A Comprehensive Review on the Processing of Dried Fish and the Associated Chemical and Nutritional Changes
Abstract
:1. Introduction
1.1. Types of Fish Used for Drying
1.2. Dehydrated Fish and Fish Products
1.3. Drying Conditions and Their Roles in Fish Quality
1.4. Health Benefits of Dried Fish
2. Ingredient Used in Dried Fish and Fish Products
2.1. Salt Added as Ingredient in Dried Fish
2.2. Additives in Dried Fish
3. Changes in Physicochemical and Biochemical Characteristics of Dried Fish
3.1. Physicochemical Changes in Dried Fish
3.1.1. pH
3.1.2. Water Activity, aw
3.1.3. Lipid Oxidation
3.1.4. Colour
3.2. Proximate Composition of Dried Fish
3.2.1. Moisture
3.2.2. Lipid
3.2.3. Protein
3.2.4. Ash
3.2.5. Carbohydrate
3.2.6. Vitamin
3.2.7. Minerals
4. Sensory Characteristics of Dried Fish
5. Microbial Characteristics of Dried Fish
6. Safety Challenges of Dried Fish and Precautions to Prevent Side Effects
7. Advanced Technology in the Progress of Drying Fish and Fish Products
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bao, M.; Cipriani, P.; Giulietti, L.; Roiha, I.S.; Paoletti, M.; Palomba, M.; Levsen, A. Air-dried stockfish of Northeast Arctic cod do not carry viable anisakid nematodes. Food Control 2020, 116, 107322. [Google Scholar] [CrossRef]
- Bantle, M.; Hanssler, J. Ultrasonic Convective Drying Kinetics of Clipfish During the Initial Drying Period. Dry. Technol. 2013, 31, 1307–1316. [Google Scholar] [CrossRef]
- Freire, F.D.C.O.; da Rocha, M.E.B. Impact of Mycotoxins on Human Health. In Fungal Metabolites; Mérillon, J.-M., Ramawat, K.G., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 1–23. [Google Scholar]
- Østerlie, M.; Wicklund, T. Chapter 2—Food, Nutrition, and Health in Norway (Including Svalbard). In Nutritional and Health Aspects of Food in Nordic Countries; Andersen, V., Bar, E., Wirtanen, G., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 33–71. [Google Scholar]
- Deng, Y.; Wang, Y.; Deng, Q.; Sun, L.; Wang, R.; Ye, L.; Tao, S.; Liao, J.; Gooneratne, R. Fungal diversity and mycotoxin contamination in dried fish products in Zhanjiang market, China. Food Control 2021, 121, 107614. [Google Scholar] [CrossRef]
- Paul, P.C.; Reza, M.S.; Islam, M.N.; Kamal, M. A review on dried fish processing and marketing in the coastal region of Bangladesh. Res. Agric. Livest. Fish. 2018, 5, 381–390. [Google Scholar] [CrossRef]
- Patterson, J.; Ranjitha, G. Qualities of commercially and experimentally sun dried fin fish, Scomberoides tol. Afr. J. Food Sci. 2009, 3, 299–302. [Google Scholar]
- Begum, A.; Ahmed, M.S.; Alam, S.N. Detection, quantification and decontamination of pesticide residues in dry fish. Int. J. Biosci. 2017, 10, 246–252. [Google Scholar] [CrossRef]
- Sei, K.; Wang, Q.; Tokumura, M.; Suzuki, S.; Miyake, Y.; Amagai, T. Polycyclic Aromatic Hydrocarbons and Their Halogenated Derivatives in a Traditional Smoke-Dried Fish Product in Japan: Occurrence and Countermeasures. ACS Food Sci. Technol. 2021, 1, 960–966. [Google Scholar] [CrossRef]
- Oku, I.; Amakoromo, E.R. Microflora of fresh and smoke-dried fish in Yenagoa metropolis, Nigeria. Afr. J. Microbiol. Res. 2013, 7, 4451–4456. [Google Scholar] [CrossRef]
- Doe, K.; Dali, F.A.; Harmain, R.M. Evaluating the protein and fat content of skipjack (Katsuwonus pelamis) in the smoking process of arabushi. IOP Conf. Ser. Earth Environ. Sci. 2020, 404, 012052. [Google Scholar] [CrossRef]
- Choi, S.; Puligundla, P.; Mok, C. Microbial Decontamination of Dried Alaska Pollock Shreds Using Corona Discharge Plasma Jet: Effects on Physicochemical and Sensory Characteristics. J. Food Sci. 2016, 81, M952–M957. [Google Scholar] [CrossRef]
- Praveen Kumar, G.; Martin Xavier, K.A.; Nayak, B.B.; Kumar, H.S.; Venkateshwarlu, G.; Balange, A.K. Effect of Different Drying Methods on the Quality Characteristics of Pangasius hypophthalmus. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 184–195. [Google Scholar] [CrossRef]
