Structure–Activity Relationship of Novel ACE Inhibitory Undecapeptides from Stropharia rugosoannulata by Molecular Interactions and Activity Analyses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Peptide Base Material of S. rugosoannulata
2.2. Construction of S. rugosoannulata Undecapeptide Library with ACE Inhibitory Activity
2.3. The ACE Inhibition Mechanism Assay of S. rugosoannulata Undecapeptides Based on Molecular Docking
2.4. The ACE Inhibition Mechanism Assay of S. rugosoannulata Undecapeptides Based on Molecular Dynamics Simulation
2.5. The ACE Inhibition Mechanism Assay of S. rugosoannulata Undecapeptide Based on Molecular Interactions
2.6. The ACE Inhibitory Activity In Vitro and Hypotensive In Vivo Assay of S. rugosoannulata Undecapeptide
2.7. Statistical Analysis of the Data
3. Results
3.1. Undecapeptides with ACE Inhibitory Activity in S. rugosoannulata
3.2. Molecular Docking Results of the ACE Receptor and Undecapeptides
3.3. Molecular Dynamics Simulation Results of GQEDYDRLRPL and the ACE Receptor
3.4. Molecular Thermodynamics and Dynamics Interactions Results of GQEDYDRLRPL and the ACE Receptors
3.5. The ACE Inhibitory Activity In Vitro and Hypotensive Evaluation In Vivo of GQEDYDRLRPL
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- NCD Risk Factor Collaboration. Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: A pooled analysis of 1201 population-representative studies with 104 million participants. Lancet 2021, 398, 957–980. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Chen, W.C.; Ma, H.L.; Wu, D.; Zhang, Z.; Yang, Y. Efficient Preparation of flavor peptides from Stropharia rugosoannulata and its ACE inhibitory activity. J. Chin. Inst. Food Sci. Technol. 2023, 23, 229–240. [Google Scholar]
- Li, W.; Chen, W.C.; Ma, H.L.; Wu, D.; Zhang, Z.; Yang, Y. Structural characterization and angiotensin-converting enzyme (ACE) inhibitory mechanism of Stropharia rugosoannulata mushroom peptides prepared by ultrasound. Ultrason. Sonochem. 2022, 88, 106074. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Young, J.F.; Løkke, M.M.; Lametsch, R.; Aluko, R.E.; Therkildsen, M. Revalorisation of bovine collagen as a potential precursor of angiotensin I-converting enzyme (ACE) inhibitory peptides based on in silico and in vitro protein digestions. J. Funct. Foods 2016, 24, 196–206. [Google Scholar] [CrossRef]
- Natesh, R.; Schwager, S.L.U.; Sturrock, E.D.; Acharya, K.R. Crystal structure of the human angiotensin-converting enzyme–lisinopril complex. Nature 2003, 6922, 551–554. [Google Scholar] [CrossRef]
- Liu, G.X.; Li, Z.X.; Li, Z.K.; Hao, C.C.; Liu, Y.F. Molecular dynamics simulation and in vitro digestion to examine the impact of theaflavin on the digestibility and structural properties of myosin. Int. J. Biol. Macromol. 2023, 247, 125836. [Google Scholar] [CrossRef]
- Liu, R.; Zhu, Y.H.; Chen, J.; Wu, H.; Shi, L.; Wang, X.Z.; Wang, L.C. Characterization of ACE inhibitory peptides from Mactra veneriformis hydrolysate by nano-liquid chromatography electrospray ionization mass spectrometry (Nano-LC-ESI-MS) and molecular docking. Mar. Drugs 2014, 12, 3917–3928. [Google Scholar] [CrossRef]
