for all n N 0 ,
Ω 2 n = 1 L r Φ 2 n L r + 1 = 1 L r ( 5 F 2 r n L r + 1 L r ( 2 n 1 ) ) + ( 1 ) r Φ 0 ( L r ( 2 n + 1 ) L r + 1 F 2 r n ) L r ( 2 n 1 ) + ( 1 ) r Φ 0 F 2 r n = 1 L r L r L r ( 2 n 1 ) 1 + ( 1 ) r Φ 0 L r F 2 r n 1 L r ( 2 n 1 ) + ( 1 ) r Φ 0 F 2 r n = ( L r ( 2 n 1 ) 1 + ( 1 ) r L r + 1 F 2 r n 1 ) + Ω 0 ( 1 ) r L r F 2 r n 1 ( L r ( 2 n 1 ) + ( 1 ) r L r + 1 F 2 r n ) + Ω 0 ( 1 ) r L r F 2 r n = F 2 r n + Ω 0 F 2 r n 1 F 2 r n + 1 + Ω 0 F 2 r n .
Similarly,
Ω 2 n + 1 = 1 L r Φ 2 n + 1 L r + 1 = 1 L r 5 ( L r ( 2 n + 1 ) L r + 1 F 2 r n ) + ( 1 ) r Φ 0 ( 5 F r ( 2 n + 2 ) L r + 1 L r ( 2 n + 1 ) ) 5 F 2 r n + ( 1 ) r Φ 0 L r ( 2 n + 1 ) = L r L r 5 F 2 r n 1 + ( 1 ) r Φ 0 L r ( 2 n + 1 ) 1 5 F 2 r n + ( 1 ) r Φ 0 L r ( 2 n + 1 ) = ( 5 F 2 r n 1 + ( 1 ) r L r + 1 L r ( 2 n + 1 ) 1 ) + Ω 0 ( 1 ) r L r L r ( 2 n + 1 ) 1 ( 5 F 2 r n + ( 1 ) r L r + 1 L r ( 2 n + 1 ) ) + Ω 0 ( 1 ) r L r L r ( 2 n + 1 ) = L r ( 2 n + 1 ) + Ω 0 L r ( 2 n + 1 ) 1 L r ( 2 n + 1 ) + 1 + Ω 0 L r ( 2 n + 1 ) .
This completes the proof. □

Appendix B. (Locally Stability of System (3))

Lemma A2.
Suppose that ( F n ) n = 0 + and ( L n ) n = 0 + are Fibonacci and Lucas sequences and let n , κ N . Then
lim n + F n + κ F n = lim n + L n + κ L n = α κ .
Theorem A2.
(Linear stability)
1. 
If all the eigenvalues of the Jacobian matrix A lie in the open unit disk | λ | < 1 , then the fixed point V ¯ of the linearized system is locally asymptotically stable.
2. 
If at least one eigenvalue of the Jacobian matrix A have absolute value greater than one, then the fixed point V ¯ of linearized system is unstable.
Theorem A3.
The fixed point E = ( β , β , , β ) R θ is locally asymptotically stable.
Proof. 
The linearized system about the fixed point
V ¯ = β , β , , β R θ ( k + 1 ) ,
is given by
X n + 1 = A X n ,
where
X n = x n ( 1 ) , x n 1 ( 1 ) , , x n k ( 1 ) , x n ( 2 ) , x n 1 ( 2 ) , , x n k ( 2 ) , , x n ( θ ) , x n 1 ( θ ) , , x n k ( θ ) T ,
and
A = 0 0 0 0 0 ( 1 ) m + 1 α 2 m + 4 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 ( 1 ) m + 1 α 2 m + 4 0 1 0 0 0 ( 1 ) m + 1 α 2 m + 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 .
The characteristic polynomial is
P ( λ ) = det ( A λ I θ ( k + 1 ) ) = ( λ ) θ ( k + 1 ) + ( 1 ) k ( 1 ) m + 1 α 2 m + 4 θ .
Then
λ θ ( k + 1 ) = ( 1 ) m + 1 α 2 m + 4 θ = 1 α θ ( 2 m + 4 ) .
Therefore, all roots of the characteristic polynomial has modulus less than one. Using Theorem A2, the fixed point E is locally asymptotically stable.
This completes the proof. □
Theorem A4.
The fixed point E of system (3) is a global attractor.
Proof. 
Let x n ( 1 ) , x n ( 2 ) , , x n θ n k be a well-defined solution to system (3).
We show that the well-defined solution x n ( 1 ) , x n ( 2 ) , , x n θ n k converges to the fixed point E .
It is suffices (using Theorems 5 and 7 together with Lemma A2) to see that for all q { 1 , 2 , , θ } and t { 0 , 1 , , k } ,
lim n + x ( k + 1 ) ( θ n + j ) t ( q ) = lim n + F θ n ( m + 2 ) j ( m + 2 ) + F θ n ( m + 2 ) + j ( m + 2 ) 1 x t s F θ n ( m + 2 ) + j ( m + 2 ) + 1 + F θ n ( m + 2 ) + j ( m + 2 ) x t s = lim n + F θ n ( m + 2 ) + j ( m + 2 ) 1 F θ n ( m + 2 ) + j ( m + 2 ) x t s + 1 x t s + F θ n ( m + 2 ) + j ( m + 2 ) + 1 F θ n ( m + 2 ) + j ( m + 2 ) = 1 β x t s α + x t s = 2 x t s + 5 x t s 1 + 5 + 2 x t s
lim n + x ( k + 1 ) ( θ n + j ) t ( q ) = 2 5 ( x j 2 + x j 1 ) 2 ( x j 2 + x j 1 ) 4 ( x j 2 + x j 1 ) = 1 + 5 2 = β .
This completes the proof. □

