Raman Spectroscopic and Sensory Evaluation of Cocoa Liquor Prepared with Ecuadorian Cocoa Beans Treated with Gamma Irradiation or Induced Electromagnetic Field Fermentation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cocoa Bean Fermentation under Induced Magnetic Fields
2.2. Gamma Irradiation Treatment of Fermented Cocoa Beans
2.3. Cocoa Liquor Samples
2.4. Raman Spectral Measurements of Cocoa Liquor Samples
2.5. Sensorial Evaluation of Cocoa Liquor from Gamma-Irradiated Cocoa Beans
2.6. Multivariate Data Analysis of the Raman Spectra of Cocoa Liquor
3. Results and Discussion
3.1. Cocoa Liquor Raman Spectra
Experimental Wavenumber (cm−1) | Intensity | Assignment Vibrational Modes | Proposed Compound | Reported Wavenumber (cm−1) | Reference |
---|---|---|---|---|---|
626 | VW | Skeletal deformation of aromatic rings, substituent groups, and side chains | Native lignin | 634 | [53] |
- | Polygalacturonic (pectic) acid H–Pec | 621 | [59] | ||
C=C–C deformation | Theobromine | 626 | [50] | ||
OH out-of-plane deformation/(C=C) ring | Ascorbic acid | 621 | [71,72] | ||
779 | VW | Skeletal deformation of aromatic rings, substituent groups, and side chains | Native lignin | 787 | [53] |
Ring “breezing” | Polygalacturonic (pectic) acid H–Pec | 775 | [59] | ||
O=C–C deformation [68] | Theobromine | 777 [69] | [68,69] | ||
860 | VW | (C6–C5–O5–C1–O1) | Polygalacturonic (pectic) acid H–Pec (a-glycosidic bonds in H–Pec) | 853 | [59] |
N=C–H deformation | Caffeine | 850 | [68] | ||
1071 | M | (C–C) | C–C in cocoa butter | 1000–1150 | [44] |
(C–C) | Cocoa butter polymorphs form V | 1063 | [45] | ||
(C–O) ring modes | Cell wall of Valonia ventricosa cellulose | 1071 | [57] | ||
(CO) + (OH) | Polygalacturonic (pectic) acid H–Pec | 1079 | [59] | ||
(C–N) | Caffeine | 1080 | [68] | ||
(C–O–C) and (C-O-H) | Ascorbic acid | 1081 | [71,72] | ||
1135 | sh | A mode of coniferaldehyde unit | Native lignin | 1134 | [53] |
(COC) glycosidic bond, ring | Polygalacturonic (pectic) acid H–Pec | 1145 | [59] | ||
(C–N) | Caffeine | 1131 | [68] | ||
1301 | S | (CH2) | Cocoa butter polymorphs form V | 1297 | [45] |
(C–H) | C–H in cocoa butter | 1200–1400 | [44] | ||
Aryl-O of aryl-OH and aryl-O-CH3 and C=C stretching of coniferyl alcohol units | Native lignin | 1297 | [53] | ||
(HCC) and (HCO) | Softwood cellulose | 1298 | [55] | ||
(CH2) | Cell wall of Valonia ventricosa cellulose | 1293 | [57] | ||
(C–N) + (CH3) | Theobromine | 1298 | [69] | ||
(C–N) | Theobromine | 1296 | [50,68] | ||
(C=N) + (C–N) | Theobromine | 1360 | [69] | ||
1362 | VW | C–H deformation | Cell wall of Valonia ventricosa cellulose | 1359 | [57] |
w(CH2), (C–O–H) | Ascorbic acid | 1371 | [71,72] | ||
(C–H) | C–H in cocoa butter | 1400–1500 | [44] | ||
(C–H) | TAGs: tripalmitin, trimyristin, trilaurin, triundecanin, and triacetin | 1445 | [46,47] | ||
1445 | VS | Guaiacyl ring vibration | Native lignin | 1454 | [53] |
O–H deformation | Cell wall of Valonia ventricosa cellulose | 1454 | [57] | ||
(CH), CH2 scissoring | Ascorbic acid | 1452 | [71,72] | ||
1603 | W | Symmetric aryl-ring stretching | Native lignin | 1602 | [53] |
(C=C) | Aromatic ring from polyphenolic compounds | max. 1613 | [63] | ||
(C=C) + (C–N) + (CH3) | Theobromine | 1594 | [69] | ||
(C=C) | Caffeine | 1600 | [68] | ||
1659 | (C=C) | Cocoa butter region attributed to the olefinic band | 1600–1700 | [44] | |
Ring-conjugated (C=C) of coniferaldehyde | Native lignin | 1658 | [53] | ||
