Saponification Value of Fats and Oils as Determined from 1H-NMR Data: The Case of Dairy Fats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Binary Oil–Tributyrin Mixtures
2.3. Butter and Cheese Samples
2.4. Oil and Fat Samples
2.5. Saponification Value
2.6. 1H-NMR Spectra
2.7. Statistics
3. Results and Discussions
3.1. 1H-NMR Spectral Characterization of Fats and Oils
3.2. Algorithm for the SV Calculation from 1H-NMR Data
- (i)
- The normalization factor 3/2 appeared as a consequence of the different number of protons that generated the resonances involved in Equations (1) and (2), i.e., two protons in the case of the resonances at the numerator and three in the case of the resonances at the denominator;
- (ii)
- Since resonances I and J appear partially overlapped, they cannot be integrated separately. However, AI (corresponding to the single proton in the sn-2 position from the glycerol moiety) can be indirectly computed as , given the proton ratio of 1:4 in the case of signals I and H, respectively. Consequently, AJ (corresponding to the unsaturated protons (CH=CH) may be computed as a difference A(I+J) − AI;
- (iii)
- Since resonances A and B appear partially overlapped, they cannot be accurately integrated as separate signals; the integration was therefore performed according to the general rule (i.e., from baseline to baseline), leading to the integral of the envelope resonance (A+B).
3.3. Determination of the SV for Edible Oils and Fats
4. Perspectives
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Y.; Watkins, B.A. Unit D1.4: Oil Quality Indices. In Current Protocols in Food Analytical Chemistry; Wrolstad, R.E., Ed.; John Wiley & Sons, Inc.: New York, NY, USA, 2001; Protocol D1.4.3–D1.4.4. [Google Scholar]
- Toscano, G.; Riva, G.; Foppa Pedretti, E.; Duca, D. Vegetable oil and fat viscosity forecast models based on iodine number and saponification number. Biomass Bioenergy 2012, 46, 511–516. [Google Scholar] [CrossRef]
- Naksuk, A.; Sabatini, D.A.; Tongcumpou, C. Microemulsion-based palm kernel oil extraction using mixed surfactant solutions. Ind. Crops Prod. 2009, 30, 194–198. [Google Scholar] [CrossRef]
- Kilic, B.; Ozer, C.O. Potential use of interesterified palm kernel oil to replace animal fat in frankfurters. Meat Sci. 2019, 148, 206–212. [Google Scholar] [CrossRef] [PubMed]
- Marina, A.M.; Che Man, Y.B.; Nazimah, S.A.H.; Amin, I. Chemical properties of virgin coconut oil. J. Am. Oil Chem. Soc. 2009, 86, 301–307. [Google Scholar] [CrossRef]
- Sbihi, H.M.; Nehdi, I.A.; Tan, C.P.; Al-Resayes, S.I. Characteristics and fatty acid composition of milk fat from Saudi Aradi goat. Grassas y Aceites 2015, 66, e101. [Google Scholar] [CrossRef] [Green Version]
- Salem, E.R.; Awad, R.A.; El Batawy, O.I. Detection of Milk Fat Adulteration with Coconut Oil Depending on Some Physical and Chemical Properties. Int. J. Dairy Sci. 2019, 14, 36–44. [Google Scholar] [CrossRef]
- Putri, A.R.; Rohman, A.; Setyaningsih, W.; Riyanto, S. Determination of acid, peroxide, and saponification value in patin fish oil by FTIR spectroscopy combined with chemometrics. Food Res. 2020, 4, 1758–1766. [Google Scholar] [CrossRef]
- Alexandri, E.; Ahmed, R.; Siddiqui, H.; Choudhary, M.I.; Tsiafoulis, C.G.; Gerothanassis, I.P. High Resolution NMR Spectroscopy as a Structural and Analytical Tool for Unsaturated Lipids in Solution. Molecules 2017, 22, 1663. [Google Scholar] [CrossRef]
- Yeung, D.K.W.; Lam, S.L.; Griffith, J.F.; Chan, A.B.W.; Chen, Z.; Tsang, P.H.; Leung, P.C. Analysis of bone marrow fatty acid composition using high-resolution proton NMR spectroscopy. Chem. Phys. Lipids 2008, 151, 103–109. [Google Scholar] [CrossRef]
- Siudem, P.; Zielinska, A.; Paradowska, K. Application of 1H NMR in the study of fatty acids composition of vegetable oils. J. Pharm. Biomed. Anal. 2022, 212, 114658. [Google Scholar] [CrossRef]
- Knothe, G.; Kenar, J.A. Determination of the fatty acid profile by 1H-NMR Spectroscopy. Eur. J. Lipid Sci. Technol. 2004, 106, 88–96. [Google Scholar] [CrossRef]
- Chira, N.-A.; Todasca, M.-C.; Nicolescu, A.; Rosu, A.; Nicolae, M.; Rosca, S.-I. Evaluation of the computational methods for determining vegetable oils composition using 1H-NMR spectroscopy. Rev. Chim. 2011, 62, 42–46. Available online: https://www.revistadechimie.ro/Articles.asp?ID=2863 (accessed on 1 February 2022).
