Electronic Nose and Gas Chromatograph Devices for the Evaluation of the Sensory Quality of Green Coffee Beans
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Sensory Analysis
2.3. Analysis of Volatile Compounds
2.4. E-Nose Measurements
2.5. Multivariate Data Analysis
2.6. Statistical Analysis
3. Results and Discussion
3.1. Sensory Analysis of Green Coffee Beans
3.2. VOCs of Green Coffee Beans
3.3. E-Nose Application to Discriminate Quality from Green Coffee Beans
3.4. Relation between E-Nose Data and Coffee Bean Aroma
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alves, R.C.; Casal, S.; Oliveira, M.B.P.P. Tocopherols in coffee brews: Influence of coffee species roast degree and brewing procedure. J. Food Compos. Anal. 2010, 23, 802–808. [Google Scholar] [CrossRef]
- Di Bella, G.; Potortì, A.G.; Turco, V.L.; Saitta, M.; Dugo, G. Plasticizer residues by HRGC–MS in espresso coffees from capsules, pods and moka pots. Food Control 2014, 41, 185–192. [Google Scholar] [CrossRef]
- Stokes, C.N.; O’Sullivan, M.G.; Kerry, J.P. Hedonic and descriptive sensory evaluation of instant and fresh coffee products European. Food Res. Technol. 2017, 243, 331–340. [Google Scholar] [CrossRef]
- Puerta, G.I. Composición química de una taza de café Centro Nacional de Investigaciones de Café (Cenicafé). Prog. Investig. Cient. 2013, 414, 10. [Google Scholar]
- Holscher, W.; Vitzthum, O.G.; Steinhart, H. Identification and sensorial evaluation of aroma-impact-compounds in roasted Colombian coffee. AGRIS 1990, 34, 205–212. [Google Scholar]
- Gotteland, M.; Saturnino de Pablo, V. Some trues concerning coffee. Rev. Chil. Nutr. 2007, 34, 105. [Google Scholar]
- Wei, F.; Tanokura, M. Chemical changes in the components of coffee beans during roasting. In Coffee in Health and Disease Prevention; Academic Press: Cambridge, MA, USA, 2015; pp. 83–91. [Google Scholar] [CrossRef]
- Gutierrez, N.; Barrera, O. Selección y entrenamiento de un panel en análisis sensorial de café Coffea arabica L. Rev. Cienc. Agrar. 2015, 32, 77–87. [Google Scholar] [CrossRef]
- Toledo, P.R.; Pezza, L.; Pezza, H.R.; Toci, A.T. Relationship between the different aspects related to coffee quality and their volatile compounds. Compr. Rev. Food Sci. Food Saf. 2016, 15, 705–719. [Google Scholar] [CrossRef]
- Sánchez, R.; Martín-Tornero, E.; Lozano, J.; Arroyo, P.; Meléndez, F.; Martín-Vertedor, D. Evaluation of the olfactory pattern of black olives stuffed with flavored hydrocolloids. LWT-Food Sci. Technol. 2022, 163, 113556. [Google Scholar] [CrossRef]
- Stone, H.; Bleibaum, R.; Thomas, H.A. Sensory Evaluation Practices; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Martínez Gila, D.M.; Gámez García, J.; Bellincontro, A.; Mencarelli, F.; Gómez Ortega, J. Fast tool based on electronic nose to predict olive fruit quality after harvest. Postharvest Biol. Technol. 2020, 160, 111058. [Google Scholar] [CrossRef]
- Portalo-Calero, F.; Arroyo, P.; Suárez, J.I.; Lozano, J. Triangular test of amanita mushrooms by using electronic nose and sensory panel. Foods 2019, 8, 414. [Google Scholar] [CrossRef] [PubMed]