VW | (C=O) | Theobromine | 1660 | [68] | |
(C=O) | Caffeine | 1656 | [68] | ||
(C=C) ring stretching | Ascorbic acid | 1661 | [71,72] | ||
1747 | VW | (C=O) | C=O in cocoa butter | 1700–1800 | [44] |
(C=O)COOH | Polygalacturonic (pectic) acid H-Pec | 1740 | [59] |
3.2. Sensory Attributes of the Cocoa Liquor from the Gamma-Irradiated Cocoa Beans
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sepúlveda, W.S.; Maza, M.T.; Uldemolins, P.; Cantos-Zambrano, E.G.; Ureta, I. Linking dark chocolate product attributes, consumer preferences, and consumer utility: Impact of quality labels, cocoa content, chocolate origin, and price. J. Int. Food Agribus. Mark. 2022, 34, 518–537. [Google Scholar] [CrossRef]
- Bahari, A.; Akoh, C.C. Texture, heology and fat bloom study of ‘chocolates’ made from cocoa butter equivalent synthesized from illipe butter and palm mid-fraction. LWT 2018, 97, 349–354. [Google Scholar] [CrossRef]
- Toker, O.S.; Pirouzian, H.R.; Palabiyik, I.; Konar, N. Chocolate flow behavior: Composition and process effects. Crit. Rev. Food Sci. Nutr. 2023, 63, 3788–3802. [Google Scholar] [CrossRef]
- Ziegleder, G. Flavour development in cocoa and chocolate. In Beckett’s Industrial Chocolate Manufacture and Use, 5th ed.; Beckett, S.T., Fowler, M.S., Ziegler, G.R., Eds.; John Wiley & Sons Ltd.: Chichester, UK, 2017; pp. 185–215. [Google Scholar]
- Almeida, O.G.G.; Pinto, U.M.; Matos, C.B.; Frazilio, D.A.; Braga, V.F.; von Zeska-Kress, M.R.; De Martinis, E.C.P. Does Quorum sensing play a role in microbial shifts along spontaneous fermentation of cocoa beans? An in silico perspective. Food Res. Int. 2020, 131, 109034. [Google Scholar] [CrossRef]
- Gutiérrez-Ríos, H.G.; Suárez-Quiroz, M.L.; Hernández-Estrada, Z.J.; Castellanos-Onorio, O.P.; Alonso-Villegas, R.; Rayas-Duarte, P.; Cano-Sarmiento, C.; Figueroa-Hernández, C.Y.; González-Rios, O. Yeasts as producers of flavor precursors during cocoa bean fermentation and their Relevance as starter cultures: A review. Fermentation 2022, 8, 331. [Google Scholar] [CrossRef]
- Guo, L.; Guo, Y.; Wu, P.; Liu, S.; Gu, C.; Yolandani; Wu, M.; Ma, H.; He, R. Enhancement of polypeptide yield derived from rapeseed meal with low-intensity alternating magnetic field. Foods 2022, 11, 2952. [Google Scholar] [CrossRef] [PubMed]
- Guzmán-Armenteros, T.M.; Ramos-Guerrero, L.A.; Guerra, L.S.; Weckx, S.; Ruales, J. Optimization of cacao beans fermentation by native species and electromagnetic fields. Heliyon 2023, 9, e15065. [Google Scholar] [CrossRef]
- Abinaya, S.; Panghal, A.; Roopa, H.; Chhikara, N.; Kumari, A.; Gehlot, R. Utilization of magnetic fields in food industry. In Novel Technologies in Food Science; Chhikara, N., Panghal, A., Gaurav, G., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2023; pp. 171–233. [Google Scholar]
- Oberrauter, L.M.; Januszewska, R.; Schlich, P.; Majchrzak, D. Sensory evaluation of dark origin and non-origin chocolates applying Temporal Dominance of Sensations (TDS). Food Res. Int. 2018, 111, 39–49. [Google Scholar] [CrossRef]
- Del Rio, D.; Rodriguez-Mateos, A.; Spencer, J.P.E.; Tognolini, M.; Borges, G.; Crozier, A. Dietary (poly)phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid. Redox Signal. 2013, 18, 1818–1892. [Google Scholar] [CrossRef]