- Skiera, C.; Steliopoulos, P.; Kuballa, T.; Diehl, B.; Holzgrabe, U. Determination of free fatty acids in pharmaceutical lipids by 1H NMR and comparison with the classical acid value. J. Pharm. Biomed. 2014, 93, 43–50. [Google Scholar] [CrossRef] [PubMed]
- ISO 1735:2004; Cheese and Processed Cheese Products—Determination of Fat Content—Gravimetric Method (Reference method). ISO: Geneva, Switzerland, 2004.
- Shahidi, F. Unit 1.1: Extraction and Measurement of Total Lipids. In Current Protocols in Food Analytical Chemistry; Whitaker, J., Ed.; John Wiley & Sons, Inc.: New York, NY, USA, 2001; pp. D1.1.1–D1.1.11. [Google Scholar] [CrossRef]
- ISO 3657:2013; Animal and Vegetable Fats and Oils—Determination of Saponification Value. ISO: Geneva, Switzerland, 2013.
- Stavarache, C.; Nicolescu, A.; Duduianu, C.; Ailiesei, G.L.; Balan-Porcarasu, M.; Cristea, M.; Macsim, A.-M.; Popa, O.; Stavarache, C.; Hirtopeanu, A.; et al. A real-life reproducibility assessment for NMR metabolomics. Diagnostics 2022, 12, 559. [Google Scholar] [CrossRef]
- Hanganu, A.; Chira, N.-A. When detection of dairy food fraud fails: An alternative approach through proton nuclear magnetic resonance spectroscopy. J. Dairy Sci. 2021, 104, 8454–8466. [Google Scholar] [CrossRef] [PubMed]
- Deleanu, C.; Enache, C.; Caproiu, M.T.; Cornilescu, G.; Hirtopeanu, A. Esteri metilici ai acizilor grasi. Compusi etalon pentru atributia semnalelor in spectrele RMN de rezolutie inalta ale uleiurilor comestibile. Rev. Chim. 1994, 45, 1046–1052. [Google Scholar]
- Kuang, G.; Du, Y.; Lu, S.; Wang, Z.; Zhang, Z.; Fan, X.; Bilal, M.; Cui, J.; Jia, S. Silica@lipase hybrid biocatalysts with superior activity by mimetic biomineralization in oil/water two-phase system for hydrolysis of soybean oil. LWT 2022, 160, 113333. [Google Scholar] [CrossRef]
- Kampa, J.; Frazier, R.; Rodriguez-Garcia, J. Physical and Chemical Characterisation of Conventional and Nano/Emulsions: Influence of Vegetable Oils from Different Origins. Foods 2022, 11, 681. [Google Scholar] [CrossRef]
- Wang, J.; Han, Y.; Wang, X.; Li, Y.; Wang, S.; Gan, S.; Dong, G.; Chen, X.; Wang, S. Adulteration detection of Qinghai-Tibet Plateau flaxseed oil using HPLC-ELSD profiling of triacylglycerols and chemometrics. LWT 2022, 160, 113300. [Google Scholar] [CrossRef]
- Figueiredo, P.S.; Martins, T.N.; Ravaglia, L.M.; Alcantara, G.B.; Guimarães, R.d.C.A.; Freitas, K.d.C.; Nunes, Â.A.; de Oliveira, L.C.S.; Cortês, M.R.; Michels, F.S.; et al. Linseed, Baru, and Coconut Oils: NMR-Based Metabolomics, Leukocyte Infiltration Potential In Vivo, and Their Oil Characterization. Are There Still Controversies? Nutrients 2022, 14, 1161. [Google Scholar] [CrossRef]