- Veldsman, M.; Tai, X.Y.; Nichols, T.; Smith, S.; Peixoto, J.; Manohar, S.; Husain, M. Cerebrovascular risk factors impact frontoparietal network integrity and executive function in healthy ageing. Nat. Commun. 2020, 11, 4340. [Google Scholar] [CrossRef]
- Abedin, M.M.; Chourasia, R.; Chiring Phukon, L.; Singh, S.P.; Kumar Rai, A. Characterization of ACE inhibitory and antioxidant peptides in yak and cow milk hard chhurpi cheese of the Sikkim Himalayan region. Food Chem. X 2022, 13, 100231. [Google Scholar] [CrossRef]
- Bhaskar, B.; Ananthanarayan, L.; Jamdar, S. Purification, identification, and characterization of novel angiotensin I-converting enzyme (ACE) inhibitory peptides from alcalase digested horse gram flour. LWT-Food Sci. Technol. 2019, 103, 155–161. [Google Scholar] [CrossRef]
- Yin, Z.T.; Yan, R.Y.; Jiang, Y.S.; Feng, S.B.; Sun, H.L.; Sun, J.Y.; Zhao, D.R.; Li, H.H.; Wang, B.W.; Zhang, N. Identification of peptides in Qingke baijiu and evaluation of its angiotensin converting enzyme (ACE) inhibitory activity and stability. Food Chem. 2022, 395, 133551. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.Y.; He, Y.; He, H.Y.; Zhou, W.Z.; Li, M.R.; Lu, A.M.; Che, T.J.; Shen, S.D. Purification identification and function analysis of ACE inhibitory peptide from Ulva prolifera protein. Food Chem. 2023, 401, 134127. [Google Scholar] [CrossRef] [PubMed]
- Shao, M.Y.; Wu, H.X.; Wang, B.H.; Zhang, X.; Gao, X.; Jiang, M.Q.; Su, R.H.; Shen, X.R. Identification and characterization of novel ACE inhibitory and antioxidant peptides from Sardina pilchardus hydrolysate. Foods 2023, 12, 2216. [Google Scholar] [CrossRef] [PubMed]
- Bhadkaria, A.; Narvekar, D.T.; Nagar, D.P.; Sah, S.P.; Srivastava, N.; Bhagyawant, S.S. Purification, molecular docking and in vivo analyses of novel angiotensin-converting enzyme inhibitory peptides from protein hydrolysate of moth bean (Vigna aconitifolia (Jacq.) Marechal) seeds. Int. J. Biol. Macromol. 2023, 230, 123138. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Alashi, A.M.; Young, J.F.; Therkildsen, M.; Aluko, R.E. Enzyme inhibition kinetics and molecular interactions of patatin peptides with angiotensin I-converting enzyme and renin. Int. J. Biol. Macromol. 2017, 101, 207–213. [Google Scholar] [CrossRef]
- Yuan, L.; Sun, L.P.; Zhuang, Y.L. Preparation and identification of novel inhibitory angiotensin-I-converting enzyme peptides from tilapia skin gelatin hydrolysates: Inhibition kinetics and molecular docking. Food Funct. 2018, 9, 5251–5259. [Google Scholar]
- Zheng, Y.J.; Wang, X.Y.; Guo, M.; Yan, X.T.; Zhuang, Y.L.; Sun, Y.; Li, J.R. Two novel antihypertensive peptides identified in millet bran glutelin-2 hydrolysates: Purification, in silico characterization, molecular docking with ace and stability in various food processing conditions. Foods 2022, 11, 1355. [Google Scholar] [CrossRef]
- Feng, X.Z.; Liao, D.K.; Sun, L.X.; Feng, S.Z.; Wu, S.G.; Lan, P.; Wang, Z.F.; Lan, X.D. Exploration of interaction between angiotensin I-converting enzyme (ACE) and the inhibitory peptide from Wakame (Undaria pinnatifida). Int. J. Biol. Macromol. 2022, 204, 193–203. [Google Scholar] [CrossRef]