- Żyżelewicz, D.; Bojczuk, M.; Budryn, G.; Zduńczyk, Z.; Juśkiewicz, J.; Jurgoński, A.; Oracz, J. Influence of diet based on bread supplemented with raw and roasted cocoa bean extracts on physiological indices of laboratory rats. Food Res. Int. 2018, 112, 209–216. [Google Scholar] [CrossRef]
- Inamura, P.Y.; Uehara, V.B.; Teixeira, C.A.H.M.; del Mastro, N.L. Mediate gamma radiation effects on some packaged food items. Radiat. Phys. Chem. 2012, 81, 1144–1146. [Google Scholar] [CrossRef]
- Farkas, J.; Ehlermann, D.A.E.; Mohácsi-Farkas, C. Food Technologies: Food Irradiation. In Encyclopedia of Food Safety, 1st ed.; Motarjemi, Y., Ed.; Elsevier: Amsterdam, Netherlands, 2014; pp. 178–186. [Google Scholar]
- Ravindran, R.; Jaiswal, A.K. Wholesomeness and safety aspects of irradiated foods. Food Chem. 2019, 285, 363–368. [Google Scholar] [CrossRef] [PubMed]
- Mshelia, R.D.Z.; Dibal, N.I.; Chiroma, S.M. Food irradiation: An effective but under-utilized technique for food preservations. J. Food Sci. Technol. 2022, 60, 2517–2525. [Google Scholar] [CrossRef] [PubMed]
- Calado, T.; Venâncio, A.; Abrunhosa, L. Irradiation for mold and mycotoxin control: A review. Compr. Rev. Food Sci. Food Saf. 2014, 13, 1049–1061. [Google Scholar] [CrossRef]
- Prakash, A. What is the benefit of irradiation compared to other methods of food preservation? In Genetically Modified and Irradiated Food, 1st ed.; Andersen, V., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 217–231. [Google Scholar]
- Hallman, G.J. Process control in phytosanitary irradiation of fresh fruits and vegetables as a model for other phytosanitary treatment processes. Food Control 2017, 72, 372–377. [Google Scholar] [CrossRef]
- Stefanova, R.; Vasilev, N.V.; Spassov, S.L. Irradiation of food, current legislation framework, and detection of irradiated foods. Food Anal. Methods 2010, 3, 225–252. [Google Scholar] [CrossRef]
- Stewart, E.M. Food irradiation chemistry. In Food Irradiation: Principles and Applications; Molins, R.A., Ed.; John Wiley & Sons Inc.: Toronto, ON, Canada, 2001; pp. 37–76. [Google Scholar]
- Farkas, J.; Mohácsi-Farkas, C. History and future of food irradiation. Trends Food Sci. Technol. 2011, 22, 121–126. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, S. Developing treatment protocols for disinfesting pine wood product using radio frequency energy. Eur. J. Wood Wood Prod. 2018, 76, 191–200. [Google Scholar] [CrossRef]
- Ferrier, P. Irradiation as a quarantine treatment. Food Policy 2010, 35, 548–555. [Google Scholar] [CrossRef]
- Braga, S.C.G.N.; Oliveira, L.F.; Hashimoto, J.C.; Gama, M.R.; Efraim, P.; Poppi, R.J.; Augusto, F. Study of volatile profile in cocoa nibs, cocoa liquor and chocolate on production process using GC × GC-QMS. Microchem. J. 2018, 141, 353–361. [Google Scholar] [CrossRef]
- Toker, O.S.; Palabiyik, I.; Konar, N. Chocolate quality and conching. Trends Food Sci. Technol. 2019, 91, 446–453. [Google Scholar] [CrossRef]
- Hinneh, M.; Abotsi, E.E.; Van de Walle, D.; Tzompa-Sosa, D.A.; De Winne, A.; Simonis, J.; Messens, K.; Van Durme, J.; Afoakwa, E.O.; De Cooman, L.; et al. Pod storage with roasting: A tool to diversifying the flavor profiles of dark chocolates produced from ‘bulk’ cocoa beans? (Part II: Quality and sensory profiling of chocolates). Food Res. Int. 2020, 132, 109116. [Google Scholar] [CrossRef]