- Dorni, C.; Sharma, P.; Saikia, G.; Longvah, T. Fatty acid profile of edible oils and fats consumed in India. Food Chem. 2018, 238, 9–15. [Google Scholar] [CrossRef]
- Kamath, R.; Basak, S.; Gokhale, J. Recent trends in the development of healthy and functional cheese analogues-a review. LWT 2022, 155, 112991. [Google Scholar] [CrossRef]
- Theam, K.L.; Islam, A.; Choo, Y.M.; Taufiq-Yap, Y.H. Biodiesel from low cost palm stearin using metal doped methoxide solid catalyst. Ind. Crops Prod. 2015, 76, 281–289. [Google Scholar] [CrossRef]
- Faccia, M.; Natrella, G.; Gambacorta, G.; Trani, A. Cheese ripening in nonconventional conditions: A multiparameter study applied to Protected Geographical Indication Canestrato di Moliterno cheese. J. Dairy Sci. 2022, 105, 140–153. [Google Scholar] [CrossRef] [PubMed]
- Salas-Valerio, W.F.; Aykas, D.P.; Hatta Sakoda, B.A.; Ludena-Urquizo, F.E.; Ball, C.; Plans, M.; Rodriguez-Saona, L. In-field screening of trans-fat levels using mid- and near-infrared spectrometers for butters and margarines commercialized in the Peruvian market. LWT 2022, 157, 113074. [Google Scholar] [CrossRef]
- Silva, C.C.G.; Silva, S.P.M.; Prates, J.A.M.; Bessa, R.J.B.; Rosa, H.J.D.; Rego, O.A. Physicochemical traits and sensory quality of commercial butter produced in the Azores. Int. Dairy J. 2019, 88, 10–17. [Google Scholar] [CrossRef]
- Wilms, J.N.; Hare, K.S.; Fischer-Tlustos, A.J.; Vahmani, P.; Dugan, M.E.R.; Leal, L.N.; Steele, M.A. Fatty acid profile characterization in colostrum, transition milk, and mature milk of primi- and multiparous cows during the first week of lactation. J. Dairy Sci. 2022, 105, 2612–2630. [Google Scholar] [CrossRef]
- Oduro, A.F.; Saalia, F.K.; Adjei, M.Y.B. Sensory Acceptability and Proximate Composition of 3-Blend Plant-Based Dairy Alternatives. Foods 2021, 10, 482. [Google Scholar] [CrossRef]
- De Meneses, R.B.; Monteiro, M.L.G.; dos Santos, F.F.; da Rocha-Leão, M.H.M.; Conte-Junior, C.A. Sensory Characteristics of Dairy By-Products as Potential Milk Replacers in Ice Cream. Sustainability 2021, 13, 1531. [Google Scholar] [CrossRef]
- Amit; Jamwal, R.; Kumari, S.; Dhaulaniya, A.S.; Balan, B.; Kelly, S.; Cannavan, A.; Singh, D.K. Utilizing ATR-FTIR spectroscopy combined with multivariate chemometric modelling for the swift detection of mustard oil adulteration in virgin coconut oil. Vib. Spectrosc. 2020, 109, 103066. [Google Scholar] [CrossRef]
Resonance * | δ (ppm) | Proton | Compound |