References

  1. Alzabut, J.; Selvam, A.G.M.; Dhakshinamoorthy, V.; Mohammadi, H.; Rezapour, S. On chaos of discrete time fractional order host-immune-tumor cells interaction model. J. Appl. Math. Comput. 2022, 68, 4795–4820. [Google Scholar] [CrossRef]
  2. Almatrafi, M.B.; Berkal, M. Bifurcation Analysis and Chaos Control for Prey-Predator Model with Allee Effect. Int. J. Anal. Appl. 2023, 21, 131. [Google Scholar] [CrossRef]
  3. Berkal, M.; Navarro, J.F.; Almatrafi, M.B. Qualitative Behavior for a Discretized Conformable Fractional-Order Lotka-Volterra Model with Harvesting Effects. Int. J. Anal. Appl. 2024, 22, 51. [Google Scholar] [CrossRef]
  4. Berkal, M.; Almatrafi, M.B. Bifurcation and Stability of Two-Dimensional Activator–Inhibitor Model with Fractional-Order Derivative. Fractal Fract. 2023, 7, 344. [Google Scholar] [CrossRef]
  5. Berkal, M.; Navarro, J.F. Qualitative behavior of a two-dimensional discrete-time prey–predator model. Comput. Math. Methods 2021, 3, e1193. [Google Scholar] [CrossRef]
  6. Koshy, T. Fibonacci and Lucas Numbers with Applications; Wiley: Hoboken, NJ, USA, 2001. [Google Scholar]
  7. Abo-Zeid, R. Forbidden sets and stability in some rational difference equations. J. Differ. Equ. Appl. 2018, 24, 220–239. [Google Scholar] [CrossRef]
  8. Abo-Zeid, R. Global behavior of two third order rational difference equations with quadratic terms. Math. Slovaca 2019, 69, 147–158. [Google Scholar] [CrossRef]
  9. Abo-Zeid, R. Global behavior of a fourth-order difference equation with quadratic term. Bol. Soc. Mat. Mex. 2019, 25, 187–194. [Google Scholar] [CrossRef]
  10. Abo-Zeid, R. Behavior of solutions of a rational third order difference equation. J. Appl. Math. Inform. 2020, 38, 1–12. [Google Scholar]
  11. Abo-Zeid, R. On the solutions of a higher order recursive sequence. Malaya J. Mat. 2020, 8, 695–701. [Google Scholar] [CrossRef]
  12. Atpinar, S.; Yazlik, Y. Qualitative behavior of exponential type of fuzzy difference equations system. J. Appl. Math. Comput. 2023, 69, 4135–4162. [Google Scholar] [CrossRef]
  13. Berkal, M.; Navarro, J.F. Qualitative study of a second order difference equation. Turk. J. Math. 2023, 47, 516–527. [Google Scholar] [CrossRef]
  14. Berkal, M.; Berehal, K.; Rezaiki, N. Representation of solutions of a system of five-order nonlinear difference equations. J. Appl. Math. Inform. 2022, 40, 409–431. [Google Scholar]
  15. Gümüş, M.; Abo-Zeid, R. An explicit formula and forbidden set for a higher order difference equation. J. Appl. Math. Comput. 2020, 63, 133–142. [Google Scholar] [CrossRef]
  16. Gümüş, M.; Abo-Zeid, R. Global behavior of a rational second order difference equation. J. Appl. Math. Comput. 2020, 62, 119–133. [Google Scholar] [CrossRef]
  17. Ghezal, A. Note on a rational system of (4k+1)-order difference equations: Periodic solution and convergence. J. Appl. Math. Comput. 2023, 69, 2207–2215. [Google Scholar] [CrossRef]
  18. Ghezal, A.; Balegh, M.; Zemmouri, I. Solutions and local stability of the Jacobsthal system of difference equations. AIMS Math. 2024, 9, 3576–3591. [Google Scholar] [CrossRef]
  19. Haddad, N.; Touafek, N.; Rabago, J.F.T. Well-defined solutions of a system of difference equations. J. Appl. Math. Comput. 2018, 56, 439–458. [Google Scholar] [CrossRef]
  20. Halim, Y.; Berkal, M.; Khelifa, A. On a three-dimensional solvable system of difference equations. Turk. J. Math. 2020, 44, 1263–1288. [Google Scholar] [CrossRef]
  21. Halim, Y.; Khelifa, A.; Berkal, M. Representation of solutions of a two-dimensional system of difference equations. Miskolc Math. Notes 2020, 21, 203–218. [Google Scholar] [CrossRef]
  22. Halim, Y.; Khelifa, A.; Berkal, M.; Bouchair, A. On a solvable system of p difference equations of higher order. Period. Math. Hung. 2022, 85, 109–127. [Google Scholar] [CrossRef]