- Belščak-Cvitanović, A.; Komes, D.; Dujmović, M.; Karlović, S.; Biškić, M.; Brnčić, M.; Ježek, D. Physical, bioactive and sensory quality parameters of reduced sugar chocolates formulated with natural sweeteners as sucrose alternatives. Food Chem. 2015, 167, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, R.M.; Montanher, P.F.; Visentainer, J.V.; de Souza, N.E. Composição centesimal e quantificação de ácidos graxos nas cinco maiores marcas de chocolates do Brasil. Cienc. Tecnol. Aliment. 2011, 31, 541–546. [Google Scholar] [CrossRef]
- Patel, K.K.; Kar, A.; Jha, S.N.; Khan, M.A. Machine vision system: A tool for quality inspection of food and agricultural products. J. Food Sci. Technol. 2012, 49, 123–141. [Google Scholar] [CrossRef]
- Nunes, C.A. Vibrational spectroscopy and chemometrics to assess authenticity, adulteration and intrinsic quality parameters of edible oils and fats. Food Res. Int. 2014, 60, 255–261. [Google Scholar] [CrossRef]
- Vargas Jentzsch, P.; Ciobotă, V.; Salinas, W.; Kampe, B.; Aponte, P.M.; Rösch, P.; Popp, J.; Ramos, L.A. Distinction of ecuadorian varieties of fermented cocoa beans using Raman spectroscopy. Food Chem. 2016, 211, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Salvador, L.; Guijarro, M.; Rubio, D.; Aucatoma, B.; Guillén, T.; Vargas Jentzsch, P.; Ciobotă, V.; Stolker, L.; Ulic, S.; Vásquez, L.; et al. Exploratory monitoring of the quality and authenticity of commercial honey in Ecuador. Foods 2019, 8, 105. [Google Scholar] [CrossRef]
- Vargas Jentzsch, P.; Sandoval Pauker, C.; Zárate Pozo, P.; Sinche Serra, M.; Jácome Camacho, G.; Rueda-Ayala, V.; Garrido, P.; Ramos Guerrero, L.; Ciobotă, V. Raman spectroscopy in the detection of adulterated essential oils: The case of nonvolatile adulterants. J. Raman Spectrosc. 2021, 52, 1055–1063. [Google Scholar] [CrossRef]
- Vargas Jentzsch, P.; Torrico-Vallejos, S.; Mendieta-Brito, S.; Ramos, L.A.; Ciobotə, V. Detection of counterfeit stevia products using a handheld raman spectrometer. Vib. Spectrosc. 2016, 83, 126–131. [Google Scholar] [CrossRef]
- Regulla, D. Alanine Dosimetry—A versatile dosimetric tool. In Proceedings of the World Congress on Medical Physics and Biomedical Engineering, Munich, Germany, 7–12 September 2009; IFMBE Proceedings. Dössel, O., Schlegel, W.C., Eds.; Springer: Berlin, Germany, 2009; Volume 25/3, pp. 478–481. [Google Scholar]
- Bresson, S.; Rousseau, D.; Ghosh, S.; El Marssi, M.; Faivre, V. Raman spectroscopy of the polymorphic forms and liquid state of cocoa butter. Eur. J. Lipid Sci. Technol. 2011, 113, 992–1004. [Google Scholar] [CrossRef]
- Papalexandratou, Z.; Kaasik, K.; Kauffmann, L.V.; Skorstengaard, A.; Bouillon, G.; Espensen, J.L.; Hansen, L.H.; Jakobsen, R.R.; Blennow, A.; Krych, L.; et al. Linking cocoa varietals and microbial diversity of nicaraguan fine cocoa bean fermentations and their impact on final cocoa quality appreciation. Int. J. Food Microbiol. 2019, 304, 106–118. [Google Scholar] [CrossRef] [PubMed]
- Torres-Moreno, M.; Torrescasana, E.; Salas-Salvadó, J.; Blanch, C. Nutritional composition and fatty acids profile in cocoa beans and chocolates with different geographical origin and processing conditions. Food Chem. 2015, 166, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Lipp, M.; Anklam, E. Review of cocoa butter and alternative fats for use in chocolate—Part A. Compositional data. Food Chem. 1998, 62, 73–97. [Google Scholar] [CrossRef]
- Ghazani, S.M.; Marangoni, A.G. Molecular origins of polymorphism in cocoa butter. Annu. Rev. Food Sci. Technol. 2021, 12, 567–590. [Google Scholar] [CrossRef]