- Puligundla, P.; Choi, S.; Mok, C. Microbial Decontamination of Gwamegi (Semi-dried Pacific Saury) Using Corona Discharge Plasma Jet, Including Physicochemical and Sensory Evaluation. J. Aquat. Food Prod. Technol. 2018, 27, 274–283. [Google Scholar] [CrossRef]
- Takenaka, S.; Nakabayashi, R.; Ogawa, C.; Kimura, Y.; Yokota, S.; Doi, M. Characterization of surface Aspergillus community involved in traditional fermentation and ripening of katsuobushi. Int. J. Food Microbiol. 2020, 327, 108654. [Google Scholar] [CrossRef]
- Brás, A.; Costa, R. Influence of brine salting prior to pickle salting in the manufacturing of various salted-dried fish species. J. Food Eng. 2010, 100, 490–495. [Google Scholar] [CrossRef]
- Dimici, L.; Wada, S. Lipid Changes in Bonito Meat in the Katsuobushi Processing and Quality Assessment of the Commercial Product Based on Lipid Composition. J. Jpn. Oil Chem. Soc. 1994, 43, 470–478. [Google Scholar] [CrossRef]
- Savitri, I.K.E.; Sormin, R.B.D. Quality characteristic of dried anchovy (Stollephorus sp) produced by using solar dryer equipment as the traditional method development. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019. [Google Scholar] [CrossRef]
- Tsironi, T.N.; Taoukis, P.S. Effect of processing parameters on water activity and shelf life of osmotically dehydrated fish filets. J. Food Eng. 2014, 123, 188–192. [Google Scholar] [CrossRef]
- Komolafe, C.; Oluwaleye, I.; Adejumo, A.; Oladapo, M. Effects of drying Temperatures on the Quality of Three Tilapia Fish Species. Int. J. Sci. Res. Manag. 2019, 1, 371–375. [Google Scholar]
- Zohar, I.; Cooke, R. The role of dried fish: A taphonomical model of fish butchering and long-term preservation. J. Archaeol. Sci. Rep. 2019, 26, 101864. [Google Scholar] [CrossRef]
- Mansur, M.A.; Rahman, S.; Khan, M.N.A.; Reza, M.S.; Kamrunnahar; Uga, S. Study on the quality and safety aspect of three sun-dried fish. Afr. J. Agric. Res. 2013, 8, 5149–5155. [Google Scholar]
- Rasul, M.G.; Yuan, C.H.; Azad Shah, A.K.M. Chemical composition and nutritional value of dried fish in Bangladesh. Egypt. J. Aquat. Biol. Fish. 2021, 25, 379–399. [Google Scholar] [CrossRef]
- Hussain, B.; Sultana, T.; Sultana, S.; Mahboob, S.; Farooq, M.; Al-Ghanim, K.; Nadeem, S. First report on fish cysteine as a biomarker of contamination in the River Chenab, Pakistan. Env. Sci Pollut. Res. Int. 2016, 23, 15495–15503. [Google Scholar] [CrossRef]
- Siddhnath; Ranjan, A.; Mohanty, B.P.; Saklani, P.; Dora, K.C.; Chowdhury, S. Dry Fish and Its Contribution Towards Food and Nutritional Security. Food Rev. Int. 2022, 38, 508–536. [Google Scholar] [CrossRef]
- Piste, P. International journal of pharmaceutical, chemical and biological sciences cysteine–master antioxidant. Int. J. Pharm. Chem. Biol. Sci. 2013, 2013, 143–149. [Google Scholar]
- Sanderson, S.M.; Gao, X.A.-O.; Dai, Z.A.-O.X.; Locasale, J.A.-O. Methionine metabolism in health and cancer: A nexus of diet and precision medicine. Nat. Rev. Cancer 2019, 19, 625–637. [Google Scholar] [CrossRef]
- Civitelli, R.; Villareal, D.T.; Agnusdei, D.; Nardi, P.; Avioli, L.V.; Gennari, C. Dietary L-lysine and calcium metabolism in humans. Nutrition 1992, 8, 400–405. [Google Scholar]
- Swanson, D.; Block, R.; Mousa, S.A. Omega-3 fatty acids EPA and DHA: Health benefits throughout life. Adv. Nutr. 2012, 3, 1–7. [Google Scholar] [CrossRef]
- Haratake, M.; Takahashi, J.; Ono, M.; Nakayama, M. An Assessment of Niboshi (a Processed Japanese Anchovy) as an Effective Food Source of Selenium. J. Health Sci. 2007, 53, 457–463. [Google Scholar] [CrossRef]
- Rocourt, C.R.; Cheng, W.H. Selenium supranutrition: Are the potential benefits of chemoprevention outweighed by the promotion of diabetes and insulin resistance? Nutrients 2013, 5, 1349–1365. [Google Scholar] [CrossRef]
- Nordvi, B.; Langsrud, O.; Egelandsdal, B.; Slinde, E.; Vogt, G.; Gutierrez, M.; Olsen, E. Characterization of volatile compounds in a fermented and dried fish product during cold storage. J. Food Sci. 2007, 72, S373–S380. [Google Scholar] [CrossRef]
