The Characteristic Aroma Compounds of GABA Sun-Dried Green Tea and Raw Pu-Erh Tea Determined by Headspace Solid-Phase Microextraction Gas Chromatography–Mass Spectrometry and Relative Odor Activity Value
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tea Samples
2.2. Chemicals
2.3. Sensory Panel Evaluation of Teas
2.4. Sample Preparation
2.5. GC-MS Conditions
2.6. ROAV Calculation
2.7. KEGG Pathway Analysis
2.8. Statistical Analysis
3. Results and Discussion
3.1. Sensory Evaluation of Aroma Characteristics of GABA Sun-Dried Green Tea and GABA Raw Pu-Erh Tea
3.2. Quantitative and Qualitative Analysis of VCs in GABA Sun-Dried Green Tea and GABA Raw Pu-Erh Tea
3.3. Key Active Compounds of GABA Sun-Dried Green Tea and GABA Raw Pu-Erh Tea Aroma
3.4. Potential Markers of Differential Aroma
3.5. Metabolic Evolution Pathway of Main Aroma Compounds
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lewis, R. Tea: History, Terroirs, Varieties; Library Journal; No. 127; Firefly Books: Richmond Hill, ON, Canada, 2012; Volume 137. Available online: https://lccn.loc.gov/2014415257 (accessed on 27 August 2023).
- Wu, X.; Liu, Y.; Guo, J.; Wang, J.; Li, M.; Tan, Y.; Zheng, Q.; Feng, Y. Differentiating Pu-erh raw tea from different geographical origins by 1 H-NMR and U-HPLC/Q-TOF-MS combined with chemometrics. J. Food Sci. 2021, 86, 779–791. [Google Scholar] [CrossRef] [PubMed]
- Lv, H.; Zhang, Y.; Lin, Z.; Liang, Y. Processing and chemical constituents of Pu-erh tea: A review. Food Res. Int. 2013, 53, 608–618. [Google Scholar] [CrossRef]
- Ahmed, S.; Stepp, J. Pu-erh Tea: Botany, Production, and Chemistry. In Tea in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2013; pp. 59–72. [Google Scholar]
- Zheng, X.; Li, Q.; Xiang, L.; Liang, Y. Recent Advances in Volatiles of Teas. Molecules 2016, 21, 338. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Liu, Y.; Mu, L.; Wang, W.; Zhan, Q.; Luo, M.; Tian, H.; Lv, C.; Li, J. Discriminant research for identifying aromas of non-fermented Pu-erh tea from different storage years using an electronic nose. J. Food Process. Preserv. 2018, 42, e13721. [Google Scholar] [CrossRef]
- Xu, S.; Zeng, X.; Wu, H.; Shen, S.; Yang, X.; Deng, W.; Ning, J. Characterizing volatile metabolites in raw Pu’er tea stored in wet-hot or dry-cold environments by performing metabolomic analysis and using the molecular sensory science approach. Food Chem. 2021, 350, 129186. [Google Scholar] [CrossRef]
- Fan, X.; Chen, N.; Cai, F.; Ren, F.; Zhong, J.; Wang, D.; Shi, L.; Ren, D.; Yi, L. Effects of manufacturing on the volatile composition of raw Pu-erh tea with a focus on de-enzyming and autoclaving–compressing treatments. LWT 2020, 137, 110461. [Google Scholar] [CrossRef]
- Feng, T.; Sun, J.; Wang, K.; Song, S.; Chen, D.; Zhuang, H.; Lu, J.; Li, D.; Meng, X.; Shi, M.; et al. Variation in Volatile Compounds of Raw Pu-erh Tea upon Steeping Process by Gas Chromatography-Ion Mobility Spectrometry and Characterization of the Aroma-Active Compounds in Tea Infusion Using Gas Chromatography-Olfactometry-Mass Spectrometry. J. Agric. Food Chem. 2022, 70, 13741–13753. [Google Scholar] [CrossRef]
- Tsushida, T.; Murai, T. Conversion of Glutamic Acid to γ-Aminobutyric Acid in Tea Leaves under Anaerobic Conditions. Agric. Biol. Chem. 1987, 51, 2865–2871. [Google Scholar] [CrossRef]
- Norio, N.; Katsuhiro, H.; Toshihiro, M.; Hirokazu, F. An Improvement of the Qualities of Anaerobically Treated Tea (Gabaron Tea) by Heating. Chagyo Kenkyu Hokoku Tea Res. J. 1988, 28, 40–42. [Google Scholar] [CrossRef]
- Ren, T.; Zheng, P.; Zhang, K.; Liao, J.; Xiong, F.; Shen, Q.; Ma, Y.; Fang, W.; Zhu, X. Effects of GABA on the polyphenol accumulation and antioxidant activities in tea plants (Camellia sinensis L.) under heat-stress conditions. Plant Physiol. Biochem. 2021, 159, 363–371. [Google Scholar] [CrossRef]
- Zhen, Z. Study on flavour volatiles of γ-aminobutyric acid (GABA) green tea. Afr. J. Biotechnol. 2012, 11, 11333–11341. [Google Scholar] [CrossRef]
- Li, Y.; Wu, T.; Deng, X.; Tian, D.; Ma, C.; Wang, X.; Li, Y.; Zhou, H. Characteristic aroma compounds in naturally withered and combined withered γ-aminobutyric acid white tea revealed by HS-SPME-GC-MS and relative odor activity value. LWT 2023, 176, 114467. [Google Scholar] [CrossRef]
- Yang, S. Study on GABA Pu’er Tea. Master’s Thesis, Yunnan Agricultural University, Kunming, China, 2012. Available online: https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CMFD2012&filename=1012030358.nh (accessed on 27 August 2023).
- Yang, P.; Yu, M.; Song, H.; Xu, Y.; Lin, Y.; Granvogl, M. Characterization of Key Aroma-Active Compounds in Rough and Moderate Fire Wuyi Rock Tea by Sensory-Directed Flavor Analysis and Elucidation of the Influences of Roasting on Aroma. J. Agric. Food Chem. 2022, 70, 267–278. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Chen, F.; Wang, L.; Niu, Y.; Xiao, Z. Evaluation of the synergism among volatile compounds in Oolong tea infusion by odour threshold with sensory analysis and E-nose. Food Chem. 2017, 221, 1484–1490. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Ho, C.T.; Schwab, W.; Wan, X. Aroma profiles of green tea made with fresh tea leaves plucked in summer. Food Chem. 2021, 363, 130328. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.Y.; Li, G.Z.; Gu, Y.; Wen, C.; Ye, H.; Ma, J.L.; Liang, Z.Y.; Yang, L.; Wu, J.W.; Chen, H.Y. Flavour analysis of different varieties of camellia seed oil and the effect of the refining process on flavour substances. LWT 2022, 170, 114040. [Google Scholar] [CrossRef]
- Xie, J.; Wang, L.; Deng, Y.; Yuan, H.; Zhu, J.; Jiang, Y.; Yang, Y. Characterization of the key odorants in floral aroma green tea based on GC-E-Nose, GC-IMS, GC-MS and aroma recombination and investigation of the dynamic changes and aroma formation during processing. Food Chem. 2023, 427, 136641. [Google Scholar] [CrossRef]
- Wang, Y.; Li, C.; Zhao, Y.; Li, L.; Yang, X.; Wu, Y.; Chen, S.; Cen, J.; Yang, S.; Yang, D. Novel insight into the formation mechanism of volatile flavor in Chinese fish sauce (Yu-lu) based on molecular sensory and metagenomics analyses. Food Chem. 2020, 323, 126839. [Google Scholar] [CrossRef]
- Hong, X.; Wang, C.; Jiang, R.; Hu, T.; Zheng, X.; Huang, J.; Liu, Z.; Li, Q. Characterization of the Key Aroma Compounds in Different Aroma Types of Chinese Yellow Tea. Foods 2022, 12, 27. [Google Scholar] [CrossRef]
- GB/T 23776; Methodology for Sensory Evaluation of Tea. China Standards Press: Beijing, China, 2018.