- Escuderos, M.E.; García, M.; Jiménez, A.; Horrillo, M.C. Edible and non-edible olive oils discrimination by the application of a sensory olfactory system based on tin dioxide sensors. Food Chem. 2013, 136, 1154–1159. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, R.; Martín-Tornero, E.; Lozano, J.; Boselli, E.; Arroyo, P.; Meléndez, F.; Martín-Vertedor, D. E-Nose discrimination of abnormal fermentations in Spanish-Style Green Olives. Molecules 2021, 26, 5353. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, R.; Boselli, E.; Fernández, A.; Arroyo, P.; Lozano, J.; Martín-Vertedor, D. Determination of the masking effect of the ‘zapateria’ defect in flavoured stuffed olives using E-nose. Molecules 2022, 27, 4300. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, R.; Martín-Tornero, E.; Lozano, J.; Fernández, A.; Arroyo, P.; Meléndez, F.; Martín-Vertedor, D. Electronic nose application for the discrimination of sterilization treatments applied to Californian-style black olive varieties. J. Sci. Food Agric. 2022, 102, 2232–2241. [Google Scholar] [CrossRef]
- Barea-Ramos, J.D.; Cascos, G.; Mesías, M.; Lozano, J.; Martín-Vertedor, D. Evaluation of the Olfactory Quality of Roasted Coffee Beans Using a Digital Nose. Sensors 2022, 22, 8654. [Google Scholar] [CrossRef]
- Ceballos, D.A.C.; Meneses, J.A.M.; López, C.A.G.; Narváez, J.A.G.; Luna, D.A.R.; García, J.H. Estudio de fragancia y aroma del café tostado con la nariz electrónica Coffee-NOSE. In Proceedings of the 2020 IX International Congress of Mechatronics Engineering and Automation (CIIMA), Cartagena, Colombia, 4–6 November 2020; pp. 1–6. [Google Scholar]
- Oates, M.J.; Abu-Khalaf, N.; Molina-Cabrera, C.; Ruiz-Canales, A.; Ramos, J.; Bahder, B.W. Detection of Lethal Bronzing Disease in Cabbage Palms (Sabal palmetto) Using a Low-Cost Electronic Nose. Comput. Electron. Agriculture 2020, 155, 348–358. [Google Scholar]
- Illy, A.; Viani, R. Espresso Coffee: The Science of Quality; Academic Press: Cambridge, MA, USA, 2005. [Google Scholar]
- Martínez-Avila, O.; Sánchez, A.; Font, X.; Barrena, R. 2-phenylethanol (rose aroma) production potential of an isolated pichia kudriavzevii through solid-state fermentation. Process Biochem. 2020, 93, 94–103. [Google Scholar] [CrossRef]
- Rostagno, M.A.; Celeghini, R.M.; Debien, I.C.; Nogueira, G.C.; Meireles, M.A.A. Phenolic compounds in coffee compared to other beverages. In Coffee in Health and Disease Prevention; Academic Press: Cambridge, MA, USA, 2015; pp. 137–142. [Google Scholar]
- Moreira, R.F.A.; Trugo, L.C.; De Maria, C.A.B. Volatile components in roasted coffee Part II Aliphatic alicyclic and aromatic compounds. Quim. Nova 2000, 23, 195–203. [Google Scholar] [CrossRef]
- Toci, A.T.; Farah, A.; Deliza, R. Investigação da composição volátil dos defeitos intriínsecos do café em relação aos grãos de boa qualidade. Quim. Nova 2007, 32, 1–5. [Google Scholar]