- Nuwanthi, S.G.L.I.; Madage, S.S.K.; Hewajulige, I.G.N.; Wijesekera, R.G.S. Comparative Study on Organoleptic, Microbiological and Chemical Qualities of Dried Fish, Goldstripe Sardinella(Sardinella Gibbosa) with Low Salt Levels and Spices. Procedia Food Sci. 2016, 6, 356–361. [Google Scholar] [CrossRef]
- Osheba, A.S. Technological Attempts for Production of Low Sodium Smoked Herring Fish (Renga). Adv. J. Food Sci. Technol. 2013, 5, 695–706. [Google Scholar] [CrossRef]
- Farid, F.B.; Latifa, G.A.; Chakraborty, S.C.; Nahid, M.N.; Begum, M. Effect of ripening period of dry salting process in three freshwater fish species of Bangladesh. Int. J. Adv. Sci. Res. 2016, 1, 16–21. [Google Scholar]
- Fasuan, A.A.; Akin-Obasola, B.; Abiodun, B.O. Water activity relations of spoilage fungi associated with smoke-dried catfish (Clarias gariepinus) sold in some open markets in Nigeria. J. Food Sci. Technol. 2022, 59, 2168–2176. [Google Scholar] [CrossRef]
- Sormin, R.B.D.; Savitri, I.K.E. Drying process characteristics of dried anchovy (Stolephorus sp.) by using cabinet and tunnel of sun dryer. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2020; Volume 530, p. 012016. [Google Scholar] [CrossRef]
- Bhuiyan, M.N.I.; Saha, B.K.; Lucky, F.A.; Bhuiyan, H.R.; Dawlatana, M.; Bhuiyan, M.N.H. Quality Assessment of Dry Fishes of Bangladesh with the Special Emphasis on Harmful Additives. Bangladesh J. Sci. Ind. Res. 2009, 44, 311–318. [Google Scholar] [CrossRef]
- Maqsood, S.; Benjakul, S.; Shahidi, F. Emerging role of phenolic compounds as natural food additives in fish and fish products. Crit. Rev. Food Sci. Nutr. 2013, 53, 162–179. [Google Scholar] [CrossRef]
- Syamdidi, M. The Use of Chemical Additives for Fisheries Product Preservation. Squalen Bull. Mar. Fish. Postharvest Biotechnol. 2013, 7, 79. [Google Scholar] [CrossRef]
- Kasumyan, A.O.; Doving, K.B. Taste preferences in fishes. Fish Fish. 2003, 4, 289–347. [Google Scholar] [CrossRef]
- Ullah, N.; Hazarika, P.; Handique, P.J. Biochemical Quality Assessment of Ten Selected Dried Fish Species of North East India. Iarjset 2016, 3, 30–33. [Google Scholar] [CrossRef]
- Farid, F.B.; Latifa, G.A.; Nahid, M.N.; Begum, M. Effect of Sun-drying on proximate composition and pH of Shoal fish (C. striatus; Bloch, 1801) treated with Salt and Salt-turmeric storage at Room Temperature (27–30 °C). IOSR J. Agric. Vet. Sci. 2014, 7, 1–8. [Google Scholar] [CrossRef]
- Assogba, M.F.; Afe, O.H.I.; Ahouansou, R.H.; Anihouvi, D.G.H.; Kpoclou, Y.E.; Djago, D.; Douny, C.; Igout, A.; Mahillon, J.; Hounhouigan, D.J.; et al. Performances of the barrel kiln used in cottage industry for fish processing and effects on physicochemical characteristics and safety of smoked fish products. J. Sci. Food Agric. 2022, 102, 851–861. [Google Scholar] [CrossRef]
- Shaviklo, G.R.; Thorkelsson, G.; Arason, S.; Sveinsdottir, K. Characteristics of freeze-dried fish protein isolated from saithe (Pollachius virens). J. Food Sci. Technol. 2012, 49, 309–318. [Google Scholar] [CrossRef]
- Caurie, M. Bound water: Its definition, estimation and characteristics. Int. J. Food Sci. Technol. 2011, 46, 930–934. [Google Scholar] [CrossRef]
- Syamaladevi, R.M.; Tang, J.; Villa-Rojas, R.; Sablani, S.; Carter, B.; Campbell, G. Influence of Water Activity on Thermal Resistance of Microorganisms in Low-Moisture Foods: A Review. Compr. Rev. Food Sci. Food Saf. 2016, 15, 353–370. [Google Scholar] [CrossRef]
- Andrés, A.; Rodríguez-Barona, S.; Barat, J.M.; Fito, P. Salted cod manufacturing: Influence of salting procedure on process yield and product characteristics. J. Food Eng. 2005, 69, 467–471. [Google Scholar] [CrossRef]
- Fontana, A.J. D: Minimum Water Activity Limits for Growth of Microorganisms. In Water Activity in Foods; Wiley: Hoboken, NJ, USA, 2020; pp. 571–572. [Google Scholar]