- Li, J.; Wang, J.; Yao, Y.; Hua, J.; Zhou, Q.; Jiang, Y.; Deng, Y.; Yang, Y.; Wang, J.; Yuan, H.; et al. Phytochemical comparison of different tea (Camellia sinensis) cultivars and its association with sensory quality of finished tea. LWT 2020, 117, 108595. [Google Scholar] [CrossRef]
- Deng, X.; Huang, G.; Tu, Q.; Zhou, H.; Li, Y.; Shi, H.; Wu, X.; Ren, H.; Huang, K.; He, X. Evolution analysis of flavor-active compounds during artificial fermentation of Pu-erh tea. Food Chem. 2021, 357, 129783. [Google Scholar] [CrossRef] [PubMed]
- Bi, J.; Li, Y.; Yang, Z.; Lin, Z.; Chen, F.; Liu, S.; Li, C. Effect of different cooking times on the fat flavor compounds of pork belly. J. Food Biochem. 2022, 46, 14184. [Google Scholar] [CrossRef]
- Jin, Q.; Wang, Z.; Chen, Y.; Luo, Y.; Tian, N.; Liu, Z.; Huang, J.; Liu, S. Transcriptomics analysis reveals the signal transduction mechanism of brassinolides in tea leaves and its regulation on the growth and development of Camellia sinensis. BMC Genom. 2022, 23, 29. [Google Scholar] [CrossRef] [PubMed]
- Ou, Y.; Zhang, Y.; Qin, L.; Miao, Y.; Xiao, L. Research progress on evaluation methods of tea color, aroma and quality. Sci. Technol. Food Ind. 2019, 40, 59. (In Chinese) [Google Scholar]
- Qin, Z.; Pang, X.; Chen, D.; Cheng, H.; Hu, X.; Wu, J. Evaluation of Chinese tea by the electronic nose and gas chromatography–mass spectrometry: Correlation with sensory properties and classification according to grade level. Food Res. Int. 2013, 53, 864–874. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, J.; Jia, H.; Pan, Y.; Xu, Y.; Wang, Y.; Deng, W. Metabolite analysis and sensory evaluation reveal the effect of roasting on the characteristic flavor of large-leaf yellow tea. Food Chem. 2023, 427, 136711. [Google Scholar] [CrossRef] [PubMed]
- Su, D.; Xu, T.; Li, Y.; Zhou, H. Flavor evolution in raw Pu-erh tea during manufacturing using different processing types. LWT 2022, 154, 112905. [Google Scholar] [CrossRef]
- Biasetton, N.; Disegna, M.; Barzizza, E.; Salmaso, L. A new adaptive membership function with CUB uncertainty with application to cluster analysis of Likert-type data. Expert Syst. Appl. 2023, 213, 118893. [Google Scholar] [CrossRef]
- Tholl, D. Biosynthesis and biological functions of terpenoids in plants. Adv. Biochem. Eng. Biotechnol. 2015, 148, 63–106. [Google Scholar] [CrossRef]
- Wen, S.; Sun, L.; Zhang, S.; Chen, Z.; Chen, R.; Li, Z.; Lai, X.; Zhang, Z.; Cao, J.; Li, Q.; et al. The formation mechanism of aroma quality of green and yellow teas based on GC-MS/MS metabolomics. Food Res. Int. 2023, 172, 113137. [Google Scholar] [CrossRef]
- Lv, S.; Wu, Y.; Li, C.; Xu, Y.; Liu, L.; Meng, Q. Comparative analysis of Pu-erh and Fuzhuan teas by fully automatic headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry and chemometric methods. J. Agric. Food Chem. 2014, 62, 1810–1818. [Google Scholar] [CrossRef] [PubMed]
- Matsubara, E.; Morikawa, T.; Kusumoto, N.; Hashida, K.; Matsui, N.; Ohira, T. Subjective Effects of Inhaling Kuromoji Tea Aroma. Molecules 2021, 26, 575. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhang, Y.; Yan, F.; Tang, Y.; Yu, B.; Chen, B.; Lu, L.; Yuan, L.; Wu, Z.; Chen, H. Monitoring Changes in the Volatile Compounds of Tea Made from Summer Tea Leaves by GC-IMS and HS-SPME-GC-MS. Foods 2022, 12, 146. [Google Scholar] [CrossRef] [PubMed]
- Shao, C.; Zhang, Y.; Lv, H.; Zhang, Z.; Zeng, J.; Peng, Q.; Zhu, Y.; Lin, Z. Aromatic profiles and enantiomeric distributions of chiral odorants in baked green teas with different picking tenderness. Food Chem. 2022, 388, 132969. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Chen, Y.; Feng, W.; Shen, S.; Wei, Y.; Jia, H.; Wang, Y.; Deng, W.; Ning, J. Effects of Three Different Withering Treatments on the Aroma of White Tea. Foods 2022, 11, 2502. [Google Scholar] [CrossRef] [PubMed]
- Abbas, F.; Ke, Y.; Yu, R.; Yue, Y.; Amanullah, S.; Jahangir, M.M.; Fan, Y. Volatile terpenoids: Multiple functions, biosynthesis, modulation and manipulation by genetic engineering. Planta 2017, 246, 803–816. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, C.; Yang, R.; Zheng, T.; Zhao, M.; Ma, L.; Yan, L. Comparison of volatile profiles and bioactive components of sun-dried Pu-erh tea leaves from ancient tea plants on Bulang Mountain measured by GC-MS and HPLC. J. Zhejiang Univ. Sci. B 2019, 20, 563–575. [Google Scholar] [CrossRef]