- Saldaña, M.D.A.; Mohamed, R.S.; Mazzafera, P. Extraction of cocoa butter from Brazilian cocoa beans using supercritical CO2 and ethane. Fluid Phase Equilib. 2002, 194–197, 885–894. [Google Scholar] [CrossRef]
- Mohamed, I.O. Enzymatic synthesis of cocoa butter equivalent from olive oil and palmitic-stearic fatty acid mixture. Appl. Biochem. Biotechnol. 2015, 175, 757–769. [Google Scholar] [CrossRef]
- Jahurul, M.H.A.; Zaidul, I.S.M.; Norulaini, N.A.N.; Sahena, F.; Jinap, S.; Azmir, J.; Sharif, K.M.; Mohd Omar, A.K. Cocoa butter fats and possibilities of substitution in food products concerning cocoa varieties, alternative sources, extraction methods, composition, and characteristics. J. Food Eng. 2013, 117, 467–476. [Google Scholar] [CrossRef]
- Bresson, S.; Lecuelle, A.; Bougrioua, F.; El Hadri, M.; Baeten, V.; Courty, M.; Pilard, S.; Rigaud, S.; Faivre, V. Comparative structural and vibrational investigations between cocoa butter (cb) and cocoa butter equivalent (CBE) by ESI/MALDI-HRMS, XRD, DSC, MIR and Raman spectroscopy. Food Chem. 2021, 363, 130319. [Google Scholar] [CrossRef]
- Kobayashi, M. Crystallization and polymorphism of fats and fatty acids. In Vibrational Spectroscopic Aspects of Polymorphism and Phase Transition of Fats and Fatty Acids; Garty, N., Sato, K., Eds.; Marcel Dekker Inc.: New York, NY, USA, 1988; pp. 139–187. [Google Scholar]
- Bresson, S.; El Marssi, M.; Khelifa, B. Raman spectroscopy investigation of various saturated monoacid triglycerides. Chem. Phys. Lipids 2005, 134, 119–129. [Google Scholar] [CrossRef]
- Czamara, K.; Majzner, K.; Pacia, M.Z.; Kochan, K.; Kaczor, A.; Baranska, M. Raman spectroscopy of lipids: A review. J. Raman Spectrosc. 2015, 46, 4–20. [Google Scholar] [CrossRef]
- De Gelder, J.; De Gussem, K.; Vandenabeele, P.; Moens, L. Reference database of Raman spectra of biological molecules. J. Raman Spectrosc. 2007, 38, 1133–1147. [Google Scholar] [CrossRef]
- Edwards, H.G.M.; Villar, S.E.J.; de Oliveira, L.F.C.; Le Hyaric, M. Analytical Raman spectroscopic study of cacao seeds and their chemical extracts. Anal. Chim. Acta 2005, 538, 175–180. [Google Scholar] [CrossRef]
- Bresson, S.; El Marssi, M.; Khelifa, B. Conformational influences of the polymorphic forms on the CO and C-H stretching modes of five saturated monoacid triglycerides studied by Raman spectroscopy at various temperatures. Vib. Spectrosc. 2006, 40, 263–269. [Google Scholar] [CrossRef]
- Castro-Alayo, E.M.; Torrejón-Valqui, L.; Cayo-Colca, I.S.; Cárdenas-Toro, F.P. Evaluation of the miscibility of novel cocoa butter equivalents by Raman mapping and multivariate curve resolution–alternating least squares. Foods 2021, 10, 3101. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, U.P.; Ralph, S.A. FT-Raman spectroscopy of wood: Identifying contributions of lignin and carbohydrate polymers in the spectrum of black spruce (Picea mariana). Appl. Spectrosc. 1997, 51, 1648–1655. [Google Scholar] [CrossRef]
- Agarwal, U.P.; McSweeny, J.D.; Ralph, S.A. FT-Raman investigation of milled-wood lignins: Softwood, hardwood, and chemically modified black spruce lignins. J. Wood Chem. Technol. 2011, 31, 324–344. [Google Scholar] [CrossRef]
- Agarwal, U.P. An Overview of Raman spectroscopy as applied to lignocellulosic materials. In Advances in Lignocellulosics Characterization; Arguyropoulus, D.S., Ed.; TAPPI Press: Atlanta, GA, USA, 1999; pp. 201–225. [Google Scholar]