- Agustini, T.W.; Darmanto, Y.S.; Susanto, E. Physicochemical properties of some dried fish products in Indonesia. J. Coast. Dev. 2009, 12, 73–80. [Google Scholar]
- Oğuzhan Yildiz, P. Effect of Essential Oils and Packaging on Hot Smoked Rainbow Trout during Storage. J. Food Processing Preserv. 2015, 39, 806–815. [Google Scholar] [CrossRef]
- Maqsood, S.; Benjakul, S.; Kamal-Eldin, A. Haemoglobin-mediated lipid oxidation in the fish muscle: A review. Trends Food Sci. Technol. 2012, 28, 33–43. [Google Scholar] [CrossRef]
- Rasul, M.G.; Yuan, C.; Shah, A.K.M.A. Chemical and Microbiological Hazards of Dried Fishes in Bangladesh: A Food Safety Concern. Food Nutr. Sci. 2020, 11, 523–539. [Google Scholar] [CrossRef]
- Viji, P.; Shanmuka Sai, K.S.; Debbarma, J.; Dhiju Das, P.H.; Madhusudana Rao, B.; Ravishankar, C.N. Evaluation of physicochemical characteristics of microwave vacuum dried mackerel and inhibition of oxidation by essential oils. J. Food Sci. Technol. 2019, 56, 1890–1898. [Google Scholar] [CrossRef]
- Kim, J.H.; Choi, H.; Lee, S.H.; Hong, J.H.; Kim, J.C. Comparitive analysis of the physicochemical properties of sun-dried and natural cyclic freeze-thaw dried alaska pollack. Food Sci. Biotechnol. 2007, 16, 520–525. [Google Scholar]
- Ortiz, J.; Lemus-Mondaca, R.; Vega-Gálvez, A.; Ah-Hen, K.; Puente-Diaz, L.; Zura-Bravo, L.; Aubourg, S. Influence of air-drying temperature on drying kinetics, colour, firmness and biochemical characteristics of Atlantic salmon (Salmo salar L.) fillets. Food Chem. 2013, 139, 162–169. [Google Scholar] [CrossRef]
- Pathare, P.B.; Opara, U.L.; Al-Said, F.A.-J. Colour Measurement and Analysis in Fresh and Processed Foods: A Review. Food Bioprocess Technol. 2013, 6, 36–60. [Google Scholar] [CrossRef]
- Nagwekar, N.; Tidke, V.; Thorat, B.N. Microbial and biochemical analysis of dried fish and comparative study using different drying methods. Dry. Technol. 2017, 35, 1481–1491. [Google Scholar] [CrossRef]
- Kim, B.S.; Oh, B.J.; Lee, J.H.; Yoon, Y.S.; Lee, H.I. Effects of Various Drying Methods on Physicochemical Characteristics and Textural Features of Yellow Croaker (Larimichthys Polyactis). Foods 2020, 9, 196. [Google Scholar] [CrossRef]
- Carneiro, C.d.S.; Mársico, E.T.; Ribeiro, R.d.O.R.; Conte-Júnior, C.A.; Mano, S.B.; Augusto, C.J.C.; Oliveira de Jesus, E.F. Low-Field Nuclear Magnetic Resonance (LF NMR 1H) to assess the mobility of water during storage of salted fish (Sardinella brasiliensis). J. Food Eng. 2016, 169, 321–325. [Google Scholar] [CrossRef]
- Andersen, C.M.; Rinnan, Å. Distribution of Water in Fresh Cod. Lwt 2002, 35, 687–696. [Google Scholar] [CrossRef] [Green Version]
- Aursand, I.G.; Veliyulin, E.; Böcker, U.; Ofstad, R.; Rustad, T.; Erikson, U. Water and Salt Distribution in Atlantic Salmon (Salmo salar) Studied by Low-Field 1H NMR, 1H and 23Na MRI and Light Microscopy: Effects of Raw Material Quality and Brine Salting. J. Agric. Food Chem. 2009, 57, 46–54. [Google Scholar] [CrossRef]
- Guan, Z.; Wang, X.; Li, M.; Jiang, X. Mathematical Modeling on Hot Air Drying of Thin Layer Fresh Tilapia Fillets. Pol. J. Food Nutr. Sci. 2013, 63, 25–34. [Google Scholar] [CrossRef]
- Chukwu, O.; Shaba, I.M. Effects of Drying Methods on Proximate Compositions of Catfish (Clarias gariepinus). World J. Agric. Sci. 2009, 5, 114–116. [Google Scholar]
- Foline, O.F.; Rachael, A.M.; Iyabo, B.E.; Fidelis, A.E. Proximate composition of catfish (Clarias gariepinus) smoked in Nigerian stored products research institute (NSPRI): Developed kiln. Int. J. Fish. Aquac. 2011, 3, 96–98. [Google Scholar]
- Idah, P.A.; Nwankwo, I. Effects of smoke-drying temperatures and time on physical and nutritional quality parameters of Tilapia (Oreochromis niloticus). Int. J. Fish. Aquac. 2013, 5, 29–34. [Google Scholar] [CrossRef]
- Catala, A. Fatty Acids; IntechOpen: London, UK, 2017. [Google Scholar]
- Mohd Yunus, A.S.; Azrina, A.; Mohd Izuan Effendi, H.; Nurnadia, A.A.; Amin, I. Mineral contents of selected marine fish and shellfish from the west coast of Peninsular Malaysia. Int. Food Res. J. 2013, 20, 431. [Google Scholar]