- Pang, X.; Yu, W.; Cao, C.; Yuan, X.; Qiu, J.; Kong, F.; Wu, J. Comparison of Potent Odorants in Raw and Ripened Pu-erh Tea Infusions Based on Odor Activity Value Calculation and Multivariate Analysis: Understanding the Role of Pile Fermentation. J. Agric. Food Chem. 2019, 67, 13139–13149. [Google Scholar] [CrossRef]
- Du, L.; Li, J.; Li, W.; Li, Y.; Li, T.; Xiao, D. Characterization of volatile compounds of Pu-erh tea using solid-phase microextraction and simultaneous distillation–extraction coupled with gas chromatography–mass spectrometry. Food Res. Int. 2014, 57, 61–70. [Google Scholar] [CrossRef]
- Shen, S.; Wu, H.; Li, T.; Sun, H.; Wang, Y.; Ning, J. Formation of aroma characteristics driven by volatile components during long-term storage of An tea. Food Chem. 2023, 411, 135487. [Google Scholar] [CrossRef]
- Toci, A.; Farah, A. Volatile fingerprint of Brazilian defective coffee seeds: Corroboration of potential marker compounds and identification of new low quality indicators. Food Chem. 2014, 153, 298–314. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Li, D.; Ma, Y.; Zhang, W.; Lin, C.; Zheng, X.; Liang, Y.; Lu, J. Formation mechanism of the oolong tea characteristic aroma during bruising and withering treatment. Food Chem. 2018, 269, 202–211. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Ho, C.; Schwab, W.; Song, C.; Wan, X. Aroma compositions of large-leaf yellow tea and potential effect of theanine on volatile formation in tea. Food Chem. 2019, 280, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Su, D.; He, J.; Zhou, Y.; Li, Y.; Zhou, H. Aroma effects of key volatile compounds in Keemun black tea at different grades: HS-SPME-GC-MS, sensory evaluation, and chemometrics. Food Chem. 2022, 373, 131587. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Hu, C.; Lu, Y.; Zhang, H.; Zhang, Z. Research progress on aroma components of Pu’er tea. Chin. Tea Process. 2013, 2, 38–41. (In Chinese) [Google Scholar]
- Wang, D.; Yoshimura, T.; Kubota, K.; Kobayashi, A. Analysis of glycosidically bound aroma precursors in tea leaves. 1. Qualitative and quantitative analyses of glycosides with aglycons as aroma compounds. J. Agric. Food Chem. 2000, 48, 5411–5418. [Google Scholar] [CrossRef]
- Zhou, J.; Fang, T.; Li, W.; Jiang, Z.; Zhou, T.; Zhang, L.; Yu, Y. Widely targeted metabolomics using UPLC-QTRAP-MS/MS reveals chemical changes during the processing of black tea from the cultivar Camellia sinensis (L.) O. Kuntze cv. Huangjinya. Food Res. Int. 2022, 162 Pt B, 112169. [Google Scholar] [CrossRef]
- Ho, C.; Zheng, X.; Li, S. Tea aroma formation. Food Sci. Hum. Wellness 2015, 4, 9–27. [Google Scholar] [CrossRef]
- Wang, K.; Liu, F.; Liu, Z.; Huang, J.; Xu, Z.; Li, Y.; Yang, X. Comparison of catechins and volatile compounds among different types of tea using high performance liquid chromatograph and gas chromatograph mass spectrometer. Int. J. Food Sci. Technol. 2011, 46, 1406–1412. [Google Scholar] [CrossRef]
- Klensporf, D.; Jeleń, H.H. Effect of heat treatment on the flavor of oat flakes. J. Cereal Sci. 2008, 48, 656–661. [Google Scholar] [CrossRef]
Sample | Appearance | s | Aroma | s | Beverage Color | s | Taste | s | Infused Leaves | s | Total |
---|---|---|---|---|---|---|---|---|---|---|---|
SGT | Approach tight, yellowish green | 86 | Flowery aroma, fruity aroma (inferior), fragrant, high, pure, lasting | 89 | Lightly apricot, bright | 90 | Mellow, thick | 86 | Soft, bright | 91 | 87.65 |
PRT | Normal cake, yellowish green | 88 | Flowery aroma, fruity aroma and sweet aroma, fragrant, high, more pure and lasting | 90 | Greenish yellow, bright | 91 | Sweet, fresh, thick | 90 | More soft and bright | 90 | 89.7 |
No. | Aroma Compounds | Retention Time | Retention Index | Identification Methods | Absolute Content (μg/g) | |||
---|---|---|---|---|---|---|---|---|
SGT | PRT | CK | CA | |||||
1 | [2H3]-beta.-Ionone | 16.66 | 1477.90 | MS, RI | 7.41 ± 0.18 b | 8.27 ± 0.14 a | 7.96 ± 0.48 a | 6.79 ± 0.15 c |