- Perrone, D.; Farah, A.; Donangelo, C.M.; de Paulis, T.; Martin, P.R. Comprehensive analysis of major and minor chlorogenic acids and lactones in economically relevant Brazilian coffee cultivars. Food Chem. 2008, 106, 859–867. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Hu, G.; Hong, D.; Guo, T.; Li, J.; Li, Z.; Qiu, M. Review on factors affecting coffee volatiles: From seed to cup. J. Sci. Food Agric. 2022, 102, 1341–1352. [Google Scholar] [CrossRef]
- Clarke, R.J. The Flavour of Coffee Dev. Food Sci. 1986, 3B, 1–47. [Google Scholar]
- Bejarano Roncancio, J.J.; Suárez Latorre, L.M. Algunos peligros químicos y nutricionales del consumo de los alimentos de venta en espacios públicos. Rev. Univ. Ind. Santander Salud 2015, 47, 349–360. [Google Scholar]
- European Commission. Commission Recommendation (EC) No 2007/196 of 28 March 2007 Concerning on the Monitoring of the Presence of Furan in Foodstuffs, L 88/56; European Commission: Brussels, Belgium, 2007. [Google Scholar]
- Yeretzian, C.; Jordan, A.; Badoud, R.; Lindinger, W. From the green bean to the cup of coffee: Investigating coffee roasting by on-line monitoring of volatiles. Eur. Food Res. Technol. 2002, 214, 92–104. [Google Scholar] [CrossRef]
- Caporaso, N.; Whitworth, M.B.; Cui, C.; Fisk, I.D. Variability of single bean coffee volatile compounds of Arabica and robusta roasted coffees analysed by SPME-GC-MS. Food Res. Int. 2018, 108, 628–640. [Google Scholar] [CrossRef] [PubMed]
- Fabre, C.E.; Blanc, R.J.; Gorna, G. Phenylethyl Alcohol: An Aroma Profile Perfumer. Flavorist 1998, 23, 43–46. [Google Scholar]
- Gutiérrez, M.C.; Droguet, M. La cromatografía de gases y la espectrometría de masas: Identificación de compuestos causantes de mal olor. BoletÍN Intexter 2022, 122, 35–41. [Google Scholar]
- Rodríguez, J.; Durán, C.; Reyes, A. Electronic nose for quality control of Colombian coffee through the detection of defects in “Cup Tests”. Sensors 2009, 10, 36–46. [Google Scholar] [CrossRef]
- Gardner, J.W.; Shurmer, H.V.; Tan, T.T. Application of an electronic nose to the discrimination of coffees. Sens. Actuators B Chem. 1992, 6, 71–75. [Google Scholar] [CrossRef]
- Brudzewski, K.; Osowski, S.; Dwulit, A. Recognition of coffee using differential electronic nose. IEEE Trans. Instrum. Meas. 2012, 61, 1803–1810. [Google Scholar] [CrossRef]
- Gonzalez Viejo, C.; Tongson, E.; Fuentes, S. Integrating a low-cost electronic nose and machine learning modelling to assess coffee aroma profile and intensity. Sensors 2021, 21, 2016. [Google Scholar] [CrossRef] [PubMed]
High | Medium | Low | |
---|---|---|---|
High | --- | p < 0.05 | p < 0.05 |
n = 5 | n = 5 | ||
95% | 98% | ||
Medium | p < 0.05 | --- | p < 0.05 |
n = 5 | n = 5 | ||
100% | 95% | ||
Low | p < 0.05 | p < 0.05 | --- |
n = 5 | n = 5 | ||
100% | 96% |
Quality | Positive Attributes | ||||
Fruity | Herbal | Sweet | Nutty | Spiced | |
High | 7.8 ± 0.5 a | 4.5 ± 0.4 a | 3.2 ± 0.3 a | 2.3 ± 0.2 a | 2.2 ± 0.2 a |
Medium | 5.6 ± 0.7 b | 3.4 ± 0.2 b | 2.5 ± 0.1 b | 1.6 ± 0.3 b | 1.4 ± 0.2 b |
Low | 3.6 ± 0.4 c | 2.6 ± 0.3 c | 2.0 ± 0.1 b | 1.5 ± 0.2 b | 1.1 ± 0.2 b |
Quality | Negative Attributes | ||||
Roasted | Smoky | Fermented | Earthy | ||
High | 0.6 ± 0.2 c | 0.5 ± 0.1 c | n.d. | n.d. | |