- Zhao, B.; Zhou, H.; Zhang, S.; Pan, X.; Li, S.; Zhu, N.; Wu, Q.; Wang, S.; Qiao, X.; Chen, W. Changes of protein oxidation, lipid oxidation and lipolysis in Chinese dry sausage with different sodium chloride curing salt content. Food Sci. Hum. Wellness 2020, 9, 328–337. [Google Scholar] [CrossRef]
- Okagaki, T.; Takami, M.; Hosokawa, K.; Yano, M.; Higashi-Fujime, S.; Ooi, A. Biochemical Properties of Ordinary and Dark Muscle Myosin from Carp Skeletal Muscle. J. Biochem. 2005, 138, 255–262. [Google Scholar] [CrossRef]
- Ochiai, Y.; Ozawa, H. Biochemical and physicochemical characteristics of the major muscle proteins from fish and shellfish. Fish. Sci. 2020, 86, 729–740. [Google Scholar] [CrossRef]
- de Boer, J.; Schösler, H.; Aiking, H. Fish as an alternative protein—A consumer-oriented perspective on its role in a transition towards more healthy and sustainable diets. Appetite 2020, 152, 104721. [Google Scholar] [CrossRef]
- Olayemi, F.; Omodara, M.; Peters, O. Development of appropriate packaging for shelf life extension of smoked fish in a developing economy. Int. J. Fish. Aquat. Stud. 2015, 2, 46–50. [Google Scholar]
- Erkan, N. The Effect of Active and Vacuum Packaging on the Quality of Turkish Traditional Salted Dried Fish “Çİroz”. J. Food Health Sci. 2017, 3, 29–35. [Google Scholar] [CrossRef]
- Islam, M.T.; Chowdhury, P.; Jahan, S.N.; Flowra, F.A.; Islam, M.T. Consumers’ preference for dried fish with emphasis on packaging in Dhaka city. Fish. Technol. 2020, 57, 291–296. [Google Scholar]
- Privalov, P.L. Cold Denaturation of Protein. Crit. Rev. Biochem. Mol. Biol. 1990, 25, 281–306. [Google Scholar] [CrossRef]
- Guinee, T.P. Effect of high-temperature treatment of milk and whey protein denaturation on the properties of rennet–curd cheese: A review. Int. Dairy J. 2021, 121, 105095. [Google Scholar] [CrossRef]
- Ismail, B.P. Ash Content Determination. In Food Analysis Laboratory Manual; Nielsen, S.S., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 117–119. [Google Scholar]
- Harris, G.K.; Marshall, M.R. Ash Analysis. In Food Analysis; Nielsen, S.S., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 287–297. [Google Scholar]
- Anthony, J.A.; Roby, D.D.; Turco, K.R. Lipid content and energy density of forage fishes from the northern Gulf of Alaska. J. Exp. Mar. Biol. Ecol. 2000, 248, 53–78. [Google Scholar] [CrossRef]
- Olayemi, F.F.; Adedayo, M.R.; Bamishaiye, E.I.; Awagu, E.F. Proximate composition of catfish (Clarias gariepinus) smoked in Nigerian stored products research institute (NSPRI): Developed kiln. Int. J. Fish. Aquac. 2011, 3, 96–98. [Google Scholar]
- Roos, N.; Leth, T.; Jakobsen, J.; Thilsted, S.H. High vitamin A content in some small indigenous fish species in Bangladesh: Perspectives for food-based strategies to reduce vitamin A deficiency. Int. J. Food Sci. Nutr. 2002, 53, 425–437. [Google Scholar] [CrossRef]
- Abraha, B.; Tessema, H.A.; Mahmud, A.; Tsighe, K.N.; Shui, X.; Yang, F. Effect of processing methods on nutritional and physico-chemical composition of fish: A review. MOJ Food Process Technol. 2018, 6, 376–382. [Google Scholar] [CrossRef]
- Fu, P.P.; Xia, Q.; Yin, J.J.; Cherng, S.H.; Yan, J.; Mei, N.; Chen, T.; Boudreau, M.D.; Howard, P.C.; Wamer, W.G. Photodecomposition of vitamin A and photobiological implications for the skin. Photochem. Photobiol. 2007, 83, 409–424. [Google Scholar] [CrossRef]
- Ako, P.A.; Salihu, S.O. Studies on some major and trace metals in smoked and oven-dried fish. J. Appl. Sci. Environ. Manag. 2004, 8, 5–9. [Google Scholar] [CrossRef]
- Jahan, S.N.; Bayezid, M.A.; Islam, B.; Siddique, M.A.B.; Karmokar, P.K.; Flowra, F.A. Biochemical Quality Assessment of Fish Powder. Am. J. Food Nutr. 2017, 5, 110–114. [Google Scholar] [CrossRef]
- De Man, J.M. Kimia Makanan, 2nd ed.; Institut Teknologi Bandung: Bandung, Indonesia, 2010. [Google Scholar]