2 | Phytol, acetate | 22.32 | 1837.31 | MS, RI | 0.16 ± 0.00 b | 0.20 ± 0.01 a | 0.06 ± 0.01 c | 0.16 ± 0.00 c |
3 | Phthalic acid, butyl hept-4-yl ester | 23.09 | 1958.70 | MS, RI | 0.30 ± 0.00 c | 0.24 ± 0.02 c | 0.39 ± 0.09 b | 1.05 ± 0.01 a |
4 | Linoleic acid ethyl ester | 24.50 | 2160.32 | MS, RI | 0.12 ± 0.01 b | 0.18 ± 0.03 a | —— | 0.03 ± 0.00 c |
5 | Isophytol | 23.08 | 1946.90 | MS, RI | 0.07 ± 0.00 b | 0.08 ± 0.01 a | 0.04 ± 0.01 c | 0.07 ± 0.00 ab |
6 | Phytol | 22.80 | 2113.79 | MS, RI | 0.12 ± 0.01 a | 0.15 ± 0.05 a | 0.04 ± 0.01 b | 0.11 ± 0.01 a |
7 | 3,7,11,15-Tetramethyl-2-hexadecen-1-ol | 23.45 | 1879.20 | MS, RI | 0.09 ± 0.00 b | 0.11 ± 0.01 a | 0.03 ± 0.01 c | 0.08 ± 0.00 b |
8 | 9,12-Octadecadienoic acid (Z,Z)-, methyl ester | 23.67 | 2092.49 | MS, RI | 0.15 ± 0.01 b | 0.20 ± 0.03 a | —— | 0.01 ± 0.00 c |
9 | Hexadecanoic acid, ethyl ester | 24.40 | 1990.70 | MS, RI | 0.73 ± 0.02 b | 1.05 ± 0.08 a | 0.01 ± 0.00 d | 0.14 ± 0.00 c |
10 | Hexadecane, 2,6,10,14-tetramethyl- | 22.09 | 1805.46 | MS, RI | 0.15 ± 0.00 c | 0.02 ± 0.00 d | 0.16 ± 0.01 b | 0.20 ± 0.00 a |
11 | Hexadecane, 2,6,11,15-tetramethyl- | 15.29 | 1745.74 | MS, RI | 0.16 ± 0.00 c | 0.06 ± 0.00 d | 0.24 ± 0.02 b | 0.26 ± 0.01 a |
12 | 9,12,15-Octadecatrienoic Acid, (Z,Z,Z)- | 24.56 | 2167.24 | MS, RI | 0.06 ± 0.01 b | 0.09 ± 0.02 a | —— | 0.01 ± 0.00 c |
13 | Sulfurous acid, 2-ethylhexyl hexyl ester | 24.45 | 1998.17 | MS, RI | 0.01 ± 0.00 b | 0.02 ± 0.00 a | 0.02 ± 0.01 a | 0.02 ± 0.00 ab |
14 | 7,9-Di-tert-butyl-1-oxaspiro(4,5)deca-6,9-diene-2,8-dione | 23.59 | 1907.29 | MS, RI | 0.05 ± 0.00 b | 0.05 ± 0.00 b | 0.07 ± 0.01 a | 0.05 ± 0.01 b |
15 | Hexadecanoic acid, methyl ester | 23.67 | 1923.63 | MS, RI | 1.23 ± 0.03 b | 1.62 ± 0.08 a | 0.12 ± 0.02 d | 0.30 ± 0.01 c |
16 | Pentadecane, 2,6,10,14-tetramethyl- | 22.33 | 1701.98 | MS, RI | 0.29 ± 0.02 c | 0.03 ± 0.00 d | 0.38 ± 0.04 b | 0.50 ± 0.05 a |
17 | 2-Pentadecanone, 6,10,14-trimethyl- | 21.33 | 1842.46 | MS, RI | 0.38 ± 0.00 b | 0.56 ± 0.03 a | 0.17 ± 0.04 c | 0.11 ± 0.00 d |
18 | (Z)-9,17-Octadecadienal | 24.21 | 2098.35 | MS, RI | 0.07 ± 0.00 b | 0.09 ± 0.01 a | —— | 0.01 ± 0.00 c |
19 | Farnesol, acetate | 18.28 | 1560.48 | MS, RI | 0.16 ± 0.00 b | 0.19 ± 0.00 a | 0.17 ± 0.02 ab | 0.17 ± 0.00 ab |
20 | Heptadecane, 2-methyl- | 20.42 | 1674.10 | MS, RI | 0.13 ± 0.01 b | 0.07 ± 0.01 c | 0.18 ± 0.05 a | 0.15 ± 0.01 ab |
21 | Heptadecane, 3-methyl- | 21.11 | 1772.65 | MS, RI | 0.15 ± 0.00 b | 0.04 ± 0.00 c | 0.27 ± 0.04 a | 0.26 ± 0.00 a |
22 | Pentadecane, 2,6,10-trimethyl- | 21.17 | 1798.71 | MS, RI | 0.13 ± 0.00 b | 0.15 ± 0.02 a | 0.18 ± 0.03 c | 0.17 ± 0.01 c |
23 | 2-Oxobicyclo(3.2.2)nona-3,6-dien-1-yl benzoate | 20.48 | 1588.30 | MS, RI | 0.09 ± 0.00 b | 0.09 ± 0.01 b | 0.10 ± 0.01 b | 0.21 ± 0.01 a |
24 | Hexadecane, 4-methyl- | 19.85 | 1660.99 | MS, RI | 0.08 ± 0.01 c | 0.04 ± 0.00 d | 0.12 ± 0.01 b | 0.14 ± 0.00 a |
25 | Hexadecane, 2-methyl- | 19.89 | 1666.84 | MS, RI | 0.10 ± 0.00 c | 0.05 ± 0.01 d | 0.14 ± 0.01 b | 0.16 ± 0.01 a |
26 | Heptadecane | 20.65 | 1698.50 | MS, RI | 0.40 ± 0.02 b | 0.36 ± 0.03 b | 0.36 ± 0.05 b | 0.47 ± 0.02 a |
27 | 4-ethyl-Tetradecane | 18.58 | 1542.70 | MS, RI | 0.05 ± 0.00 c | 0.05 ± 0.01 c | 0.10 ± 0.01 b | 0.13 ± 0.00 a |
28 | Hexadecane | 20.04 | 1598.46 | MS, RI | 0.83 ± 0.01 c | 0.53 ± 0.03 d | 0.98 ± 0.06 b | 1.17 ± 0.02 a |
29 | Pentadecane, 4-methyl- | 20.26 | 1556.14 | MS, RI | 0.02 ± 0.00 c | 0.02 ± 0.00 d | 0.03 ± 0.00 b | 0.04 ± 0.00 a |
30 | Nonane, 2,2,4,4,6,8,8-heptamethyl- | 17.33 | 1409.57 | MS, RI | 0.07 ± 0.00 c | 0.09 ± 0.01 c | 0.11 ± 0.02 b | 0.16 ± 0.01 a |
31 | 3-methyl-Pentadecane | 18.99 | 1569.34 | MS, RI | 0.34 ± 0.01 c | 0.27 ± 0.01 d | 0.57 ± 0.04 b | 0.72 ± 0.01 a |
32 | 2,6,10-Trimethyltridecane | 17.96 | 1459.04 | MS, RI | 0.85 ± 0.01 b | 1.56 ± 0.18 a | 0.57 ± 0.04 c | 0.37 ± 0.00 c |
33 | diethyl(decyloxy)-Borane | 9.55 | 999.10 | MS, RI | 0.01 ± 0.00 b | 0.01 ± 0.01 b | 0.01 ± 0.00 b | 0.03 ± 0.00 a |
34 | Pentadecanal | 12.93 | 1716.20 | MS, RI | 0.01 ± 0.00 a | 0.01 ± 0.00 a | 0.01 ± 0.00 a | 0.01 ± 0.00 a |
35 | Nerolidol 1 | 13.43 | 1911.51 | MS, RI | 0.06 ± 0.00 b | 0.07 ± 0.01 a | 0.05 ± 0.01 b | 0.03 ± 0.00 c |