Medium | 2.5 ± 0.2 b | 1.5 ± 0.3 b | 1.0 ± 0.1 b | 1.5 ± 0.3 b | |
Low | 3.6 ± 0.2 a | 2.6 ± 0.1 a | 2.6 ± 0.3 a | 2.3 ± 0.2 a |
R.T. (Min) | CAS Number | Volatile Compounds | Quantities | ||
---|---|---|---|---|---|
High | Medium | Low | |||
Furans | |||||
9.0 | 108-29-2 | Dihydro-5-methyl-2(3H)-furanone | 0.70 a | 0.76 a | 0.28 b |
12.4 | 3777-69-3 | 2-Methyl-furan | 1.04 b | 2.07 a | 2.24 a |
22.0 | 51080-20-7 | Furan | 0.81 b | 2.33 a | 2.27 a |
38.1 | 104-61-0 | Dihydro-2-methyl-2(3H)-furanone | 1.00 ns | 0.00 | 0.00 |
Pyrazines and pyridines | |||||
13.7 | 110-86-1 | Pyridine | 1.52 c | 1.94 b | 6.97 a |
15.9 | 75354-36-8 | (E)-7-Methyl-1,6-dioxaspiro [4.5]decane | 0.08 c | 0.26 b | 0.90 a |
24.1 | 24683-00-9 | 2,5-Dimethyl-pyridine | 2.46 c | 3.44 b | 4.88 a |
Pyrroles | |||||
24.9 | 3146-84-7 | 3,4-Dihydro-2,2,3-trimethyl-2H-pyrrole 1-oxide | 0.00 ns | 0.00 | 1.28 |
28.0 | 20189-42-8 | 1H-Pyrrole-2,5-dione, 3-ethyl-4-methyl- | 1.31 a | 1.17 a | 0.54 b |
30.5 | 1H-Pyrrole | 1.30 ns | 1.40 | 0.00 | |
32.4 | 120-72-9 | 1H-Indole | 0.00 ns | 0.00 | 0.32 |
Aldehydes | |||||
2.0 | 123-72-8 | Butanal | 1.49 ns | 0.00 | 0.00 |
2.8 | 96-17-3 | 2-Methyl-butanal | 2.27 a | 1.27 c | 1.99 b |
5.3 | 66-25-1 | Hexanal | 2.03 c | 2.99 b | 4.29 a |
10.9 | 100-52-7 | Benzaldehyde | 0.00 ns | 0.68 | 0.80 |
16.0 | 2548-87-0 | (E)-2-Octenal | 0.00 ns | 0.00 | 0.84 |
18.9 | 124-19-6 | Nonanal | 7.46 a | 7.07 a | 4.17 b |
22.9 | 56114-69-3 | Benzaldehyde, 2,5-bis[(trimethylsilyl)oxy]- | 2.00 a | 1.40 b | 2.02 a |
22.6 | 18829-56-6 | (E)-2-Nonenal | 0.00 ns | 0.00 | 1.62 |
26.6 | 5910-87-2 | (E,E)-2,4-Nonadienal | 0.00 ns | 0.00 | 0.66 |
40.7 | 121-33-5 | 4-Hydroxy-3-methoxybenzaldehyde (Vanilene) | 2.49 a | 2.78 a | 0.65 b |
Ketones | |||||
20.2 | 1000302-96-9 | Propenone, 1-(4-nitrophenyl)-3-phenylamino- | 3.17 ns | 0.00 | 0.00 |
27.6 | 2758-18-1 | 3-Methyl-2-cyclopenten-1-one | 1.19 ns | 0.00 | 0.00 |
45.4 | 105-86-2 | Geraniol | 1.23 b | 1.71 a | 0.81 c |
71.3 | 502-69-2 | 2-Pentadecanone, 6,10,14-trimethyl- | 0.73 c | 4.26 b | 5.07 a |
Esters | |||||
8.4 | 141-32-2 | 2-Propenoic acid, butyl ester | 0.44 ns | 0.38 | 0.26 |
22.2 | 103-09-3 | Acetic acid, 2-ethylhexyl ester | 2.02 a | 1.59 b | 0.32 c |
22.2 | 72218-58-7 | 3-Methylheptyl acetate | 0.84 ns | 0.00 | 0.00 |
26.1 | 109-15-9 | 2-Methyl-propanoic acid, octyl ester | 4.33 ns | 0.00 | 0.00 |
54.3 | 1000298-25-6 | 1,3-Dimethylbutyl isopropylphosphonofluoridate | 0.66 ns | 0.00 | 0.00 |
74.2 | 628-97-7 | Hexadecanoic acid, ethyl ester | 1.41 a | 1.43 a | 0.88 b |
80.7 | 544-35-4 | Linoleic acid ethyl ester | 0.00 ns | 0.53 | 0.59 |
Acids derivates | |||||
6.9 | 503-74-2 | 3-Methyl-butanoic acid | 0.34 c | 2.32 b | 2.84 a |
6.7 | 4536-23-6 | 2-Methyl-hexanoic acid | 1.51 a | 1.02 b | 0.39 c |
7.2 | 116-53-0 | 2-Methyl-butanoic acid | 0.00 ns | 0.00 | 1.80 |
8.2 | 541-47-9 | 3-Methyl-2-butenoic acid | 1.34 a | 0.69 b | 0.38 c |
Carboxilic acids | |||||
2.3 | 64-19-7 | Acetic acid | 0.12 c | 1.02 b | 1.32 a |
6.5 | 109-52-4 | Pentanoic acid | 0.00 | 0.59 b | 1.80 a |