- Rasul, M.G.; Majumdar, B.C.; Afrin, F.; Bapary, M.A.J.; Shah, A.A. Biochemical, microbiological, and sensory properties of dried silver carp (Hypophthalmichthys molitrix) influenced by various drying methods. Fishes 2018, 3, 25. [Google Scholar] [CrossRef]
- Akinneye, J.; Amoo, I.; Bakare, O. Effect of drying methods on the chemical composition of three species of fish (Bonga spp., Sardinella spp. and Heterotis niloticus). Afr. J. Biotechnol. 2010, 9, 4369–4373. [Google Scholar]
- Fasludeen, N.; Murali, S.; Samuel, M.P.; Ninan, G.; Joshy, C. Evaluation of drying characteristics of selected fishes in dryers developed by ICAR-CIFT. Fish. Technol. 2017, 55, 68–73. [Google Scholar]
- Lončar, B.; Filipović, V.; Nićetin, M.; Knežević, V.; Pezo, L.; Plavšić, D.; Šarić, L. Microbiological profile of fish dehydrated in two different osmotic solutions. Acta Univ. Sapientiae Aliment. 2014, 7, 73–80. [Google Scholar]
- Lončar, B.; Filipović, V.; Nićetin, M.; Knežević, V.; Pezo, L.; Filipčev, B.; Gubić, J. Influence of osmotic solutions on efficiency of osmotic dehydration treatment and sensorial properties of fish meat (Carassius gibelio). J. Hyg. Eng. Des. 2015, 13, 51–56. [Google Scholar]
- Immaculate, J.; Sinduja, P.; Jamila, P. Biochemical and microbial qualities of Sardinella fimbriata sun dried in different methods. Int. Food Res. J. 2012, 19, 1699–1703. [Google Scholar]
- Udeinya, B.C.; Ojike, O.; Okonkwo, W.I.; Abada, U.C. Performance evaluation of mixed mode passive solar stock fish dryer. Niger. J. Technol. 2022, 40, 1104–1109. [Google Scholar] [CrossRef]
- Sivaraman, G.K.; Siva, V. Microbiological spoilage of dried fishes. SSRN Electron. J. 2015, 38, 508–536. [Google Scholar] [CrossRef]
- Vijayan, P.K.; Surendran, P.K. Quality aspects of dried fish marketed in the north eastern states of India. Fish. Technol. 2012, 49, 167–171. [Google Scholar]
- Gore, S.B.; Relekar, S.S.; Kulkarni, A.K.; Joshi, S.A.; Pathan, J.G.K.; Telvekar, P.A.; Bankar, S.S. Quality of traditionally salted and dried fishes of ratnagiri fish market, Maharashtra. Internafional J. Sci. Environ. Technol. 2019, 8, 663–673. [Google Scholar] [CrossRef]
- Tavares, J.; Martins, A.; Fidalgo, L.G.; Lima, V.; Amaral, R.A.; Pinto, C.A.; Silva, A.M.; Saraiva, J.A. Fresh Fish Degradation and Advances in Preservation Using Physical Emerging Technologies. Foods 2021, 10, 780. [Google Scholar] [CrossRef]
- Idakwo, P.Y.; Negbenebor, C.; Bullet, M.; Badau, M.; David, b.; Gbenyi, D.I. Total volatile base nitrogen (TVBN) and trimethylamine (TMA) content of “Bunyi youri” as influenced by the addition of glucose and clove during storage. Int. J. Biotechnol. Food Sci. 2016, 4, 81–85. [Google Scholar]
- Wójcik, W.; Łukasiewicz, M.; Puppel, K. Biogenic amines: Formation, action and toxicity—A review. J. Sci. Food Agric. 2021, 101, 2634–2640. [Google Scholar] [CrossRef]
- Prester, L. Biogenic amines in fish, fish products and shellfish: A review. Food Addit. Contam. Part A 2011, 28, 1547–1560. [Google Scholar] [CrossRef]
- Sufi, G.B.; Morshed, M.; Wahed, M.A.; Khaleque, M.A.; Rafique, S. The performance of a solar tunnel dryer and evaluation of the quality of dried and dehydrated fish. Dhaka Univ. J. Biol. Sci. 2005, 14, 169–176. [Google Scholar]
- Hoque, M.S.; Tamanna, F.; Hasan, M.M.; Al Banna, M.H.; Mondal, P.; Prodhan, M.D.H.; Rahman, M.Z.; van Brakel, M.L. Probabilistic public health risks associated with pesticides and heavy metal exposure through consumption of common dried fish in coastal regions of Bangladesh. Environ. Sci. Pollut. Res. 2022, 29, 20112–20127. [Google Scholar] [CrossRef]
- Saha, N.; Zaman, M.R. Evaluation of possible health risks of heavy metals by consumption of foodstuffs available in the central market of Rajshahi City, Bangladesh. Environ. Monit. Assess. 2013, 185, 3867–3878. [Google Scholar] [CrossRef]
- Bedale, W.; Sindelar, J.J.; Milkowski, A.L. Dietary nitrate and nitrite: Benefits, risks, and evolving perceptions. Meat Sci. 2016, 120, 85–92. [Google Scholar] [CrossRef]