36 | (3R,3aS,6S,7R)-3,6,8,8-Tetramethyloctahydro-1H-3a,7-methanoazulen-6-ol | 19.10 | 1618.06 | MS, RI | 0.03 ± 0.00 b | 0.01 ± 0.00 c | 0.04 ± 0.00 a | 0.04 ± 0.00 a |
37 | alpha.-Cadinol | 19.88 | 1664.61 | MS, RI | 0.05 ± 0.00 b | 0.06 ± 0.00 a | 0.03 ± 0.00 c | 0.06 ± 0.00 a |
38 | Diethyl Phthalate | 12.87 | 1586.64 | MS, RI | 0.17 ± 0.00 c | 0.02 ± 0.00 d | 1.09 ± 0.15 b | 1.59 ± 0.02 a |
39 | (3E,7E)-4,8,12-Trimethyltrideca-1,3,7,11-tetraene | 19.58 | 1572.66 | MS, RI | 0.09 ± 0.00 c | 0.15 ± 0.01 a | 0.06 ± 0.01 d | 0.11 ± 0.00 b |
40 | (1R,4S,9aS)-1-Methyl-4-((Z)-pent-2-en-4-yn-1-yl)octahydro-1H-quinolizine | 19.75 | 1565.64 | MS, RI | 0.29 ± 0.01 c | 0.44 ± 0.01 a | 0.31 ± 0.03 c | 0.36 ± 0.01 b |
41 | 3-methyl-Tetradecane | 19.71 | 1654.55 | MS, RI | 0.05 ± 0.00 c | 0.03 ± 0.00 d | 0.08 ± 0.00 b | 0.10 ± 0.00 a |
42 | Tetradecane, 4-methyl- | 17.56 | 1419.36 | MS, RI | 0.03 ± 0.00 b | 0.03 ± 0.00 a | 0.05 ± 0.01 c | 0.07 ± 0.00 c |
43 | Pentadecane | 18.65 | 1498.34 | MS, RI | 0.25 ± 0.00 b | 0.34 ± 0.02 a | 0.30 ± 0.02 a | 0.34 ± 0.02 a |
44 | 2,2’,5,5’-tetramethyl-1,1’-Biphenyl | 19.78 | 1660.37 | MS, RI | 0.03 ± 0.00 c | 0.05 ± 0.00 b | 0.05 ± 0.00 b | 0.08 ± 0.00 a |
45 | 6-Methyl-6-(5-methylfuran-2-yl)heptan-2-one | 17.45 | 1416.72 | MS, RI | 0.07 ± 0.00 b | 0.14 ± 0.00 a | 0.07 ± 0.00 b | 0.05 ± 0.00 c |
46 | 4’,6’-Dimethoxy-2’,3’-dimethylacetophenone | 19.24 | 1628.78 | MS, RI | 0.08 ± 0.00 b | 0.12 ± 0.01 a | 0.05 ± 0.01 c | 0.01 ± 0.00 d |
47 | 2,4-Di-tert-butylphenol | 18.79 | 1504.35 | MS, RI | 0.74 ± 0.16 b | 0.67 ± 0.15 b | 1.41 ± 0.21 a | 0.75 ± 0.15 b |
48 | 2-(2-butoxyethoxy)-Ethanol,acetate | 12.45 | 1167.75 | MS, RI | 1.27 ± 0.03 b | 1.49 ± 0.03 a | 1.39 ± 0.11 ab | 1.30 ± 0.04 b |
49 | 3-Hexen-1-ol benzoate | 19.09 | 1573.04 | MS, RI | 0.15 ± 0.00 c | 0.19 ± 0.01 b | 0.11 ± 0.01 d | 0.25 ± 0.00 a |
50 | Hexanoic acid, hexyl ester | 17.32 | 1382.70 | MS, RI | 0.04 ± 0.00 b | 0.04 ± 0.00 b | 0.02 ± 0.00 c | 0.27 ± 0.00 a |
51 | alpha.-Calacorene | 18.89 | 1545.24 | MS, RI | 0.09 ± 0.00 b | 0.13 ± 0.00 a | 0.07 ± 0.01 c | 0.10 ± 0.00 b |
52 | Tetradecane | 17.38 | 1398.41 | MS, RI | 0.40 ± 0.00 b | 0.44 ± 0.06 a | 0.59 ± 0.06 c | 0.81 ± 0.01 c |
53 | Dodecane, 4,6-dimethyl- | 16.76 | 1319.70 | MS, RI | 0.10 ± 0.00 c | 0.14 ± 0.03 bc | 0.16 ± 0.03 b | 0.23 ± 0.00 a |
54 | Tridecane, 2-methyl- | 18.43 | 1493.53 | MS, RI | 0.23 ± 0.00 b | 0.25 ± 0.02 b | 0.10 ± 0.01 c | 0.27 ± 0.00 a |
55 | 3,5-Dimethyldodecane | 17.08 | 1368.99 | MS, RI | 0.13 ± 0.00 c | 0.20 ± 0.03 b | 0.23 ± 0.04 b | 0.36 ± 0.00 a |
56 | Hexanoic acid, 3-hexenyl ester, (Z)- | 17.30 | 1377.24 | MS, RI | 0.33 ± 0.00 c | 0.34 ± 0.02 c | 0.48 ± 0.05 b | 1.23 ± 0.02 a |
57 | (E)-Hexanoic acid, 2-hexenyl ester | 17.37 | 1385.40 | MS, RI | 0.11 ± 0.00 b | 0.12 ± 0.01 b | 0.05 ± 0.01 c | 0.28 ± 0.01 a |
58 | 5,9-Undecadien-2-one, 6,10-dimethyl-, (E)- | 17.88 | 1445.93 | MS, RI | 1.38 ± 0.01 b | 1.66 ± 0.04 a | 1.13 ± 0.04 c | 0.79 ± 0.02 d |
59 | 1-Oxaspiro [4.5]dec-6-ene, 2,6,10,10-tetramethyl- | 16.51 | 1302.26 | MS, RI | 0.17 ± 0.00 b | 0.26 ± 0.05 a | 0.16 ± 0.03 b | 0.24 ± 0.00 a |
60 | Caffeine | 23.19 | 1853.02 | MS, RI | 11.83 ± 0.50 b | 13.43 ± 0.62 ab | 15.52 ± 2.04 a | 12.74 ± 0.60 b |
61 | alpha.-Ionone | 17.46 | 1423.20 | MS, RI | 0.25 ± 0.00 b | 0.30 ± 0.01 a | 0.16 ± 0.00 c | 0.12 ± 0.01 d |
62 | 5-Methyl-2,4-diisopropylphenol | 16.77 | 1337.69 | MS, RI | 0.09 ± 0.00 b | 0.16 ± 0.00 a | 0.08 ± 0.01 c | 0.04 ± 0.00 c |
63 | 2-(1,1-Dimethylethyl)-6-(1-methylethyl)phenol | 15.47 | 1258.48 | MS, RI | —— | 0.01 ± 0.00 a | 0.01 ± 0.00 b | 0.01 ± 0.00 b |
64 | 2-Buten-1-one, 1-(2,6,6-trimethyl-1,3-cyclohexadien-1-yl)-, (E)- | 17.32 | 1380.04 | MS, RI | 0.06 ± 0.00 b | 0.08 ± 0.00 a | 0.09 ± 0.00 a | 0.05 ± 0.01 b |
65 | 4-(2,6,6-Trimethylcyclohexa-1,3-dienyl)but-3-en-2-one | 17.65 | 1407.67 | MS, RI | 0.10 ± 0.00 d | 0.12 ± 0.00 c | 0.14 ± 0.02 b | 0.17 ± 0.01 a |
66 | 1-Dodecanol | 19.94 | 1591.17 | MS, RI | 0.04 ± 0.00 c | 0.02 ± 0.00 d | 0.08 ± 0.01 b | 0.10 ± 0.00 a |
67 | Undecane, 2,9-dimethyl- | 17.01 | 1362.43 | MS, RI | 0.09 ± 0.01 c | 0.11 ± 0.01 b | 0.08 ± 0.01 c | 0.13 ± 0.00 a |