---|---|---|---|
A | 0.85 | -CH2-CH2-CH2-CH3 | All acids except butyric acid and linolenic acid |
B | 0.96 | -CH=CH-CH2-CH3 | Linolenic acid |
-OOC-CH2-CH2-CH3 | Butyric acid (B’) | ||
C | 1.24 | -(CH2)n- | All fatty acids |
D | 1.64 | -CH2-CH2-COO- | All fatty acids |
E | 2.02 | -CH2-CH=CH- | All unsaturated fatty acids |
F | 2.26 | -CH2-COO- | All fatty acids |
G | 2.76 | -CH=CH-CH2-CH=CH- | n-6 (Linoleic) acid and n-3 (linolenic) acid |
H | 4.19 | -CH2OCOR | H in the sn-1/3 position of the glycerol backbone |
I | 5.15 | -CHOCOR | H in the sn-2 position of the glycerol backbone |
J | 5.29 | -CH=CH- | All unsaturated fatty acids |
SO-TB Series | RO-TB Series | ||||||
---|---|---|---|---|---|---|---|
Sample | TB (%) | SV * (mg KOH/g Fat) | Sample | TB (%) | SV * (mg KOH/g Fat) | ||
From 1H-NMR Data | According to ISO 3657:2013 | From 1H-NMR Data | According to ISO 3657:2013 | ||||
SO-TB-0 | 0 | 196 ± 2 aA | 190 ± 0 aB | RO-TB-0 | 0 | 196 ± 4 aA | 192 ± 1 aA |
SO-TB-10 | 10 | 230 ± 4 bA | 225 ± 6 bA | RO-TB-10 | 10 | 233 ± 3 bA | 227 ± 3 bA |
SO-TB-20 | 20 | 266 ± 2 cA | 274 ± 3 cA | RO-TB-20 | 20 | 272 ± 2 pA | 266 ± 6 nA |
SO-TB-30 | 30 | 302 ± 2 dA | 294 ± 0 dB | RO-TB-30 | 30 | 305 ± 4 dA | 312 ± 10 lA |
SO-TB-40 | 40 | 345 ± 3 eA | 336 ± 12 eA | RO-TB-40 | 40 | 341 ± 2 eA | 334 ± 3 eA |
SO-TB-50 | 50 | 387 ± 2 fA | 374 ± 10 fA | RO-TB-50 | 50 | 378 ± 2 qA | 367 ± 9 fA |
SO-TB-60 | 60 | 412 ± 1 gA | 403 ± 1 gB | RO-TB-60 | 60 | 414 ± 3 gA | 411 ± 1 gA |
SO-TB-70 | 70 | 447 ± 1 hA | 434 ± 2 hB | RO-TB-70 | 70 | 448 ± 1 hA | 433 ± 13 hA |
SO-TB-80 | 80 | 492 ± 2 iA | 480 ± 3 iB | RO-TB-80 | 80 | 486 ± 3 rA | 474 ± 9 iA |
SO-TB-90 | 90 | 535 ± 3 jA | 530 ± 8 jB | RO-TB-90 | 90 | 523 ± 2 sA | 515 ± 0 mB |
SO-TB-100 | 100 | 559 ± 2 kA | 547 ± 2 kB | RO-TB-100 | 100 | 560 ± 3 kA | 551 ± 12 kA |
SO-TB-15 | 15 | 250 ± 3 lA | 241 ± 3 bA | RO-TB-5 | 5 | 215 ± 2 tA | 211 ± 0 oA |
SO-TB-35 | 35 | 326 ± 3 mA | 318 ± 4 lA | RO-TB-25 | 25 | 286 ± 2 uA | 292 ± 3 dA |
SO-TB-55 | 55 | 413 ± 1 gA | 403 ± 5 gA | RO-TB-45 | 45 | 359 ± 3 vA | 350 ± 4 pA |
SO-TB-75 | 75 | 467 ± 3 nA | 477 ± 4 iA | RO-TB-65 | 65 | 429 ± 2 wA | 435 ± 4 hA |
SO-TB-95 | 95 | 540 ± 2 oA | 527 ± 13 mA | RO-TB-85 | 85 | 503 ± 3 xA | 499 ± 1 qA |
No. | Sample | SV * (mg KOH/g Fat) | |
---|---|---|---|
From 1H-NMR Data | According to ISO 3657:2013 | ||
Sunflower oil | |||
1 | Sunflower oil 1 | 194 ± 2 aA | 188 ± 2 aA |
2 | Sunflower oil 2 | 195 ± 1 aA | 189 ± 2 aA |
3 | Sunflower oil 3 | 194 ± 1 aA | 188 ± 3 aA |
4 | Sunflower oil 4 | 196 ± 1 aA | 188 ± 3 aA |