- Wang, C.X.; Song, C.C.; Liu, X.T.; Qiao, B.W.; Song, S.; Fu, Y.H. ACE inhibitory activities of two peptides derived from Volutharpa ampullacea perryi hydrolysate and their protective effects on H2O2 induced HUVECs injury. Food Res. Int. 2022, 157, 111402. [Google Scholar] [CrossRef]
- Xu, Z.Q.; Wu, C.P.; Sun-Waterhouse, D.X.; Zhao, T.T.; Waterhouse, G.I.N.; Zhao, M.M.; Su, G.W. Identification of post-digestion angiotensin-I converting enzyme (ACE) inhibitory peptides from soybean protein isolate: Their production conditions and in silico molecular docking with ACE. Food Chem. 2021, 345, 128855. [Google Scholar] [CrossRef]
- Chay, S.Y.; Salleh, A.; Sulaiman, N.F.; Abidin, N.Z.; Hanafi, M.A.; Zarei, M.; Saari, N. Blood-pressure lowering efficacy of winged bean seed hydrolysate in spontaneously hypertensive rats, peptide characterization and a toxicity study in Sprague-Dawley rats. Food Funct. 2018, 9, 1657–1671. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.J.; Wang, S.; Yin, X.Y.; Fang, M.; Gong, Z.Y.; Wu, Y.N. Angiotensin I converting enzyme (ACE) inhibitory activity and antihypertensive effects of rice peptides. Food Sci. Hum. Well. 2022, 11, 1539–1543. [Google Scholar] [CrossRef]
- Lai, X.F.; Pan, S.S.; Zhang, W.J.; Sun, L.L.; Li, Q.H.; Chen, R.H.; Sun, S.L. Properties of ACE inhibitory peptide prepared from protein in green tea residue and evaluation of its anti-hypertensive activity. Process Biochem. 2020, 92, 277–287. [Google Scholar]
- Moayedi, A.; Mora, L.; Aristoy, M.C.; Safari, M.; Hashemi, M.; Toldra, F. Peptidomic analysis of antioxidant and ACE-inhibitory peptides obtained from tomato waste proteins fermented using Bacillus subtilis. Food Chem. 2018, 250, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, J.R.; Cheng, C.X.; Zheng, Y.J.; Li, H.X.; Zhu, Z.L.; Yan, Y.X.; Hao, W.H.; Qin, N. Study on the in silico screening and characterization, inhibition mechanisms, zinc-chelate activity, and stability of ACE-inhibitory peptides identified in naked oat bran albumin hydrolysates. Foods 2023, 12, 2268. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.L.; Lin, G.M.; Zhang, R.; Liang, Z.; Wu, L.X.; Wu, W.J. Studies on molecular mechanism between ACE and inhibitory peptides in different bioactivities by 3D-QSAR and MD simulations. J. Mol. Liq. 2020, 304, 112702. [Google Scholar] [CrossRef]
- Zhang, B.Y.; Liu, J.B.; Wen, H.D.; Jiang, F.; Wang, E.; Zhang, T. Structural requirements and interaction mechanisms of ACE inhibitory peptides: Molecular simulation and thermodynamics studies on LAPYK and its modified peptides. Food Sci. Hum. Well. 2022, 11, 1623–1630. [Google Scholar] [CrossRef]
- Zhu, Q.A.; Xue, J.W.; Wang, P.; Wang, X.B.; Zhang, J.J.; Fang, X.Z.; He, Z.P.; Wu, F.H. Identification of a novel ACE Inhibitory hexapeptide from camellia seed cake and evaluation of its stability. Foods 2023, 12, 501. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Zhang, Y.L.; Chen, P.Y.; Shu, F.J.; Li, K.; Qiao, L.S.; Chen, Z.J.; Wang, L.Z. A novel angiotensin-I converting enzyme inhibitory peptide derived from the glutelin of vinegar soaked black soybean and its antihypertensive effect in spontaneously hypertensive rats. J. Biochem. 2019, 166, 223–230. [Google Scholar] [CrossRef]