- Schenzel, K.; Fischer, S. NIR FT Raman spectroscopy—A rapid analytical tool for detecting the transformation of cellulose polymorphs. Cellulose 2001, 8, 49–57. [Google Scholar] [CrossRef]
- Blackwell, J.; Vasko, P.D.; Koenig, J.L. Infrared and Raman spectra of the cellulose from the cell wall of Valonia ventricosa. J. Appl. Phys. 1970, 41, 4375–4379. [Google Scholar] [CrossRef]
- Yapo, B.M. Pectic substances: From simple pectic polysaccharides to complex pectins—A new hypothetical model. Carbohydr. Polym. 2011, 86, 373–385. [Google Scholar] [CrossRef]
- Synytsya, A.; Čopíková, J.; Matějka, P.; Machovič, V. Fourier transform Raman and infrared spectroscopy of pectins. Carbohydr. Polym. 2003, 54, 97–106. [Google Scholar] [CrossRef]
- Gottumukkala, R.V.S.S.; Nadimpalli, N.; Sukala, K.; Subbaraju, G.V. Determination of catechin and epicatechin content in chocolates by high-performance liquid chromatography. Int. Sch. Res. Not. 2014, 2014, 628196. [Google Scholar] [CrossRef] [PubMed]
- Colthup, N.; Daly, L.; Wiberley, S. Introduction to Infrared and Raman Spectroscopy; Academic Press: San Diego, CA, USA, 1990. [Google Scholar]
- Bicchieri, M.; Monti, M.; Piantanida, G.; Sodo, A. Non-destructive spectroscopic investigation on historic Yemenite scriptorial fragments: Evidence of different degradation and recipes for iron tannic inks. Anal. Bioanal. Chem. 2013, 405, 2713–2721. [Google Scholar] [CrossRef] [PubMed]
- Mazurek, S.; Fecka, I.; Węglińska, M.; Szostak, R. Quantification of active ingredients in Potentilla tormentilla by Raman and infrared spectroscopy. Talanta 2018, 189, 308–314. [Google Scholar] [CrossRef]
- Aprotosoaie, A.C.; Luca, S.V.; Miron, A. Flavor chemistry of cocoa and cocoa products—An overview. Compr. Rev. Food Sci. Food Saf. 2016, 15, 73–91. [Google Scholar] [CrossRef] [PubMed]
- Tuenter, E.; Delbaere, C.; De Winne, A.; Bijttebier, S.; Custers, D.; Foubert, K.; Van Durme, J.; Messens, K.; Dewettinck, K.; Pieters, L. Non-volatile and volatile composition of West African bulk and Ecuadorian fine-flavor cocoa liquor and chocolate. Food Res. Int. 2020, 130, 108943. [Google Scholar] [CrossRef]
- Tuenter, E.; Foubert, K.; Pieters, L. Mood components in cocoa and chocolate: The mood pyramid. Planta Med. 2018, 84, 839–844. [Google Scholar] [CrossRef]
- Xia, J.; Wang, D.; Liang, P.; Zhang, D.; Du, X.; Ni, D.; Yu, Z. Vibrational (FT-IR, Raman) analysis of tea catechins based on both theoretical calculations and experiments. Biophys. Chem. 2020, 256, 106282. [Google Scholar] [CrossRef]
- Edwards, H.G.M.; Munshi, T.; Anstis, M. Raman Spectroscopic Characterisations and analytical discrimination between caffeine and demethylated analogues of pharmaceutical relevance. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2005, 61, 1453–1459. [Google Scholar] [CrossRef]
- Gunasekaran, S.; Sankari, G.; Ponnusamy, S. Vibrational spectral investigation on xanthine and its derivatives—Theophylline, caffeine and theobromine. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2005, 61, 117–127. [Google Scholar] [CrossRef]
- Luna, F.; Crouzillat, D.; Cirou, L.; Bucheli, P. Chemical composition and flavor of Ecuadorian cocoa liquor. J. Agric. Food Chem. 2002, 50, 3527–3532. [Google Scholar] [CrossRef]
- Jehlička, J.; Vítek, P.; Edwards, H.G.M. Raman spectra of organic acids obtained using a portable instrument at −5 °C in a mountain area at 2000 m above sea level. J. Raman Spectrosc. 2010, 41, 440–444. [Google Scholar]