68 | Nonane, 5-(2-methylpropyl)- | 12.82 | 1162.73 | MS, RI | 0.03 ± 0.00 b | 0.03 ± 0.01 b | 0.03 ± 0.01 b | 0.06 ± 0.00 a |
69 | Decane, 3-ethyl-3-methyl- | 15.59 | 1260.38 | MS, RI | 0.08 ± 0.00 b | 0.09 ± 0.03 b | 0.10 ± 0.03 b | 0.18 ± 0.00 a |
70 | Undecane, 4,6-dimethyl- | 13.51 | 1211.40 | MS, RI | 0.08 ± 0.00 b | 0.11 ± 0.03 b | 0.10 ± 0.03 b | 0.18 ± 0.00 a |
71 | Undecane, 5,7-dimethyl- | 16.81 | 1329.38 | MS, RI | 0.03 ± 0.00 b | 0.04 ± 0.01 b | 0.05 ± 0.01 b | 0.07 ± 0.00 a |
72 | Decane, 2,3,5-trimethyl- | 16.53 | 1304.88 | MS, RI | 0.05 ± 0.00 c | 0.06 ± 0.01 c | 0.07 ± 0.01 b | 0.08 ± 0.00 a |
73 | n-Valeric acid cis-3-hexenyl ester | 13.76 | 1228.24 | MS, RI | 0.01 ± 0.00 c | 0.02 ± 0.00 bc | 0.02 ± 0.00 b | 0.06 ± 0.00 a |
74 | 2(4H)-Benzofuranone, 5,6,7,7a-tetrahydro-4,4,7a-trimethyl-, (R)- | 19.02 | 1533.13 | MS, RI | 0.96 ± 0.03 b | 1.08 ± 0.04 a | 0.60 ± 0.07 c | 0.20 ± 0.00 d |
75 | 1,3-Benzenediol, 5-pentyl- | 18.96 | 1518.37 | MS, RI | 1.88 ± 0.01 b | 1.88 ± 0.13 b | 3.04 ± 0.24 a | 2.04 ± 0.06 b |
76 | Aspirin | 22.67 | 1807.58 | MS, RI | 0.01 ± 0.00 a | —— | 0.01 ± 0.00 b | 0.01 ± 0.00 a |
77 | Butyl benzoate | 19.87 | 1580.75 | MS, RI | 0.02 ± 0.00 bc | 0.02 ± 0.00 b | 0.02 ± 0.00 c | 0.04 ± 0.00 a |
78 | 1, 1, 5-Trimethyl-1, 2-dihydronaphthalene | 16.99 | 1357.23 | MS, RI | 0.03 ± 0.00 c | 0.05 ± 0.00 b | 0.04 ± 0.00 c | 0.06 ± 0.00 a |
79 | Ethyl 4-(ethyloxy)-2-oxobut-3-enoate | 15.87 | 1284.27 | MS, RI | 0.03 ± 0.00 b | 0.03 ± 0.00 b | 0.03 ± 0.00 c | 0.04 ± 0.00 a |
80 | Undecane, 5-methyl- | 10.73 | 1053.58 | MS, RI | 0.07 ± 0.01 b | 0.09 ± 0.04 b | 0.08 ± 0.03 b | 0.16 ± 0.01 a |
81 | Decane, 2,4-dimethyl- | 16.09 | 1298.50 | MS, RI | 0.06 ± 0.00 c | 0.08 ± 0.02 bc | 0.10 ± 0.02 b | 0.13 ± 0.01 a |
82 | trans-Linalool oxide (furanoid) | 11.08 | 1070.91 | MS, RI | 0.97 ± 0.01 b | 1.29 ± 0.03 a | 1.17 ± 0.07 c | 1.36 ± 0.03 c |
83 | (E)-2-Hexenoic acid, butyl ester | 17.68 | 1437.17 | MS, RI | —— | —— | —— | 0.01 ± 0.00 a |
84 | (3R,6S)-2,2,6-Trimethyl-6-vinyltetrahydro-2H-pyran-3-ol | 13.12 | 1175.18 | MS, RI | 0.98 ± 0.02 b | 0.80 ± 0.04 c | 0.43 ± 0.02 d | 1.22 ± 0.04 a |
85 | 2H-Pyran-2-one, tetrahydro-6-(2-pentenyl)-, (Z)- | 18.30 | 1491.40 | MS, RI | 0.13 ± 0.01 a | 0.14 ± 0.02 a | 0.07 ± 0.01 b | 0.13 ± 0.01 a |
86 | 2,6-Octadienoic Acid, 3,7-dimethyl-, (E)- | 16.86 | 1353.99 | MS, RI | 1.24 ± 0.01 a | 1.18 ± 0.30 a | 0.29 ± 0.05 b | 1.04 ± 0.06 a |
87 | 2,6,6-trimethyl-1-Cyclohexene-1-acetAldehyde | 15.45 | 1257.39 | MS, RI | 0.04 ± 0.00 a | 0.03 ± 0.00 ab | 0.03 ± 0.00 b | 0.02 ± 0.00 c |
88 | BenzAldehyde, 2,4-dihydroxy-3,6-dimethyl- | 19.97 | 1593.22 | MS, RI | 0.02 ± 0.00 b | 0.02 ± 0.00 a | 0.01 ± 0.00 d | 0.01 ± 0.00 c |
89 | 2-Cyclopenten-1-one, 3-methyl-2-(2-pentenyl)-, (Z)- | 17.44 | 1394.17 | MS, RI | 0.37 ± 0.01 a | 0.37 ± 0.04 a | 0.26 ± 0.01 c | 0.32 ± 0.01 b |
90 | 2-(formyloxy)-1-phenyl-Ethanone | 19.65 | 1573.33 | MS, RI | 0.10 ± 0.00 c | 0.12 ± 0.00 b | 0.05 ± 0.00 d | 0.16 ± 0.00 a |
91 | Nonanoic Acid | 15.73 | 1268.14 | MS, RI | 0.52 ± 0.04 a | 0.42 ± 0.08 a | 0.41 ± 0.08 a | 0.27 ± 0.01 b |
92 | Decane, 5-methyl- | 9.86 | 1011.55 | MS, RI | 0.02 ± 0.00 b | 0.02 ± 0.00 a | 0.02 ± 0.01 c | 0.04 ± 0.00 c |
93 | Decanal | 13.46 | 1205.23 | MS, RI | 0.03 ± 0.00 a | 0.03 ± 0.00 a | 0.01 ± 0.00 b | 0.01 ± 0.00 b |
94 | Geraniol | 15.37 | 1249.83 | MS, RI | 4.11 ± 0.09 b | 5.50 ± 0.46 a | 5.27 ± 0.30 a | 5.76 ± 0.11 a |
95 | L-alpha.-Terpineol | 13.34 | 1197.22 | MS, RI | 4.79 ± 0.08 c | 6.97 ± 0.17 a | 6.40 ± 0.31 b | 6.52 ± 0.15 b |
96 | 2,6-Octadien-1-ol, 3,7-dimethyl-, (Z)- | 13.70 | 1225.24 | MS, RI | 0.85 ± 0.03 b | 1.25 ± 0.08 a | 1.18 ± 0.08 a | 1.26 ± 0.02 a |
97 | 3-Cyclohexen-1-ol, 4-methyl-1-(1-methylethyl)-, (R)- | 13.06 | 1182.77 | MS, RI | 0.20 ± 0.00 d | 0.25 ± 0.00 c | 0.30 ± 0.03 b | 0.35 ± 0.01 a |
98 | Linalool | 11.60 | 1101.31 | MS, RI | 6.06 ± 0.14 c | 9.11 ± 0.35 a | 7.61 ± 0.80 b | 9.10 ± 0.07 a |
99 | 1,5,7-Octatrien-3-ol, 3,7-dimethyl- | 11.78 | 1103.50 | MS, RI | 1.13 ± 0.02 c | 1.71 ± 0.07 a | 1.36 ± 0.11 b | 1.38 ± 0.03 b |
100 | 2,6,6-trimethyl-1-Cyclohexene-1-carboxaldehyde | 13.66 | 1220.95 | MS, RI | 0.35 ± 0.00 a | 0.37 ± 0.02 a | 0.21 ± 0.02 b | 0.12 ± 0.00 c |