- He, R.; Wang, Y.J.; Yang, Y.J.; Wang, Z.G.; Ju, X.R.; Yuan, J. Rapeseed protein-derived ACE inhibitory peptides LY, RALP and GHS show antioxidant and anti-inflammatory effects on spontaneously hypertensive rats. J. Funct. Foods 2019, 55, 211–219. [Google Scholar] [CrossRef]
- Li, Y.; Zheng, Y.J.; Zhang, Y.F.; Liu, L.Y.; Zhao, S.L. Purification, characterization, synthesis, in vivo and in vitro antihypertensive activity of bioactive peptides derived from coconut (Cocos nucifera L.) cake globulin hydrolysates. RSC Adv. 2016, 6, 92688–92698. [Google Scholar] [CrossRef]
- Lin, K.; Ma, Z.; Ramachandran, M.; De Souza, C.; Han, X.; Zhang, L.W. ACE inhibitory peptide KYIPIQ derived from yak milk casein induces nitric oxide production in HUVECs and diffuses via a transcellular mechanism in Caco-2 monolayers. Process Biochem. 2020, 99, 103–111. [Google Scholar] [CrossRef]
- Zhang, Y.; Pan, D.D.; Yang, Z.C.; Gao, X.C.; Dang, Y.L. Angiotensin I-Converting enzyme (ACE) inhibitory and dipeptidyl Peptidase-4 (DPP-IV) inhibitory activity of umami peptides from Ruditapes philippinarum. LWT-Food Sci. Technol. 2021, 144, 111265. [Google Scholar] [CrossRef]
- Zhou, M.J.; Zhao, W.Z.; Xue, W.J.; Liu, J.B.; Yu, Z.P. Potential antihypertensive mechanism of egg white-derived peptide QIGLF revealed by proteomic analysis. Int. J. Biol. Macromol. 2022, 218, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.D.; Sun, S.S.; Li, Y.S.; Liu, R. Proteolysis of tilapia skin collagen: Identification and release behavior of ACE-inhibitory peptides. LWT-Food Sci. Technol. 2021, 139, 110502. [Google Scholar] [CrossRef]
- Mirzaei, M.; Mirdamadi, S.; Safavi, M. Structural analysis of ACE-inhibitory peptide (VL-9) derived from Kluyveromyces marxianus protein hydrolysate. J. Mol. Struct. 2020, 1213, 128199. [Google Scholar] [CrossRef]
- Zhang, P.; Chang, C.; Liu, H.J.; Li, B.; Yan, Q.J.; Jiang, Z.Q. Identification of novel angiotensin I-converting enzyme (ACE) inhibitory peptides from wheat gluten hydrolysate by the protease of Pseudomonas aeruginosa. J. Funct. Foods 2020, 65, 103751. [Google Scholar] [CrossRef]
- Byun, H.G.; Kim, S.K. Structure and activity of angiotensin I converting enzyme inhibitory peptides derived from Alaskan pollack skin. J. Biochem. Mol. Biol. 2002, 35, 239–243. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Chen, W.; Wang, J.; Li, Z.; Zhang, Z.; Wu, D.; Yan, M.; Ma, H.; Yang, Y. Structure–Activity Relationship of Novel ACE Inhibitory Undecapeptides from Stropharia rugosoannulata by Molecular Interactions and Activity Analyses. Foods 2023, 12, 3461. https://doi.org/10.3390/foods12183461
Li W, Chen W, Wang J, Li Z, Zhang Z, Wu D, Yan M, Ma H, Yang Y. Structure–Activity Relationship of Novel ACE Inhibitory Undecapeptides from Stropharia rugosoannulata by Molecular Interactions and Activity Analyses. Foods. 2023; 12(18):3461. https://doi.org/10.3390/foods12183461
Chicago/Turabian StyleLi, Wen, Wanchao Chen, Jinbin Wang, Zhengpeng Li, Zhong Zhang, Di Wu, Mengqiu Yan, Haile Ma, and Yan Yang. 2023. "Structure–Activity Relationship of Novel ACE Inhibitory Undecapeptides from Stropharia rugosoannulata by Molecular Interactions and Activity Analyses" Foods 12, no. 18: 3461. https://doi.org/10.3390/foods12183461