- Chen, C.H.; Ho, S.N.; Hu, P.A.; Kou, Y.R.; Lee, T.S. Food preservative sorbic acid deregulates hepatic fatty acid metabolism. J Food Drug Anal. 2020, 28, 206–216. [Google Scholar] [CrossRef]
- Islam, M.N.; Kabir, M.A. Application of organic preservatives for sustainable storage of dried fishes. Int. J. Fish. Aquat. Stud. 2019, 7, 40–43. [Google Scholar]
- Tewari, G.; Juneja, V. Advances in Thermal and Non-Thermal Food Preservation; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Matser, A.M.; Stegeman, D.; Kals, J.; Bartels, P.V. Effects of high pressure on colour and texture of fish. Int. J. High Press. Res. 2000, 19, 109–115. [Google Scholar] [CrossRef]
- Palmieri, L.; Cacace, D. High intensity pulsed light technology. In Emerging Technologies for Food Processing; Elsevier: Amsterdam, The Netherlands, 2005; pp. 279–306. [Google Scholar]
- Lasagabaster, A.; De Marañón, I.M. Sensitivity to pulsed light technology of several spoilage and pathogenic bacteria isolated from fish products. J. Food Prot. 2012, 75, 2039–2044. [Google Scholar] [CrossRef]
- Zhu, S.; Bail, A.L.; Ramaswamy, H. Ice crystal formation in pressure shift freezing of Atlantic salmon (Salmo salar) as compared to classical freezing methods. J. Food Processing Preserv. 2003, 27, 427–444. [Google Scholar] [CrossRef]
- Tironi, V.; De Lamballerie, M.; Le-Bail, A. Quality changes during the frozen storage of sea bass (Dicentrarchus labrax) muscle after pressure shift freezing and pressure assisted thawing. Innov. Food Sci. Emerg. Technol. 2010, 11, 565–573. [Google Scholar] [CrossRef]
- Nagarajarao, R.C. Recent advances in processing and packaging of fishery products: A review. Aquat. Procedia 2016, 7, 201–213. [Google Scholar] [CrossRef]
- Cropotova, J.; Tappi, S.; Genovese, J.; Rocculi, P.; Laghi, L.; Dalla Rosa, M.; Rustad, T. Study of the influence of pulsed electric field pre-treatment on quality parameters of sea bass during brine salting. Innov. Food Sci. Emerg. Technol. 2021, 70, 102706. [Google Scholar] [CrossRef]
- Fondi, M.; Liò, P. Multi-omics and metabolic modelling pipelines: Challenges and tools for systems microbiology. Microbiol. Res. 2015, 171, 52–64. [Google Scholar] [CrossRef] [PubMed]
Type of Fish | Drying Technique | Moisture (%) | Lipids (%) | Protein (%) | Ash (%) | Carbohydrates (%) | References |
---|---|---|---|---|---|---|---|
Catfish (Clarias gariepinus) | Electric oven | 15.62 | 29.60 | 67.21 | 3.62 | 3.84 | [64] |
Smoking kiln | 28.92 | 21.20 | 53.10 | 3.92 | 2.78 | ||
Smoking kiln (developed by NSPRI) | 7.30 | 12.50 | 68.4 | 6.40 | 1.80 | [65] | |
Indian Mackerel | Hot air | 31.11 | 5.28 | 43.38 | 17.90 | N/A | [54] |
Microwave vacuum | 32.45 | 4.02 | 44.53 | 21.61 | N/A | ||
Shoal/shol (Channa striatus) | Sun dry, salting as pre-treatment | 29.77 | 5.10 | 41.48 | 22.80 | N/A | [43] |
Dry salting | 48.84 | 3.99 | 28.21 | 18.89 | N/A | [35] | |
Yellow Croaker (Larimichthys Polyactis) | Hot air | 47.08 | 14.67 | 31.32 | 3.74 | N/A | [59] |
Low temperature vacuum | 38.56 | 12.56 | 41.48 | 6.26 | N/A | ||
Freeze dry | 47.38 | 13.43 | 33.54 | 4.02 | N/A | ||
Iridescent shark catfish (Pangasius hypophthalmus) | Mechanical (kiln) at 60 °C | 13.50 | 15.31 | 65.16 | 4.38 | N/A | [13] |
Sun dry (unsalted) | 14.59 | 15.17 | 63.39 | 5.22 | N/A | ||
Sun dry (salted) | 15.36 | 9.32 | 55.53 | 18.72 | N/A | ||
Nile Tilapia (Oreochromis niloticus) | Smoke dry at 60 °C (15 h) | 15.30 | 12.35 | 49.40 | 21.61 | N/A | [66] |
Smoke dry at 70 °C (10 h) | 17.95 | 7.85 | 56.70 | 18.52 | N/A |
Sample | Drying Methods | Parameters | References | |||||
---|---|---|---|---|---|---|---|---|
Colour | Appearance | Odour/ Palatability | Flavour | Texture | Overall Acceptability | |||
Glassy perchlet (Ambassis spp.) and sole fish (Cynoglossus semifasciatus) | Solar tray dryer (65 °C temperature and 75.8% relative humidity) | 6.1 | 5.2 | 5.4 | 4.4 | 7.2 | 6.0 | [90] |