101 | 2,6-Octadienal, 3,7-dimethyl-, (E)- | 15.69 | 1267.57 | MS, RI | 0.14 ± 0.00 a | 0.12 ± 0.01 ab | 0.12 ± 0.01 ab | 0.11 ± 0.00 b |
102 | Methyl salicylate | 13.26 | 1194.38 | MS, RI | 0.57 ± 0.00 b | 0.53 ± 0.04 a | 0.56 ± 0.05 c | 0.87 ± 0.02 c |
103 | Methyl anthranilate | 16.75 | 1345.34 | MS, RI | 0.09 ± 0.00 b | 0.10 ± 0.02 b | 0.06 ± 0.00 c | 0.13 ± 0.00 a |
104 | Ethanone, 1-(2-hydroxy-5-methylphenyl)- | 16.50 | 1313.12 | MS, RI | 0.51 ± 0.01 b | 0.56 ± 0.06 b | 0.13 ± 0.01 c | 0.63 ± 0.02 a |
105 | 2-Methyl-7-exo-vinylbicyclo [4.2.0]oct-1(2)-ene | 12.33 | 1144.57 | MS, RI | 0.02 ± 0.00 b | 0.03 ± 0.00 a | 0.03 ± 0.00 a | 0.03 ± 0.00 a |
106 | Benzene, pentamethyl- | 15.83 | 1280.53 | MS, RI | 0.05 ± 0.00 c | 0.07 ± 0.01 b | 0.07 ± 0.01 b | 0.14 ± 0.01 a |
107 | Anethole | 15.90 | 1287.43 | MS, RI | 11.39 ± 0.11 b | 6.37 ± 0.34 d | 14.32 ± 0.35 a | 7.89 ± 0.14 c |
108 | 4-Formyl-3,5-dimethyl-1H-pyrrole-2-carbonitrile | 15.81 | 1277.95 | MS, RI | 0.06 ± 0.00 b | 0.09 ± 0.02 ab | 0.11 ± 0.02 a | 0.07 ± 0.01 b |
109 | 4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl- | 12.25 | 1148.70 | MS, RI | —— | 0.01 ± 0.00 b | 0.01 ± 0.00 ab | 0.01 ± 0.00 a |
110 | Naphthalene, 2-methyl- | 16.33 | 1300.17 | MS, RI | 0.16 ± 0.00 d | 0.20 ± 0.00 c | 0.21 ± 0.01 b | 0.30 ± 0.01 a |
111 | (+)-4-Carene | 10.03 | 1016.79 | MS, RI | 0.09 ± 0.00 c | 0.14 ± 0.02 b | 0.13 ± 0.02 b | 0.22 ± 0.00 a |
112 | D-Limonene | 10.20 | 1029.13 | MS, RI | 0.73 ± 0.02 d | 1.09 ± 0.15 b | 0.93 ± 0.17 c | 1.52 ± 0.01 a |
113 | beta.-Myrcene | 9.38 | 989.67 | MS, RI | 0.78 ± 0.01 c | 1.27 ± 0.09 a | 1.01 ± 0.13 b | 1.39 ± 0.04 a |
114 | (S)-(+)-alpha-Phellandrene | 9.77 | 1006.64 | MS, RI | 0.09 ± 0.00 c | 0.14 ± 0.01 b | 0.13 ± 0.02 b | 0.19 ± 0.00 a |
115 | 2,4,6-Octatriene, 3,4-dimethyl- | 11.84 | 1127.36 | MS, RI | 0.04 ± 0.00 d | 0.07 ± 0.01 b | 0.06 ± 0.01 c | 0.09 ± 0.00 a |
116 | .gamma.-Terpinene | 10.65 | 1058.03 | MS, RI | 0.15 ± 0.00 b | 0.18 ± 0.04 b | 0.17 ± 0.04 b | 0.34 ± 0.00 a |
117 | beta.-Ocimene | 10.49 | 1045.17 | MS, RI | 0.42 ± 0.02 b | 0.53 ± 0.06 a | 0.32 ± 0.04 c | 0.49 ± 0.01 ab |
118 | Benzene, 1,2,3,5-tetramethyl- | 12.07 | 1120.46 | MS, RI | 0.13 ± 0.00 c | 0.21 ± 0.05 b | 0.17 ± 0.04 bc | 0.32 ± 0.01 a |
119 | 1,3,8-p-Menthatriene | 12.97 | 1130.49 | MS, RI | 0.02 ± 0.00 c | 0.04 ± 0.00 a | 0.03 ± 0.00 c | 0.03 ± 0.00 b |
120 | Benzene, 1-methyl-3-(1-methylethyl)- | 10.16 | 1024.38 | MS, RI | 0.14 ± 0.00 c | 0.21 ± 0.04 b | 0.19 ± 0.05 bc | 0.41 ± 0.01 a |
121 | Benzene, 1-methyl-3-(1-methylethenyl)- | 11.28 | 1091.00 | MS, RI | 0.08 ± 0.00 c | 0.13 ± 0.01 a | 0.10 ± 0.01 b | 0.14 ± 0.00 a |
122 | Benzene, 4-ethenyl-1,2-dimethyl- | 12.66 | 1149.59 | MS, RI | 0.05 ± 0.00 bc | 0.08 ± 0.01 b | 0.07 ± 0.01 b | 0.12 ± 0.00 a |
123 | Cyclohexanol, 2,6-dimethyl- | 11.99 | 1111.77 | MS, RI | 0.21 ± 0.00 a | 0.19 ± 0.01 b | 0.15 ± 0.01 c | 0.10 ± 0.00 d |
124 | 1-Octen-3-ol | 9.11 | 980.83 | MS, RI | 7.80 ± 0.14 a | 2.58 ± 0.16 b | 1.51 ± 0.24 c | 0.28 ± 0.02 d |
125 | Naphthalene | 13.43 | 1188.68 | MS, RI | 1.06 ± 0.01 c | 1.49 ± 0.08 b | 1.46 ± 0.14 b | 2.10 ± 0.06 a |
126 | 3,5,5-trimethyl-2-Hexene | 8.89 | 975.03 | MS, RI | 2.74 ± 0.02 a | 0.60 ± 0.05 b | 0.56 ± 0.07 b | 0.10 ± 0.01 c |
127 | Benzyl chloride | 9.90 | 1012.98 | MS, RI | 0.06 ± 0.00 b | 0.09 ± 0.01 a | 0.07 ± 0.01 b | 0.06 ± 0.00 b |
128 | 3-Formyl-4,5-dimethyl-pyrrole | 10.52 | 1047.82 | MS, RI | 0.16 ± 0.00 c | 0.05 ± 0.00 d | 0.27 ± 0.03 b | 0.60 ± 0.02 a |
129 | Propane, 2-chloro-2-nitro- | 6.03 | 709.00 | MS, RI | 6.38 ± 0.20 a | 5.84 ± 0.49 a | 5.28 ± 0.53 a | 5.55 ± 0.91 a |
130 | 1,3-Cyclopentadiene, 5,5-dimethyl-1-ethyl- | 7.54 | 841.47 | MS, RI | 0.04 ± 0.00 b | 0.07 ± 0.02 a | 0.03 ± 0.01 c | 0.03 ± 0.00 c |
131 | Phenylethyl Alcohol | 11.80 | 1114.93 | MS, RI | 0.43 ± 0.02 b | 0.29 ± 0.03 c | 0.20 ± 0.02 d | 0.63 ± 0.00 a |
132 | Phenol, 3,5-dimethyl- | 8.40 | 934.00 | MS, RI | 0.02 ± 0.00 b | 0.03 ± 0.00 a | 0.02 ± 0.00 c | 0.01 ± 0.00 c |
133 | 2,3-dihydro-Benzofuran | 13.64 | 1219.63 | MS, RI | 1.91 ± 0.03 b | 2.72 ± 0.27 a | 1.20 ± 0.17 d | 1.57 ± 0.06 c |
134 | Indole | 16.01 | 1295.10 | MS, RI | 2.28 ± 0.03 a | 1.11 ± 0.11 c | 1.46 ± 0.07 b | 1.42 ± 0.04 b |
135 | 2-Heptanol | 8.22 | 902.75 | MS, RI | 0.02 ± 0.00 a | 0.02 ± 0.01 a | 0.02 ± 0.00 b | 0.03 ± 0.00 a |
136 | Heptanal | 8.20 | 901.74 | MS, RI | 0.08 ± 0.01 a | 0.06 ± 0.01 b | 0.03 ± 0.00 c | 0.03 ± 0.01 c |
137 | Cyclobutanone, 2,2,3-trimethyl- | 6.44 | 751.40 | MS, RI | 0.02 ± 0.00 b | 0.03 ± 0.00 b | 0.04 ± 0.02 b | 0.11 ± 0.01 a |
138 | 5-methyl-1,2,5,6-Tetrahydropyridin-2-one | 10.06 | 1020.73 | MS, RI | 0.19 ± 0.02 a | 0.11 ± 0.02 c | 0.16 ± 0.04 ab | 0.11 ± 0.02 bc |
139 | Benzyl Alcohol | 10.24 | 1036.04 | MS, RI | 0.36 ± 0.00 b | 0.44 ± 0.03 a | 0.33 ± 0.03 b | 0.43 ± 0.00 a |
140 | BenzAldehyde | 8.86 | 963.89 | MS, RI | 0.31 ± 0.01 a | 0.33 ± 0.03 a | 0.23 ± 0.02 b | 0.23 ± 0.01 b |
141 | Dihydro-3-(2H)-thiophenone | 8.67 | 955.93 | MS, RI | 0.02 ± 0.00 b | 0.02 ± 0.00 a | 0.01 ± 0.00 c | 0.02 ± 0.00 c |
142 | 3-Hexen-1-ol, (E)- | 8.70 | 856.29 | MS, RI | 0.14 ± 0.02 c | 0.16 ± 0.01 b | 0.09 ± 0.01 d | 0.39 ± 0.01 a |
143 | Hexanal | 6.98 | 797.72 | MS, RI | 0.07 ± 0.00 ab | 0.08 ± 0.03 a | 0.05 ± 0.01 b | 0.04 ± 0.01 b |
144 | 3-Hexen-2-one | 6.66 | 797.57 | MS, RI | 0.15 ± 0.02 a | 0.08 ± 0.07 ab | 0.07 ± 0.01 b | 0.13 ± 0.01 ab |
145 | 2-methoxy-Furan | 6.64 | 797.09 | MS, RI | 0.12 ± 0.00 c | 0.08 ± 0.01 d | 0.19 ± 0.03 b | 0.27 ± 0.01 a |
146 | Dimethylphosphinic fluoride | 6.01 | 701.52 | MS, RI | 0.03 ± 0.00 a | 0.02 ± 0.00 ab | 0.02 ± 0.00 c | 0.02 ± 0.00 bc |
147 | 3-ethyl-1H-Pyrrole | 7.11 | 809.67 | MS, RI | 0.05 ± 0.00 b | 0.02 ± 0.00 b | 0.16 ± 0.04 a | 0.19 ± 0.01 a |
148 | 1-Pentanol | 6.56 | 769.54 | MS, RI | 0.51 ± 0.02 a | —— | 0.28 ± 0.03 c | 0.34 ± 0.02 b |
No. | Index | ROAV | VIP | Fold Change | Aroma Type | |
---|---|---|---|---|---|---|
SGT | PRT | |||||
1 | [2H3]-beta.-Ionone | 0.39 ± 0.02 | 0.29 ± 0.02 | 1.13 | 1.12 | Woody, flowery |
2 | 5,9-Undecadien-2-one, 6,10-dimethyl-, (E)- | 0.68 ± 0.01 | 0.55 ± 0.03 | 1.19 | 1.20 | Fresh, flowery, sweet (weak) |
3 | alpha.-Ionone | 1.09 ± 0.02 | 0.88 ± 0.05 | 1.16 | 1.21 | Flowery, sweet, weak |
4 | 2-Buten-1-one, 1-(2,6,6-trimethyl-1,3-cyclohexadien-1-yl)-, (E)- | 10.51 ± 0.69 | 10.68 ± 0.66 | 1.18 | 1.52 | Flowery, fruity, lasting |
5 | Geraniol | 13.54 ± 0.15 | 12.11 ± 1.50 | 1.13 | 1.34 | Flowery, sweet, weak, and normal |
6 | L-alpha.-Terpineol | 0.39 ± 0.00 | 0.38 ± 0.02 | 1.21 | 1.46 | Woody, flowery, weak |
7 | Linalool | 100.00 ± 0.00 | 100.00 ± 0.00 | 1.20 | 1.50 | Woody, flowery, fruity (weak), sweet (weak) |
8 | Anethole | 0.28 ± 0.01 | 0.11 ± 0.01 | 1.21 | 0.56 | Licorice |
9 | D-Limonene | 0.53 ± 0.01 | 0.53 ± 0.05 | 1.09 | 1.50 | Flowery, lemony, weak |
10 | beta.-Myrcene | 1.16 ± 0.03 | 1.26 ± 0.07 | 1.19 | 1.63 | Fatty (weak) |
11 | Naphthalene | 0.52 ± 0.01 | 0.49 ± 0.04 | 1.18 | 1.41 | Aromatic, normal |
12 | Phenylethyl Alcohol | 0.24 ± 0.02 | 0.11 ± 0.02 | 1.16 | 0.67 | Sweet (weak), flowery (weak) |
13 | Indole | 0.11 ± 0.00 | 0.04 ± 0.00 | 1.21 | 0.49 | Flowery, fresh |
14 | 1-Octen-3-ol | 96.51 ± 4.17 | 21.21 ± 0.57 | 1.05 | 0.33 | Clean, fatty, mushroomy |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, C.; Gao, C.; Li, Y.; Zhou, X.; Fan, G.; Tian, D.; Huang, Y.; Li, Y.; Zhou, H. The Characteristic Aroma Compounds of GABA Sun-Dried Green Tea and Raw Pu-Erh Tea Determined by Headspace Solid-Phase Microextraction Gas Chromatography–Mass Spectrometry and Relative Odor Activity Value. Foods 2023, 12, 4512. https://doi.org/10.3390/foods12244512
Ma C, Gao C, Li Y, Zhou X, Fan G, Tian D, Huang Y, Li Y, Zhou H. The Characteristic Aroma Compounds of GABA Sun-Dried Green Tea and Raw Pu-Erh Tea Determined by Headspace Solid-Phase Microextraction Gas Chromatography–Mass Spectrometry and Relative Odor Activity Value. Foods. 2023; 12(24):4512. https://doi.org/10.3390/foods12244512
Chicago/Turabian StyleMa, Chenyang, Chang Gao, Yuanda Li, Xiaohui Zhou, Guofu Fan, Di Tian, Yuan Huang, Yali Li, and Hongjie Zhou. 2023. "The Characteristic Aroma Compounds of GABA Sun-Dried Green Tea and Raw Pu-Erh Tea Determined by Headspace Solid-Phase Microextraction Gas Chromatography–Mass Spectrometry and Relative Odor Activity Value" Foods 12, no. 24: 4512. https://doi.org/10.3390/foods12244512