- Panicker, C.Y.; Varghese, H.T.; Philip, D. FT-IR, FT-Raman and SERS spectra of vitamin C. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2006, 65, 802–804. [Google Scholar] [CrossRef] [PubMed]
- Rottiers, H.; Tzompa Sosa, D.A.; De Winne, A.; Ruales, J.; De Clippeleer, J.; De Leersnyder, I.; De Wever, J.; Everaert, H.; Messens, K.; Dewettinck, K. Dynamics of volatile compounds and flavor precursors during spontaneous fermentation of fine flavor trinitario cocoa beans. Eur. Food Res. Technol. 2019, 245, 1917–1937. [Google Scholar] [CrossRef]
- Vera Chang, J.F.; Vallejo Torres, C.; Párraga Morán, D.E.; Macías Véliz, J.; Ramos Remache, R.; Morales Rodríguez, W. Atributos físicos-químicos y sensoriales de las almendras de quince clones de cacao Nacional (Theobroma cacao L.) en el Ecuador. Cienc. Tecnol. 2015, 7, 21–34. [Google Scholar] [CrossRef]
- Kadow, D.; Bohlmann, J.; Phillips, W.; Lieberei, R. Identification of main fine or flavour components in two genotypes of the cocoa tree (Theobroma cacao L.). J. Appl. Bot. Food Qual. 2013, 86, 90–98. [Google Scholar]
- Liu, M.; Liu, J.; He, C.; Song, H.; Liu, Y.; Zhang, Y.; Wang, Y.; Guo, J.; Yang, H.; Su, X. Characterization and comparison of key aroma-active compounds of cocoa liquors from five different areas. Int. J. Food Prop. 2017, 20, 2396–2408. [Google Scholar] [CrossRef]
- Criollo Nuñez, J.; Ramirez-Toro, C.; Bolivar, G.; Sandoval A, A.P.; Lozano Tovar, M.D. Effect of microencapsulated inoculum of Pichia kudriavzevii on the fermentation and sensory quality of cacao CCN51 genotype. J. Sci. Food Agric. 2023, 103, 2425–2435. [Google Scholar] [CrossRef]
- Chang, A.C. The effects of gamma irradiation on rice wine maturation. Food Chem. 2003, 83, 323–327. [Google Scholar] [CrossRef]
- Krähmer, A.; Engel, A.; Kadow, D.; Ali, N.; Umaharan, P.; Kroh, L.W.; Schulz, H. Fast and neat—Determination of biochemical quality parameters in cocoa using near infrared spectroscopy. Food Chem. 2015, 181, 152–159. [Google Scholar] [CrossRef]
- Zhang, Z.; Xie, Q.; Che, L. Effects of gamma irradiation on aflatoxin B1 levels in soybean and on the properties of soybean and soybean oil. Appl. Radiat. Isot. 2018, 139, 224–230. [Google Scholar] [CrossRef]
- Samra, S.E.; Youssef, A.M.; Ahmed, A.I. Effect of gamma irradiation on the surface and catalytic properties of Al2O3 and NiO-Al2O3 catalysts. Bull. Soc. Chim. Fr. 1990, 127, 174–178. [Google Scholar]
- Kiani, D.; Borzouei, A.; Ramezanpour, S.; Soltanloo, H.; Saadati, S. Application of gamma irradiation on morphological, biochemical, and molecular aspects of wheat (Triticum aestivum L.) under different seed moisture contents. Sci. Rep. 2022, 12, 11082. [Google Scholar] [CrossRef] [PubMed]
- Gomes Júnior, P.C.; Bezerra dos Santos, V.; Santos Lopes, A.; Iúdice de Souza, J.P.; Souza Pina, J.R.; Albuquerque Chagas Júnior, G.C.; Santana Barboza Marinho, P. Determination of theobromine and caffeine in fermented and unfermented Amazonian cocoa (Theobroma cacao L.) beans using square wave voltammetry after chromatographic separation. Food Control 2020, 108, 106887. [Google Scholar] [CrossRef]
- Mohajer, S.; Mat Taha, R.; Lay, M.M.; Khorasani Esmaeili, A.; Khalili, M. Stimulatory effects of gamma irradiation on phytochemical properties, mitotic behaviour, and nutritional composition of sainfoin (Onobrychis viciifolia Scop.). Sci. World J. 2014, 2014, 854093. [Google Scholar] [CrossRef]