5 | Sunflower oil 5 | 195 ± 1 aA | 189 ± 2 aA |
Rapeseed oil | |||
6 | Rapeseed oil 1 | 196 ± 1 aA | 188 ± 3 aB |
7 | Rapeseed oil 2 | 196 ± 1 aA | 188 ± 2 aB |
8 | Rapeseed oil 3 | 194 ± 1 aA | 188 ± 1 aB |
9 | Rapeseed oil 4 | 195 ± 1 aA | 188 ± 2 aB |
Soybean oil | |||
10 | Soybean oil 1 | 195 ± 2 aA | 189 ± 2 aB |
11 | Soybean oil 2 | 193 ± 2 aA | 188 ± 2 aA |
12 | Soybean oil 3 | 194 ± 1 aA | 187 ± 2 aB |
13 | Soybean oil 4 | 195 ± 1 aA | 188 ± 2 aB |
14 | Soybean oil 5 | 194 ± 1 aA | 188 ± 3 aA |
Coconut oil | |||
15 | Coconut oil 1 | 249 ± 1 aA | 240 ± 3 aB |
16 | Coconut oil 1 | 248 ± 1 aA | 239 ±1 aB |
Palm fat | |||
17 | Palm fat 1 | 236 ± 1 aA | 230 ± 2 aA |
18 | Palm fat 2 | 237 ± 1 aA | 230 ± 2 aB |
Butter | |||
19 | Butter 1 | 242 ± 2 aA | 232 ± 1 aB |
20 | Butter 2 | 245 ± 2 aA | 234 ± 1 aB |
21 | Butter 3 | 245 ± 1 aA | 235 ± 1 aB |
22 | Butter 4 | 239 ± 1 abA | 231 ± 2 aB |
23 | Butter 5 | 241 ± 1 abA | 231 ± 1 aB |
Spreadable fat mixtures ** | |||
24 | Spreadable fat mixture 1 | 228 ± 1 aA | 217 ± 2 aB |
25 | Spreadable fat mixture 2 | 206 ± 2 bA | 196 ± 1 bB |
26 | Spreadable fat mixture 3 | 222 ± 2 cA | 217 ± 1 aA |
27 | Spreadable fat mixture 4 | 224 ± 2a acA | 218 ± 1 aB |
Cheese | |||
28 | Cheese 1 | 239 ± 2 aA | 231 ± 2 aB |
29 | Cheese 2 | 242 ± 1 aA | 234 ± 1 aB |
30 | Cheese 3 | 244 ± 2 baA | 237 ± 1 baB |
31 | Cheese 4 | 238 ± 1 aA | 231 ± 2 aB |
32 | Cheese 5 | 241 ± 2 aA | 233 ± 3 aA |
33 | Cheese 6 | 241 ± 1 aA | 234 ± 1 aB |
34 | Cheese 7 | 244 ± 2 bA | 237 ± 1 baB |
35 | Cheese 8 | 244 ± 1 bA | 237 ± 2 baB |
36 | Cheese 9 | 239 ± 1 aA | 233 ± 2 aB |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanova, M.; Hanganu, A.; Dumitriu, R.; Tociu, M.; Ivanov, G.; Stavarache, C.; Popescu, L.; Ghendov-Mosanu, A.; Sturza, R.; Deleanu, C.; et al. Saponification Value of Fats and Oils as Determined from 1H-NMR Data: The Case of Dairy Fats. Foods 2022, 11, 1466. https://doi.org/10.3390/foods11101466
Ivanova M, Hanganu A, Dumitriu R, Tociu M, Ivanov G, Stavarache C, Popescu L, Ghendov-Mosanu A, Sturza R, Deleanu C, et al. Saponification Value of Fats and Oils as Determined from 1H-NMR Data: The Case of Dairy Fats. Foods. 2022; 11(10):1466. https://doi.org/10.3390/foods11101466
Chicago/Turabian StyleIvanova, Mihaela, Anamaria Hanganu, Raluca Dumitriu, Mihaela Tociu, Galin Ivanov, Cristina Stavarache, Liliana Popescu, Aliona Ghendov-Mosanu, Rodica Sturza, Calin Deleanu, and et al. 2022. "Saponification Value of Fats and Oils as Determined from 1H-NMR Data: The Case of Dairy Fats" Foods 11, no. 10: 1466. https://doi.org/10.3390/foods11101466