12.1 | 142-62-1 | Hexanoic acid | 0.00 ns | 0.00 | 1.06 |
12.1 | 107-92-6 | Butanoic acid | 0.00 ns | 0.00 | 1.29 |
24.9 | 124-07-2 | Octanoic acid | 0.83 c | 1.99 b | 5.72 a |
31.6 | 112-05-0 | Nonanoic acid | 2.43 c | 3.42 b | 4.80 a |
Lactones | |||||
9.0 | 96-48-0 | γ-Butyrolactone | 0.00 ns | 0.00 | 0.39 |
Aromatics | |||||
12.0 | 108-95-2 | Phenol | 2.34 a | 1.54 b | 0.00 |
14.2 | 5989-27-5 | (D-Limonene) | 1.98 a | 2.01 a | 1.36 b |
17.8 | 90-05-1 | 2-Methoxy-phenol (Guaiacol) | 0.66 ns | 0.00 | 0.00 |
34.2 | 7786-61-0 | 2-Methoxy-4-vinylphenol | 9.92 a | 7.01 b | 2.27 c |
37.2 | 584-84-9 | Benzene, 2,4-diisocyanato-1-methyl- | 2.48 a | 1.79 b | 0.00 |
75.1 | 33777-97-8 | 3-Phenyl-4-azafluorene | 0.00 ns | 0.00 | 0.33 |
80.2 | 15089-22-2 | N-Benzyl-N-ethyl-p-isopropylbenzamide | 0.00 ns | 0.00 | 1.38 |
Alcohols | |||||
3.8 | 123-51-3 | 3-Methyl-1-butanol, | 1.51 b | 2.33 a | 2.29 a |
4.5 | 71-41-0 | 1-Pentanol | 0.56 ns | 0.00 | 0.00 |
4.8 | 513-85-9 | 2,3-Butanediol | 0.00 ns | 0.00 | 0.92 |
7.4 | 111-27-3 | 1-Hexanol | 2.66 a | 2.38 b | 0.65 c |
11.9 | 3391-86-4 | 1-Octen-3-ol | 0.96 b | 1.29 a | 1.24 a |
14.4 | 104-76-7 | 2-Ethyl-1-hexanol | 1.81 a | 1.97 a | 1.25 b |
14.5 | 100-51-6 | Benzyl alcohol | 2.02 a | 2.06 a | 1.26 b |
19.3 | 60-12-8 | Phenylethyl Alcohol | 11.60 a | 11.82 a | 4.85 b |
22.0 | 768-95-6 | 1-Adamantanol | 0.98 c | 2.14 a | 1.53 b |
23.6 | 143-08-8 | 1-Nonanol | 1.07 ns | 0.00 | 0.00 |
26.9 | 122-99-6 | 2-Phenoxy-ethanol | 1.45 b | 1.80 a | 0.67 c |
Hydrocarbons | |||||
18.6 | 78-70-6 | 3,7-Dimethyl-1,6-octadien-3-ol (Linalool) | 0.73 a | 0.65 a | 0.36 b |
23.6 | 124-11-8 | 1-Nonene | 0.00 ns | 0.00 | 0.90 |
25.7 | 112-40-3 | Dodecane | 0.00 ns | 0.00 | 0.53 |
41.4 | 629-59-4 | Tetradecane | 0.85 c | 3.55 a | 3.35 b |
Sulfur compounds | |||||
1.9 | 75-18-3 | Dimethyl sulfide | 0.00 | 1.98 b | 5.48 a |
Thiophenes | |||||
16.8 | 2557-78-0 | o-Fluorothiophenol | 2.88 ns | 2.99 | 0.00 |
25.2 | 1708-32-3 | 2,5-Dihydro-thiophene | 0.33 c | 1.67 b | 2.79 a |
Others | |||||
8.1 | 100-42-5 | Styrene | 1.01 a | 0.52 n | 0.14 c |
11.6 | 127-91-3 | Beta-Pinene | 1.67 ns | 0.00 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cascos, G.; Lozano, J.; Montero-Fernández, I.; Marcía-Fuentes, J.A.; Aleman, R.S.; Ruiz-Canales, A.; Martín-Vertedor, D. Electronic Nose and Gas Chromatograph Devices for the Evaluation of the Sensory Quality of Green Coffee Beans. Foods 2024, 13, 87. https://doi.org/10.3390/foods13010087
Cascos G, Lozano J, Montero-Fernández I, Marcía-Fuentes JA, Aleman RS, Ruiz-Canales A, Martín-Vertedor D. Electronic Nose and Gas Chromatograph Devices for the Evaluation of the Sensory Quality of Green Coffee Beans. Foods. 2024; 13(1):87. https://doi.org/10.3390/foods13010087
Chicago/Turabian StyleCascos, Gema, Jesús Lozano, Ismael Montero-Fernández, Jhunior Abrahan Marcía-Fuentes, Ricardo S. Aleman, Antonio Ruiz-Canales, and Daniel Martín-Vertedor. 2024. "Electronic Nose and Gas Chromatograph Devices for the Evaluation of the Sensory Quality of Green Coffee Beans" Foods 13, no. 1: 87. https://doi.org/10.3390/foods13010087