- Aly, A.A.; Maraei, R.W.; Sharafeldin, R.G.; Safwat, G. Yield traits of red radish seeds obtained from plants produced from γ-irradiated seeds and their oil characteristics. Gesunde Pflanz. 2023, 75, 2089–2099. [Google Scholar] [CrossRef]
- Porras Barrientos, L.D.; Torres Oquendo, J.D.; Gil Garzón, M.A.; Martínez Álvarez, O.L. Effect of the solar drying process on the sensory and chemical quality of cocoa (Theobroma cacao L.) cultivated in Antioquia, Colombia. Food Res. Int. 2019, 115, 259–267. [Google Scholar] [CrossRef]
- Hussain, P.R.; Chatterjee, S.; Variyar, P.S.; Sharma, A.; Dar, M.A.; Wani, A.M. Bioactive compounds and antioxidant activity of gamma irradiated sun dried apricots (Prunus armeniaca L.). J. Food Compos. Anal. 2013, 30, 59–66. [Google Scholar] [CrossRef]
- Chung, N.; Ramakrishnan, S.R.; Kwon, J.-H. Experimental validation and evaluation of electronic sensing techniques for rapid discrimination of electron-beam, γ-ray, and X-ray irradiated dried green onions (Allium fistulosum). J. Food Sci. Technol. 2019, 56, 5454–5464. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, K.-T.; Kim, M.R. Effect of gamma-irradiated red pepper powder on the chemical and volatile characteristics of kakdugi, a Korean traditional fermented radish kimchi. J. Food Sci. 2005, 70, c441–c447. [Google Scholar] [CrossRef]
- Žulj, M.M.; Bandić, L.M.; Bujak, I.T.; Puhelek, I.; Jeromel, A.; Mihaljević, B. Gamma irradiation as pre-fermentative method for improving wine quality. LWT 2019, 101, 175–182. [Google Scholar] [CrossRef]
- Garrido, J.; Borges, F. Wine and grape polyphenols—A chemical perspective. Food Res. Int. 2013, 54, 1844–1858. [Google Scholar] [CrossRef]
- Ananthakumar, A.; Variyar, P.S.; Sharma, A. Estimation of aroma glycosides of nutmeg and their changes during radiation processing. J. Chromatogr. A 2006, 1108, 252–257. [Google Scholar] [CrossRef] [PubMed]
- Ehlermann, D.A.E. Safety of food and beverages: Safety of irradiated foods. In Encyclopedia of Food Safety; Motarjemi, Y., Ed.; Elsevier: San Diego, CA, USA, 2014; Volume 3, pp. 447–452. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guzmán-Armenteros, T.M.; Ruales, J.; Cuesta-Plúa, C.; Bravo, J.; Sinche, M.; Vera, E.; Vera, E.; Vargas-Jentzsch, P.; Ciobotă, V.; Ortega-Ojeda, F.E.; et al. Raman Spectroscopic and Sensory Evaluation of Cocoa Liquor Prepared with Ecuadorian Cocoa Beans Treated with Gamma Irradiation or Induced Electromagnetic Field Fermentation. Foods 2023, 12, 3924. https://doi.org/10.3390/foods12213924
Guzmán-Armenteros TM, Ruales J, Cuesta-Plúa C, Bravo J, Sinche M, Vera E, Vera E, Vargas-Jentzsch P, Ciobotă V, Ortega-Ojeda FE, et al. Raman Spectroscopic and Sensory Evaluation of Cocoa Liquor Prepared with Ecuadorian Cocoa Beans Treated with Gamma Irradiation or Induced Electromagnetic Field Fermentation. Foods. 2023; 12(21):3924. https://doi.org/10.3390/foods12213924
Chicago/Turabian StyleGuzmán-Armenteros, Tania María, Jenny Ruales, Cristina Cuesta-Plúa, Juan Bravo, Marco Sinche, Edwin Vera, Edison Vera, Paul Vargas-Jentzsch, Valerian Ciobotă, Fernando E. Ortega-Ojeda, and et al. 2023. "Raman Spectroscopic and Sensory Evaluation of Cocoa Liquor Prepared with Ecuadorian Cocoa Beans Treated with Gamma Irradiation or Induced Electromagnetic Field Fermentation" Foods 12, no. 21: 3924. https://doi.org/10.3390/foods12213924