Solar cabinet dryer | 5.0 | 5.9 | 5.0 | 5.0 | 8.1 | 7.3 | ||
Solar tunnel dryer (45 °C temperature and 75% relative humidity) | 3.6 | 4.0 | 3.5 | 3.0 | 4.1 | 3.1 | ||
Electrical dryer (60 °C temperature and 75% corresponding relative humidity) | 6.3 | 7.8 | 6.0 | 7.0 | 6.0 | 8.9 | ||
Bonga spp. | Oven | Light brown | Moderately attractive | Good | Good | Moderately hard | High | [89] |
Sun | Ash colour | Attractive | Moderate | Poor | Very hard | Moderate | ||
Smoke | Fairly black | Very attractive | Very good | Very good | Soft | Very high | ||
Sardinella spp. | Oven | Dark brown | Very attractive | Good | Good | Very hard | High | |
Sun | Brown | Attractive | Moderate | Moderate | Moderately hard | Low | ||
Smoke | Dark brown | Very attractive | Very good | Very good | Soft | High | ||
Heterotis niloticus | Oven | Light brown | Attractive | Good | Good | Very hard | Moderate | |
Sun | Grey | Moderately attractive | Moderate | Poor | Hard | Moderate | ||
Smoke | Brown | Very attractive | Very good | Good | Soft | High | ||
Traditional sun drying | 2.81 | - | 2.38 | - | 3.27 | 13.42 | Rasul, Majumdar, Afrin, Bapary and Shah [88] | |
Hypophthalmichthys molitrix | Improved sun drying (soaked in salt solution 5%, treated with chilli powder 0.3% and turmeric powder 0.3%) | 1.93 | - | 1.56 | - | 2.18 | 6.87 | |
Solar tunnel drying (soaked in brine solution, 5% salt) | 1.69 | - | 1.22 | - | 1.93 | 5.87 |
Drying Method | Type of Microbe Found in Dried Fish | Microbes Found in Dried Fish | TPC/TVC/TFC | References |
---|---|---|---|---|
Open-air drying
| Bacteria | Escherichia coli | 1.84 × 104/g to 5.3 × 106/g | [22,93] |
Fungi |
|
| [5] | |
Smoke-drying | Bacteria |
| 4.0 × 108 to 2.30 × 1010 cfu/g | [10] |
Fungi |
| 1.0 × 104 to 4.0 × 105 cfu/g | ||
Salt-drying | Bacteria |
| 6.5 × 104 to 1.4 × 108 cfu/g | [95,96] |
Fungi |
| 0.72 × 101 to 1.8 × 101 cfu/g | [95,97] | |
Hot-air drying | Bacteria | Bacteria
| 2.87 × 105 cfu/g | [58] |
Fungi | 1.9 × 105 cfu/g | |||
Freeze-drying | Bacteria | 1.90 × 105 cfu/g | ||
Fungi | 0.63 × 105 cfu/g | |||
Solar Convection Drying | Bacteria | 1.60 × 105 cfu/g | ||
Fungi | 0.53 × 105 cfu/g |
Sample | Method | Technology | Reference |
---|---|---|---|
Cod (Gardus morhua) | High pressure processing | Non-thermal process with vessel pressure | Matser, Stegeman, Kals and Bartels [109] |
Fish products | Pulse light technology | Non-thermal process with high peak pulses | Lasagabaster and De Marañón [111] |
Atlantic salmon (Salmo salar) | Pressure shift freezing | High freezing rate | Zhu, Bail and Ramaswamy [112] |
Sea bass (Dicentrarchus labrax) | Pressure assisted thawing | Non-thermal process with thawing conditions | Tironi, De Lamballerie and Le-Bail [113] |
Sea bass | Pulsed electric field | Non-thermal process with electric pulses | Cropotova, Tappi, Genovese, Rocculi, Laghi, Dalla Rosa and Rustad [115] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fitri, N.; Chan, S.X.Y.; Che Lah, N.H.; Jam, F.A.; Misnan, N.M.; Kamal, N.; Sarian, M.N.; Mohd Lazaldin, M.A.; Low, C.F.; Hamezah, H.S.; et al. A Comprehensive Review on the Processing of Dried Fish and the Associated Chemical and Nutritional Changes. Foods 2022, 11, 2938. https://doi.org/10.3390/foods11192938
Fitri N, Chan SXY, Che Lah NH, Jam FA, Misnan NM, Kamal N, Sarian MN, Mohd Lazaldin MA, Low CF, Hamezah HS, et al. A Comprehensive Review on the Processing of Dried Fish and the Associated Chemical and Nutritional Changes. Foods. 2022; 11(19):2938. https://doi.org/10.3390/foods11192938
Chicago/Turabian StyleFitri, Nursyah, Sharon Xi Ying Chan, Noor Hanini Che Lah, Faidruz Azura Jam, Norazlan Mohmad Misnan, Nurkhalida Kamal, Murni Nazira Sarian, Mohd Aizuddin Mohd Lazaldin, Chen Fei Low, Hamizah Shahirah Hamezah, and et al. 2022. "A Comprehensive Review on the Processing of Dried Fish and the Associated Chemical and Nutritional Changes" Foods 11, no. 19: 2938. https://doi.org/10.3390/foods11192938