Evaluation of the Genotoxicity of Almond Hull: Implications for Its Use as a Novel Food Ingredient
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Preparation of Test Item
2.2.1. Almond Hull Powder
2.2.2. Almond Hull Extract
2.3. Animals
2.4. Bacterial Reverse Mutation Assay
2.5. Chromosome Aberration Assay
2.6. In Vivo Micronucleus Test
2.7. Mammalian Spermatogonial Chromosomal Aberration Test
2.8. Statistical Analysis
3. Results
3.1. Bacterial Reverse Mutation Test
3.2. In Vitro Chromosomal Aberration Assay
3.2.1. Cytotoxicity Evaluation and Treatment Concentration
3.2.2. Chromosomal Aberration Assay
3.3. In Vivo Micronucleus Test
3.3.1. Mouse Bone Marrow Slides
3.3.2. Mouse Bone Marrow Micronucleus Assay
3.4. Mammalian Spermatogonial Chromosomal Aberration Test
3.4.1. Body Weight
3.4.2. Chromosomal Aberrations in Mouse Spermatogonia
3.4.3. Chromosome Aberration Test in Mouse Primary Spermatocytes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Esfahlan, A.J.; Jamei, R.; Esfahlan, R.J. The importance of almond (Prunus amygdalus L.) and its by-products. Food Chem. 2010, 120, 349–360. [Google Scholar] [CrossRef]
- Prgomet, I.; Gonçalves, B.; Domínguez-Perles, R.; Santos, R.; Saavedra, M.J.; Aires, A.; Pascual-Seva, N.; Barros, A. Irrigation deficit turns almond by-products into a valuable source of antimicrobial (poly)phenols. Ind. Crops Prod. 2019, 132, 186–196. [Google Scholar] [CrossRef]
- DePeters, E.J.; Swanson, K.L.; Bill, H.M.; Asmus, J.; Heguy, J.M. Nutritional composition of almond hulls. Appl. Anim. Sci. 2020, 36, 761–770. [Google Scholar] [CrossRef]
- Velasco, M.; Schoner, C.; Lofgreen, G. Composition and feeding value of almond hulls and hull-shell meal. Calif. Agric. 1965, 19, 12–14. [Google Scholar]
- Aguilar, A.A.; Smith, N.E.; Baldwin, R.L. Nutritional-value of almond hulls for dairy-cows. J. Dairy Sci. 1984, 67, 97–103. [Google Scholar] [CrossRef]
- Swanson, K.L.; Bill, H.M.; Asmus, J.; Heguy, J.M.; DePeters, E.J. Feeding high amounts of almond hulls to lactating cows. J. Dairy Sci. 2021, 104, 8846–8856. [Google Scholar] [CrossRef] [PubMed]
- Reed, B.A.; Brown, D.L. Almond hulls in diets for lactating goats: Effects on yield and composition of milk, feed intake, and digestibility. J. Dairy Sci. 1988, 71, 530–533. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Singh, A.K.; Kong, F.; Kim, W.K. Effect of almond hulls as an alternative ingredient on broiler performance, nutrient digestibility, and cecal microbiota diversity. Poult. