Asparaginase Treatment of Sea Buckthorn Berries as an Effective Tool for Acrylamide Reduction in Nutritionally Enriched Wholegrain Wheat, Rye and Triticale Biscuits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Biological Materials
2.1.1. Reagents
2.1.2. Biological Material
2.2. Methods
2.2.1. Procedure of Sea Buckthorn Pomace Production
2.2.2. Procedure of Biscuits Production
2.2.3. Determination of Dimension of Biscuits
2.2.4. Determination of Moisture
2.2.5. Determination of Water Activity
2.2.6. Determination of Colour
2.2.7. Determination of Texture
2.2.8. Determination of Amino Acids
2.2.9. Determination of Acrylamide
2.2.10. Determination of 5-Hydroxymethylfurfural
2.3. Statistical Analysis
3. Results and Discussion
3.1. Amino Acid Profiles of Cereal Flours
3.2. Amino Acid Profiles of Sea Buckthorn Pomaces
3.3. Characterization of Cereal Biscuits Enriched with SBP Powder
3.3.1. Impact of SBP Powders on Dimensions of Biscuits
3.3.2. Impact of SBP Powders on Moisture and Water Activity of Biscuits
3.3.3. Impact of SBP Powders on the Colour of Biscuits
3.3.4. Impact of SBP Powders on Texture of Biscuits
3.3.5. Impact of SBP Powders on Acrylamide and Residual Free Asparagine in Biscuits
3.3.6. Impact of SBP Powders on HMF of Biscuits
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dimou, C.; Karantonis, H.C.; Skalkos, D.; Koutelidakis, A.E. Valorization of Fruits by-products to Unconventional Sources of Additives, Oil, Biomolecules and Innovative Functional Foods. Curr. Pharm. Biotechnol. 2019, 20, 776–786. [Google Scholar] [CrossRef] [PubMed]
- Gómez, M.; Martinez, M.M. Fruit and vegetable by-products as novel ingredients to improve the nutritional quality of baked goods. Crit. Rev. Food Sci. Nutr. 2018, 58, 2119–2135. [Google Scholar] [CrossRef] [PubMed]
- Trigo, J.P.; Alexandre, E.M.C.; Saraiva, J.A.; Pintado, M.E. High value-added compounds from fruit and vegetable by-products—Characterization, bioactivities, and application in the development of novel food products. Crit. Rev. Food Sci. Nutr. 2020, 60, 1388–1416. [Google Scholar] [CrossRef] [PubMed]
- Quiles, A.; Campbell, G.M.; Struck, S.; Rohm, H.; Hernando, I. Fiber from fruit pomace: A review of applications in cereal-based products. Food Rev. Int. 2018, 34, 162–181. [Google Scholar] [CrossRef]
- Zhang, H.; Troise, A.D.; Sun, S.; Fogliano, V. The water insoluble fraction from red cabbage and black currant pomace reduces the formation of acrylamide, 5-hydroxymethylfurfural and reactive aldehydes in fried potato-based crisps. LWT 2023, 173, 114238. [Google Scholar] [CrossRef]
- Borczak, B.; Sikora, M.; Kapusta-Duch, J.; Fołta, M.; Szewczyk, A.; Zięć, G.; Doskočil, I.; Leszczyńska, T. Antioxidative Properties and Acrylamide Content of Functional Wheat-Flour Cookies Enriched with Wild-Grown Fruits. Molecules 2022, 27, 5531. [Google Scholar] [CrossRef]
- Zhu, F.; Cai, Y.-Z.; Ke, J.; Corke, H. Dietary plant materials reduce acrylamide formation in cookie and starch-based model systems. J. Sci. Food Agric. 2011, 91, 2477–2483. [Google Scholar] [CrossRef]
- Bal, L.M.; Meda, V.; Naik, S.N.; Satya, S. Sea buckthorn berries: A potential source of valuable nutrients for nutraceuticals and cosmoceuticals. Food Res. Int. 2011, 44, 1718–1727. [Google Scholar] [CrossRef]
- Ciesarová, Z.; Murkovic, M.; Cejpek, K.; Kreps, F.; Tobolková, B.; Koplík, R.; Belajová, E.; Kukurová, K.; Daško, Ľ.; Panovská, Z.; et al. Why is sea buckthorn (Hippophae rhamnoides L.) so exceptional? A review. Food Res. Int. 2020, 133, 109170. [Google Scholar] [CrossRef]
- Dienaitė, L.; Pukalskas, A.; Pukalskienė, M.; Pereira, C.V.; Matias, A.A.; Venskutonis, P.R. Phytochemical Composition, Antioxidant and Antiproliferative Activities of Defatted Sea Buckthorn (Hippophaë rhamnoides L.) Berry Pomace Fractions Consecutively Recovered by Pressurized Ethanol and Water. Antioxidants 2020, 9, 274. [Google Scholar] [CrossRef]
- Gâtlan, A.-M.; Gutt, G. Sea Buckthorn in Plant Based Diets. An Analytical Approach of Sea Buckthorn Fruits Composition: Nutritional Value, Applications, and Health Benefits. Int. J. Environ. Res. Public Health 2021, 18, 8986. [Google Scholar] [CrossRef] [PubMed]
- Janotková, L.; Potočňáková, M.; Kreps, F.; Krepsová, Z.; Ácsová, A.; Ház, A.; Jablonský, M. Effect of sea buckthorn biomass on oxidation stability and sensory attractiveness of cereal biscuits. BioResources 2021, 16, 5097–5105. [Google Scholar] [CrossRef]
- Gazi, S.; Göncüoğlu Taş, N.; Görgülü, A.; Gökmen, V. Effectiveness of asparaginase on reducing acrylamide formation in bakery products according to their dough type and properties. Food Chem. 2023, 402, 134224. [Google Scholar] [CrossRef]
- Kaur, K.D.; Jha, A.; Sabikhi, L.; Singh, A.K. Significance of coarse cereals in health and nutrition: A review. J. Food Sci. Technol. 2014, 51, 1429–1441. [Google Scholar] [CrossRef]
- McKevith, B. Nutritional aspects of cereals. Nutr. Bull. 2004, 29, 111–142. [Google Scholar] [CrossRef]
- Torbica, A.; Belović, M.; Popović, L.; Čakarević, J.; Jovičić, M.; Pavličević, J. Comparative study of nutritional and technological quality aspects of minor cereals. J. Food Sci. Technol. 2021, 58, 311–322. [Google Scholar] [CrossRef] [PubMed]
- Žilić, S.; Aktağ, I.G.; Dodig, D.; Gökmen, V. Investigations on the formation of Maillard reaction products in sweet cookies made of different cereals. Food Res. Int. 2021, 144, 110352. [Google Scholar] [CrossRef] [PubMed]
- Ciesarová, Z.; Kukurová, K.; Bednáriková, A.; Morales, F.J. Effect of heat treatment and dough formulation on the formation of Maillard reaction products in fine bakery products—Benefits and weak points. J. Food Nutr. Res. 2009, 48, 20–30. [Google Scholar]
- Sung, W.C.; Chen, C.Y. Influence of Cookies Formulation on the Formation of Acrylamide. J. Food Nutr. Res. 2017, 5, 370–378. [Google Scholar]
- Žilić, S.; Dodig, D.; Basić, Z.; Vančetović, J.; Titan, P.; Đurić, N.; Tolimir, N. Free asparagine and sugars profile of cereal species: The potential of cereals for acrylamide formation in foods. Food Addit. Contam. Part A 2017, 34, 705–713. [Google Scholar] [CrossRef]
- Delatour, T.; Stadler, R.H. Two decades of research in dietary acrylamide: What do we know today. Crit. Rev. Food Sci. Nutr. 2022, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Commission Regulation (EU). 2017/2158 of 20 November 2017 establishing mitigation measures and benchmark levels for the reduction of the presence of acrylamide in food (Text with EEA relevance.). J. Eur. Union 2017, 60, 24–44. [Google Scholar]
- Capuano, E.; Fogliano, V. Acrylamide and 5-hydroxymethylfurfural (HMF): A review on metabolism, toxicity, occurrence in food and mitigation strategies. LWT 2011, 44, 793–810. [Google Scholar] [CrossRef]
- Mottram, D.S.; Wedzicha, B.L.; Dodson, A.T. Acrylamide is formed in the Maillard reaction. Nature 2002, 419, 448–449. [Google Scholar] [CrossRef] [PubMed]
- Stadler, R.H.; Blank, I.; Varga, N.; Robert, F.; Hau, J.; Guy, P.A.; Robert, M.-C.; Riediker, S. Acrylamide from Maillard reaction products. Nature 2002, 419, 449–450. [Google Scholar] [CrossRef] [PubMed]
- Zyzak, D.V.; Sanders, R.A.; Stojanovic, M.; Tallmadge, D.H.; Eberhart, B.L.; Ewald, D.K.; Gruber, D.C.; Morsch, T.R.; Strothers, M.A.; Rizzi, G.P.; et al. Acrylamide formation mechanism in heated foods. J. Agric. Food Chem. 2003, 51, 4782–4787. [Google Scholar] [CrossRef] [PubMed]
- Blank, I. Current Status of Acrylamide Research in Food: Measurement, Safety Assessment, and Formation. Ann. N. Y. Acad. Sci. 2005, 1043, 30–40. [Google Scholar] [CrossRef]
- Yaylayan, V.A. Acrylamide formation and its impact on the mechanism of the early Maillard reaction. J. Food Nutr. Res. 2009, 48, 1–7. [Google Scholar]
- FoodDrinkEurope. Acrylamide Toolbox. 2019. Available online: https://www.fooddrinkeurope.eu/wp-content/uploads/2021/05/FoodDrinkEurope_Acrylamide_Toolbox_2019.pdf (accessed on 19 May 2023).
- Schouten, M.A.; Tappi, S.; Rocculi, P.; Romani, S. Mitigation Strategies to Reduce Acrylamide in Cookies: Effect of Formulation. Food Rev. Int. 2022, 1–42. [Google Scholar] [CrossRef]
- Shyu, Y.-S.; Hsiao, H.-I.; Fang, J.-Y.; Sung, W.-C. Effects of Dark Brown Sugar Replacing Sucrose and Calcium Carbonate, Chitosan, and Chitooligosaccharide Addition on Acrylamide and 5-Hydroxymethylfurfural Mitigation in Brown Sugar Cookies. Processes 2019, 7, 360. [Google Scholar] [CrossRef]
- Açar, Ö.Ç.; Pollio, M.; Di Monaco, R.; Fogliano, V.; Gökmen, V. Effect of Calcium on Acrylamide Level and Sensory Properties of Cookies. Food Bioproc. Tech. 2012, 5, 519–526. [Google Scholar] [CrossRef]
- Kukurová, K.; Ciesarová, Z.; Mogol, B.A.; Açar, Ö.Ç.; Gökmen, V. Raising agents strongly influence acrylamide and HMF formation in cookies and conditions for asparaginase activity in dough. Eur. Food Res. Technol. 2013, 237, 1–8. [Google Scholar] [CrossRef]
- Hendriksen, H.V.; Kornbrust, B.A.; Østergaard, P.R.; Stringer, M.A. Evaluating the potential for enzymatic acrylamide mitigation in a range of food products using an asparaginase from Aspergillus oryzae. J. Agric. Food Chem. 2009, 57, 4168–4176. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Oruna-Concha, M.-J.; Elmore, J.S. The use of asparaginase to reduce acrylamide levels in cooked Food. Food Chem. 2016, 210, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Ciesarova, Z.; Kiss, E.; Boegl, P. Impact of L-asparaginase on acrylamide content in potato products. J. Food Nutr. Res. 2006, 45, 141–146. [Google Scholar]
- Constantin, O.E.; Kukurová, K.; Daško, Ľ.; Stănciuc, N.; Ciesarová, Z.; Croitoru, C.; Râpeanu, G. Modelling Contaminant Formation during Thermal Processing of Sea Buckthorn Purée. Molecules 2019, 24, 1571. [Google Scholar] [CrossRef]
- Ciesarová, Z.; Kukurová, K.; Jelemenská, V. Method of production of fruit and/or vegetable preparations with reduced potential for acrylamide formation. Utility model No 9572. In Vestník Úradu Priemyselného Vlastníctva Slovenskej Republiky 2022; Banská: Bystrica, Slovak Republic, 2022; p. 47. [Google Scholar]
- Belović, M.; Torbica, A.; Škrobot, D.; Tomić, J.; Čabarkapa, I.; Živančev, D.; Štatkić, S.; Aćin, V.; Kukurová, K.; Ciesarová, Z. Potential application of triticale cultivar’Odisej’for the production of cookies. Ratar. I Povrt. Field Veg. Crops Res. 2020, 57, 8–13. [Google Scholar] [CrossRef]
- AACC Approved Methods of Analysis, 11th ed.; Method 10-50.05 Baking Quality of Cookie Flour; Cereals & Grains Association: St. Paul, MN, USA, 2000. [CrossRef]
- Kowalski, S.; Kopuncová, M.; Ciesarová, Z.; Kukurová, K. Free amino acids profile of Polish and Slovak honeys based on LC-MS/MS method without the prior derivatisation. J. Food Sci. Technol. 2017, 54, 3716–3723. [Google Scholar] [CrossRef]
- Curtis, T.Y.; Powers, S.J.; Balagiannis, D.; Elmore, J.S.; Mottram, D.S.; Parry, M.A.J.; Rakszegi, M.; Bedö, Z.; Shewry, P.R.; Halford, N.G. Free Amino Acids and Sugars in Rye Grain: Implications for Acrylamide Formation. J. Agric. Food Chem. 2010, 58, 1959–1969. [Google Scholar] [CrossRef]
- Curtis, T.Y.; Muttucumaru, N.; Shewry, P.R.; Parry, M.A.J.; Powers, S.J.; Elmore, J.S.; Mottram, D.S.; Hook, S.; Halford, N.G. Effects of Genotype and Environment on Free Amino Acid Levels in Wheat Grain: Implications for Acrylamide Formation during Processing. J. Agric. Food Chem. 2009, 57, 1013–1021. [Google Scholar] [CrossRef]
- Mustafa, A.; Åman, P.; Andersson, R.; Kamal-Eldin, A. Analysis of free amino acids in cereal products. Food Chem. 2007, 105, 317–324. [Google Scholar] [CrossRef]
- Curtis, T.Y.; Powers, S.J.; Halford, N.G. Effects of Fungicide Treatment on Free Amino Acid Concentration and Acrylamide-Forming Potential in Wheat. J. Agric. Food Chem. 2016, 64, 9689–9696. [Google Scholar] [CrossRef] [PubMed]
- Curtis, T.Y.; Powers, S.J.; Wang, R.; Halford, N.G. Effects of variety, year of cultivation and sulphur supply on the accumulation of free asparagine in the grain of commercial wheat varieties. Food Chem. 2018, 239, 304–313. [Google Scholar] [CrossRef] [PubMed]
- Ciesarová, Z.; Kukurová, K.; Torbica, A.; Belović, M.; Horváthová, J.; Daško, Ľ.; Jelemenská, V. Acrylamide and 5-hydroxymethylfurfural in thermally treated non-wheat flours and respective breads. Food Chem. 2021, 365, 130491. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Figares, I.; Marinetto, J.; Royo, C.; Ramos, J.M.; Garcia del Moral, L.F. Amino-Acid Composition and Protein and Carbohydrate Accumulation in the Grain of Triticale Grown under Terminal Water Stress Simulated by a Senescing Agent. J. Cereal Sci. 2000, 32, 249–258. [Google Scholar] [CrossRef]
- Jaskiewicz, B. Chemical composition of winter triticale grain depending on type of tillage in crop rotation. In Proceedings of the 18th International Scientific Conference Engineering for Rural Development, Jelgava, Latvia, 22–24 May 2019; pp. 319–323. [Google Scholar]
- Rodehutscord, M.; Rückert, C.; Maurer, H.P.; Schenkel, H.; Schipprack, W.; Bach Knudsen, K.E.; Schollenberger, M.; Laux, M.; Eklund, M.; Siegert, W.; et al. Variation in chemical composition and physical characteristics of cereal grains from different genotypes. Arch. Anim. Nutr. 2016, 70, 87–107. [Google Scholar] [CrossRef]
- Sibian, M.S.; Saxena, D.C.; Riar, C.S. Effect of germination on chemical, functional and nutritional characteristics of wheat, brown rice and triticale: A comparative study. J. Sci. Food Agric. 2017, 97, 4643–4651. [Google Scholar] [CrossRef]
- Mossé, J.; Huet, J.C.; Baudet, J. The amino acid composition of triticale grain as a function of nitrogen content: Comparison with wheat and rye. J. Cereal Sci. 1988, 7, 49–60. [Google Scholar] [CrossRef]
- Žilić, S.; Aktağ, I.G.; Dodig, D.; Filipović, M.; Gökmen, V. Acrylamide formation in biscuits made of different wholegrain flours depending on their free asparagine content and baking conditions. Food Res. Int. 2020, 132, 109109. [Google Scholar] [CrossRef]
- Richards, N.G.; Humkey, R.N.; Li, K.; Meyer, M.E.; de Sintjago, T.C.C. Tunnels and Intermediates in the Glutamine-Dependent Amidotransferases. In Comprehensive Natural Products II; Liu, H.-W., Mander, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2010; pp. 161–230. [Google Scholar]
- De Vleeschouwer, K.; Van der Plancken, I.; Van Loey, A.; Hendrickx, M.E. Role of precursors on the kinetics of acrylamide formation and elimination under low moisture conditions using a multiresponse approach—Part II: Competitive reactions. Food Chem. 2009, 114, 535–546. [Google Scholar] [CrossRef]
- Claeys, W.L.; de Vleeschouwer, K.; Hendrickx, M.E. Effect of amino acids on acrylamide formation and elimination kinetics. Biotechnol. Prog. 2005, 21, 1525–1530. [Google Scholar] [CrossRef]
- Koutsidis, G.; Simons, S.P.J.; Thong, Y.H.; Haldoupis, Y.; Mojica-Lazaro, J.; Wedzicha, B.L.; Mottram, D.S. Investigations on the effect of amino acids on acrylamide, pyrazines, and Michael addition products in model systems. J. Agric. Food Chem. 2009, 57, 9011–9015. [Google Scholar] [CrossRef] [PubMed]
- Tkacz, K.; Gil-Izquierdo, Á.; Medina, S.; Turkiewicz, I.P.; Domínguez-Perles, R.; Nowicka, P.; Wojdyło, A. Phytoprostanes, phytofurans, tocopherols, tocotrienols, carotenoids and free amino acids and biological potential of sea buckthorn juices. J. Sci. Food Agric. 2022, 102, 185–197. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, P.; Yang, K.; He, Q.; Wang, Y.; Sun, Y.; He, C.; Xiao, P. Impact of Drying Methods on Phenolic Components and Antioxidant Activity of Sea Buckthorn (Hippophae rhamnoides L.) Berries from Different Varieties in China. Molecules 2021, 26, 7189. [Google Scholar] [CrossRef]
- Zhang, W.; Yan, J.; Duo, J.; Ren, B.; Guo, J. Preliminary study of biochemical constitutions of berry of sea buckthorn growing in Shanxi province and their changing trend. In Proceedings of International Symposium on Sea Buckthorn (H. rhamnoides L.), Xi’an, China, 19–23 October 1989. [Google Scholar]
- Krasotkina, J.; Borisova, A.A.; Gervaziev, Y.V.; Sokolov, N.N. One-step purification and kinetic properties of the recombinant l-asparaginase from Erwinia carotovora. Biotechnol. Appl. Biochem. 2004, 39, 215–221. [Google Scholar] [CrossRef]
- Mahajan, R.V.; Saran, S.; Kameswaran, K.; Kumar, V.; Saxena, R.K. Efficient production of L-asparaginase from Bacillus licheniformis with low-glutaminase activity: Optimization, scale up and acrylamide degradation studies. Bioresour. Technol. 2012, 125, 11–16. [Google Scholar] [CrossRef]
- Blanco Canalis, M.S.; Steffolani, M.E.; León, A.E.; Ribotta, P.D. Effect of different fibers on dough properties and biscuit quality. J. Sci. Food Agric. 2017, 97, 1607–1615. [Google Scholar] [CrossRef] [PubMed]
- Tomić, J.; Belović, M.; Torbica, A.; Pajin, B.; Lončarević, I.; Petrović, J.; Fišteš, A. The influence of addition of dried tomato pomace on the physical and sensory properties of whole grain rye flour cookies. Food Feed Res. 2016, 43, 145–152. [Google Scholar] [CrossRef]
- Nour, V.; Panaite, T.D.; Corbu, A.R.; Ropota, M.; Turcu, R.P. Nutritional and bioactive compounds in dried sea-buckthorn pomace. Erwerbs-Obstbau 2021, 63, 91–98. [Google Scholar] [CrossRef]
- Gani, A.; Jan, R.; Ashwar, B.A.; Ashraf, Z.U.; Shah, A.; Gani, A. Encapsulation of saffron and sea buckthorn bioactives: Its utilization for development of low glycemic baked product for growing diabetic population of the world. LWT 2021, 142, 111035. [Google Scholar] [CrossRef]
- Zykin, P.A.; Andreeva, E.A.; Lykholay, A.N.; Tsvetkova, N.V.; Voylokov, A.V. Anthocyanin Composition and Content in Rye Plants with Different Grain Color. Molecules 2018, 23, 948. [Google Scholar] [CrossRef]
- Castañeda-Ovando, A.; Pacheco-Hernández, M.; Páez-Hernández, M.E.; Rodríguez, J.A.; Galán-Vidal, C.A. Chemical studies of anthocyanins: A review. Food Chem. 2009, 113, 859–871. [Google Scholar] [CrossRef]
- Chen, G.; Hu, R.; Li, Y. Potassium bicarbonate improves dough and cookie characteristics through influencing physicochemical and conformation properties of wheat gluten. Food Chem. X 2020, 5, 100075. [Google Scholar] [CrossRef]
- Ciesarová, Z.; Suhaj, M.; Horváthová, J. Correlation between acrylamide contents and antioxidant capacities of spice extracts in a model potato matrix. J. Food Nutr. Res. 2008, 47, 1–5. [Google Scholar]
- Nilova, L.; Malyutenkova, S.; Kruchina-Bogdanov, I. The impact of plant powders on acrylamide content in bakery products. Agron. Res. 2019, 17, 1401–1413. [Google Scholar]
- Kruchina-Bogdanov, I.V.; Nilova, L.P.; Malyutenkova, S.M.; Naumenko, N.V. Using capillary electrophoresis to determine acrylamide in bakery products. In International Scientific and Practical Conference “Agro-SMART-Smart Solutions for Agriculture” (Agro-SMART 2018); Atlantis Press: Amsterdam, The Netherlands, 2018; pp. 528–533. [Google Scholar]
- Wenzl, T.; de la Calle, M.B.; Anklam, E. Analytical methods for the determination of acrylamide in food products: A review. Food Addit. Contam. 2003, 20, 885–902. [Google Scholar] [CrossRef]
- Pan, M.; Liu, K.; Yang, J.; Hong, L.; Xie, X.; Wang, S. Review of Research into the Determination of Acrylamide in Foods. Foods 2020, 9, 524. [Google Scholar] [CrossRef] [PubMed]
- Crawford, L.M.; Wang, S.C. Comparative Study of Four Analytical Methods for the Routine Determination of Acrylamide in Black Ripe Olives. J. Agric. Food Chem. 2019, 67, 12633–12641. [Google Scholar] [CrossRef]
- Wang, H.; Lee, A.W.M.; Shuang, S.; Choi, M.M.F. SPE/HPLC/UV studies on acrylamide in deep-fried flour-based indigenous Chinese foods. Microchem. J. 2008, 89, 90–97. [Google Scholar] [CrossRef]
- De Vleeschouwer, K.; Van der Plancken, I.; Van Loey, A.; Hendrickx, M.E. Impact of pH on the Kinetics of Acrylamide Formation/Elimination Reactions in Model Systems. J. Agric. Food Chem. 2006, 54, 7847–7855. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Hu, H.; McClements, D.J.; Nie, S.; Shen, M.; Li, C.; Huang, Y.; Zhong, Y.; Chen, J.; Zeng, M.; et al. PH and lipid unsaturation impact the formation of acrylamide and 5-hydroxymethylfurfural in model system at frying temperature. Food Res. Int. 2019, 123, 403–413. [Google Scholar] [CrossRef] [PubMed]
Amino Acid | RT (min) | PI | Production Ions | Fragmentor (eV) | Collision Energy (eV) | Dwell (ms) | R2 | LOD (ng/mL) | LOQ (ng/mL) | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Q1 | Q2 | Q1 | Q2 | ||||||||
Ala | 4.53 | 90 | 44 | 90 | 50 | 6 | 2 | 20 | 0.9990 | 10 | 30 |
Arg | 13.64 | 175 | 70 | 175 | 100 | 25 | 5 | 50 | 0.9992 | 10 | 30 |
Asn | 4.03 | 133 | 74 | 87 | 50 | 12 | 5 | 20 | 0.9998 | 8 | 25 |
Asp | 3.74 | 134 | 74 | 88 | 50 | 12 | 5 | 20 | 0.9996 | 10 | 30 |
Cys | 3.92 | 122 | 76 | 59 | 60 | 10 | 25 | 20 | 0.9991 | 10 | 30 |
Gln | 4.09 | 147 | 84 | 130 | 50 | 15 | 5 | 20 | 0.9919 | 10 | 30 |
Glu | 4.21 | 148 | 84 | 102 | 50 | 15 | 10 | 20 | 0.9994 | 6 | 20 |
Gly | 4.47 | 76 | 76 | 30 | 50 | 2 | 6 | 20 | 0.9997 | 11 | 33 |
His | 11.67 | 156 | 110 | 156 | 100 | 15 | 2 | 50 | 0.9996 | 10 | 29 |
Hyp | 3.63 | 132 | 86 | 132 | 50 | 15 | 2 | 20 | 0.9998 | 13 | 39 |
Ile | 7.62 | 132 | 86 | 132 | 80 | 5 | 2 | 50 | 0.9997 | 8 | 24 |
Leu | 7.11 | 132 | 86 | 132 | 80 | 5 | 2 | 50 | 0.9997 | 11 | 33 |
Lys | 13.28 | 147 | 84 | 130 | 80 | 15 | 5 | 50 | 0.9991 | 7 | 23 |
Met | 5.45 | 150 | 56 | 133 | 80 | 15 | 5 | 50 | 0.9972 | 4 | 12 |
Orn | 12.35 | 133 | 116 | 70 | 80 | 5 | 20 | 50 | 0.9997 | 9 | 28 |
Phe | 8.21 | 166 | 120 | 103 | 80 | 10 | 30 | 50 | 0.9997 | 10 | 30 |
Pro | 3.95 | 116 | 70 | 116 | 50 | 10 | 0 | 5 | 0.9978 | 9 | 29 |
Ser | 4.1 | 106 | 60 | 106 | 50 | 5 | 2 | 20 | 0.9987 | 10 | 30 |
Thr | 4.18 | 120 | 56 | 74 | 50 | 15 | 8 | 20 | 0.9978 | 8 | 26 |
Trp | 15.17 | 205 | 146 | 188 | 100 | 15 | 5 | 50 | 0.9998 | 11 | 34 |
Tyr | 8.14 | 182 | 182 | 136 | 100 | 2 | 10 | 50 | 0.9979 | 10 | 30 |
Val | 5.32 | 118 | 72 | 118 | 80 | 10 | 2 | 50 | 0.9994 | 3 | 10 |
Wholegrain Flour | Sea Buckthorn Pomace | ||||||
---|---|---|---|---|---|---|---|
Amino Acid (mg/kg) | Wheat | Triticale | Rye | SBJ | SBP1 | SBP2 | SBP3 |
Asn | 447.9 c | 782.0 b | 1182.9 a | 1273.3 C | 1717.8 B | 1833.9 A | 88.5 D |
Asp | 107.9 b | 92.2 c | 205.1 a | 81.2 B | 94.1 B | 95.6 B | 1469.5 A |
Gln | 65.2 c | 87.6 b | 121.6 a | 109.0 C | 170.8 B | 209.7 A | 215.5 A |
Glu | 205.2 c | 218.4 b | 373.9 a | 86.2 C | 124.2 B | 150.6 A | 127.7 B |
Arg | 143.6 b | 200.6 a | 146.8 b | 72.2 B | 141.9 A | 113.9 A | 110.3 A |
Lys | 49.5 c | 63.7 a | 58.7 b | 38.8 A | 29.6 B | 30.5 B | 26.8 B |
Ala | 135.7 b | 116.8 c | 173.7 a | 62.3 B | 67.4 AB | 72.6 A | 63.7 B |
Phe | 26.4 b | 42.2 a | 41.6 a | 86.6 A | 42.7 B | 35.6 B | 32.3 B |
Pro | 36.1 c | 77.1 b | 163.3 a | 39.9 B | 48.9 A | 48.9 A | 42.5 B |
Trp | 90.6 a | 40.4 b | 41.5 b | 22.8 B | 27.2 A | 23.6 B | 23.0 B |
Ser | 28.9 a | 18.5 b | 21.3 b | 39.8 A | 53.3 A | 47.2 A | 52.0 A |
Val | 36.6 c | 46.4 b | 82.1 a | 21.4 A | 22.2 A | 22.8 A | 22.4 A |
Met | 0.9 c | 1.6 b | 7.3 a | 13.3 A | 11.6 BC | 11.9 B | 11.2 C |
Tyr | nd | nd | nd | 41.8 A | 26.0 B | 27.6 B | 24.8 B |
Ile | 40.0 b | 48.3 a | 47.7 a | 38.5 A | 17.6 B | 19.8 B | 19.5 B |
Leu | 13.9 c | 16.4 b | 25.9 a | 9.5 B | 11.6 AB | 11.8 AB | 12.6 A |
Thr | 18.3 c | 20.9 b | 25.0 a | 22.7 A | 21.3 A | 23.4 A | 21.3 A |
Gly | 53.1 a | 42.1 b | 44.1 b | 11.3 A | 14.3 A | 11.8 A | 12.0 A |
His | 17.1 c | 19.5 b | 24.1 a | 31.7 A | 30.9 A | 24.6 B | 25.1 B |
Orn | 3.1 b | 4.6 a | 3.5 b | 10.3 AB | 14.3 A | 8.8 B | nd |
Cys | nd | nd | nd | 16.3 A | 16.7 A | nd | 15.5 A |
Hyp | nd | nd | nd | 1.1 A | 1.2 A | 1.3 A | 1.0 A |
Total | 1519.9 | 1939.3 | 2790.4 | 2130.1 | 2705.7 | 2826.2 | 2417.3 |
E-AA | 276.0 | 280.0 | 330.0 | 253.6 | 183.7 | 179.6 | 169.1 |
SemiE-AA | 160.7 | 220.1 | 170.9 | 103.9 | 172.9 | 138.5 | 135.4 |
NonE-AA | 1083.0 | 1439.2 | 2289.5 | 1772.5 | 2349.2 | 2508.1 | 2112.2 |
Wholegrain Cereal Biscuits with SBP | Wheat | Triticale | Rye | ||||||
---|---|---|---|---|---|---|---|---|---|
SBP0 | SBP1 | SBP3 | SBP0 | SBP1 | SBP3 | SBP0 | SBP1 | SBP3 | |
Spread ratio(−) | 4.70 bcA | 4.32 cdB | 4.45 bcdAB | 4.05 dC | 4.68 bcB | 5.59 aA | 4.95 bB | 5.54 aA | 5.85 aA |
Weight (g) | 8.51 cA | 7.23 eB | 7.39 eB | 8.48 cB | 9.45 aA | 6.70 fC | 8.85 bA | 8.20 dB | 6.78 fC |
Moisture (%) | 6.20 aA | 5.09 bB | 3.84 cC | 6.59 aA | 2.78 dC | 4.66 bB | 3.12 dA | 1.22 eB | 0.93 eC |
Aw value | 0.475 cA | 0.189 iC | 0.382 fB | 0.539 aA | 0.342 gC | 0.441 dB | 0.513 bA | 0.420 eB | 0.290 hC |
Colour | |||||||||
L* (upper) | 60.60 aA | 54.95 bB | 55.31 bB | 52.84 bcA | 50.73 cdeAB | 49.33 defB | 52.42 bcdA | 47.36 efB | 46.01 fB |
a* (upper) | 5.99 dB | 9.40 bcA | 8.19 cA | 8.93 bcB | 10.53 abB | 9.35 cA | 7.96 cB | 11.35 aA | 10.14 abA |
b* (upper) | 24.93 dB | 36.33 aA | 37.49 aA | 24.22 dC | 33.38 bA | 29.91 cB | 25.91 dB | 31.60 bcA | 30.37 cA |
L* (lower) | 58.83 aA | 52.72 bB | 51.32 bcdB | 52.51 bA | 46.64 eB | 48.29 cdeB | 52.29 bcA | 45.08 eC | 47.33 deB |
a* (lower) | 6.95 fB | 10.87 cdA | 8.50 efB | 9.16 deB | 13.16 abA | 10.48 cdeB | 9.65 cdeC | 13.42 aA | 11.36 bcB |
b* (lower) | 26.53 dB | 37.10 aA | 35.19 abA | 25.38 dB | 32.46 bcA | 31.21 cA | 28.00 dB | 33.35 bcA | 33.30 bcA |
Texture | |||||||||
Hardness (kg) | 7.80 bcA | 9.40 bA | 7.26 bcA | 16.98 aA | 17.18 aA | 10.45 bB | 10.60 bA | 8.41 bcA | 4.13 cB |
Cereal Biscuits with SBP | Wheat | Triticale | Rye | ||||||
---|---|---|---|---|---|---|---|---|---|
SBP0 | SBP1 | SBP3 | SBP0 | SBP1 | SBP3 | SBP0 | SBP1 | SBP3 | |
Acrylamide (µg/kg DW) | 27.2 eB | 80.4 dA | 29.1 eB | 58.9 dC | 106.0 cA | 69.1 dB | 105.3 cC | 485.5 aA | 316.6 bB |
Calculated initial Asn (mg/kg DW) | 276.9 | 355.4 | 254.7 | 483.5 | 541.3 | 440.6 | 731.3 | 764.3 | 663.7 |
Residual Asn (mg/kg DW) | 156.6 cdB | 189.3 bcdA | 72.9 dC | 193.4 bcdAB | 256.8 abcA | 76.7 dB | 342.0 aA | 327.1 abA | 164.5 cdA |
Acrylamide per unit of Asn | 0.10 | 0.23 | 0.11 | 0.12 | 0.20 | 0.17 | 0.14 | 0.64 | 0.48 |
HMF (mg/kg DW) | nd | 7.72 a | nd | nd | 5.25 c | nd | nd | 6.58 b | nd |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciesarová, Z.; Kukurová, K.; Jelemenská, V.; Horváthová, J.; Kubincová, J.; Belović, M.; Torbica, A. Asparaginase Treatment of Sea Buckthorn Berries as an Effective Tool for Acrylamide Reduction in Nutritionally Enriched Wholegrain Wheat, Rye and Triticale Biscuits. Foods 2023, 12, 3170. https://doi.org/10.3390/foods12173170
Ciesarová Z, Kukurová K, Jelemenská V, Horváthová J, Kubincová J, Belović M, Torbica A. Asparaginase Treatment of Sea Buckthorn Berries as an Effective Tool for Acrylamide Reduction in Nutritionally Enriched Wholegrain Wheat, Rye and Triticale Biscuits. Foods. 2023; 12(17):3170. https://doi.org/10.3390/foods12173170
Chicago/Turabian StyleCiesarová, Zuzana, Kristína Kukurová, Viera Jelemenská, Jana Horváthová, Janka Kubincová, Miona Belović, and Aleksandra Torbica. 2023. "Asparaginase Treatment of Sea Buckthorn Berries as an Effective Tool for Acrylamide Reduction in Nutritionally Enriched Wholegrain Wheat, Rye and Triticale Biscuits" Foods 12, no. 17: 3170. https://doi.org/10.3390/foods12173170
APA StyleCiesarová, Z., Kukurová, K., Jelemenská, V., Horváthová, J., Kubincová, J., Belović, M., & Torbica, A. (2023). Asparaginase Treatment of Sea Buckthorn Berries as an Effective Tool for Acrylamide Reduction in Nutritionally Enriched Wholegrain Wheat, Rye and Triticale Biscuits. Foods, 12(17), 3170. https://doi.org/10.3390/foods12173170