  23. Hamioud, H.; Touafek, N.; Dekkar, I.; Yazlik, Y. On a three dimensional nonautonomous system of difference equations. J. Appl. Math. Comput. 2022, 68, 3901–3936. [Google Scholar] [CrossRef]
  24. Khelifa, A.; Halim, Y.; Berkal, M. Solutions of a system of two higher-order difference equations in terms of Lucas sequence. Univers. J. Math. Appl. 2019, 2, 202–211. [Google Scholar]
  25. Khelifa, A.; Halim, Y.; Bouchair, A.; Berkal, M. On a system of three difference equations of higher order solved in terms of Lucas and Fibonacci numbers. Math. Slovaca 2020, 70, 641–656. [Google Scholar] [CrossRef]
  26. Khelifa, A.; Halim, Y. General solutions to systems of difference equations and some of their representations. J. Appl. Math. Comput. 2021, 67, 439–453. [Google Scholar] [CrossRef]
  27. Khelifa, A.; Halim, Y.; Berkal, M. On the solutions of a system of (2p+1) difference equations of higher order. Miskolc Math. Notes 2021, 22, 331–350. [Google Scholar] [CrossRef]
  28. Kara, M. Investigation of the global dynamics of two exponential-form difference equations systems. Electron. Res. Arch. 2023, 31, 6697–6724. [Google Scholar] [CrossRef]
  29. Kara, M.; Yazlik, Y. Solvable three-dimensional system of higher-order nonlinear difference equations. Filomat 2022, 36, 3449–3469. [Google Scholar] [CrossRef]
  30. Stevic, S. Representation of solutions of bilinear difference equations in terms of generalized Fibonacci sequences. Electron. J. Qual. Theory Differ. Equ. 2014, 2014, 1–15. [Google Scholar] [CrossRef]
  31. Stević, S.; Iričanin, B.; Kosmala, W.; Šmarda, Z. Note on the bilinear difference equation with a delay. Math. Methods Appl. Sci. 2018, 41, 9349–9360. [Google Scholar] [CrossRef]
  32. Tollu, D.T.; Yazlik, Y.; Taskara, N. On the solutions of two special types of Riccati difference equation via Fibonacci numbers. Adv. Differ. Equ. 2013, 2013, 1–7. [Google Scholar] [CrossRef]
  33. Berkal, M.; Abo-Zeid, R. Solvability of a Second-Order Rational System of Difference Equations. Fundam. J. Math. Appl. 2023, 6, 232–242. [Google Scholar] [CrossRef]
  34. Kara, M.; Yazlik, Y. On eight solvable systems of difference equations in terms of generalized Padovan sequences. Miskolc Math. Notes 2021, 22, 695–708. [Google Scholar] [CrossRef]
  35. Kara, M.; Yazlik, Y. Representation of solutions of eight systems of difference equations via generalized Padovan sequences. Internat. J. Nonlinear Anal. Appl. 2021, 12, 447–471. [Google Scholar]
  36. Yazlik, Y.; Tollu, D.T.; Taskara, N. On the solutions of difference equation systems with Padovan numbers. Appl. Math. 2013, 4, 15. [Google Scholar] [CrossRef]
  37. Vajda, S. Fibonacci and Lucas Numbers, and the Golden Section: Theory and Applications; Courier Corporation: New York, NY, USA, 2008. [Google Scholar]
Figure 1. A graph representing the global stability of system (15) (left) and system (16) (right).
Figure 1. A graph representing the global stability of system (15) (left) and system (16) (right).
Mca 29 00028 g001
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Berkal, M.; Navarro, J.F.; Abo-Zeid, R. Global Behavior of Solutions to a Higher-Dimensional System of Difference Equations with Lucas Numbers Coefficients. Math. Comput. Appl. 2024, 29, 28. https://doi.org/10.3390/mca29020028

AMA Style

Berkal M, Navarro JF, Abo-Zeid R. Global Behavior of Solutions to a Higher-Dimensional System of Difference Equations with Lucas Numbers Coefficients. Mathematical and Computational Applications. 2024; 29(2):28. https://doi.org/10.3390/mca29020028

Chicago/Turabian Style

Berkal, Messaoud, Juan Francisco Navarro, and Raafat Abo-Zeid. 2024. "Global Behavior of Solutions to a Higher-Dimensional System of Difference Equations with Lucas Numbers Coefficients" Mathematical and Computational Applications 29, no. 2: 28. https://doi.org/10.3390/mca29020028

Article Metrics

Back to TopTop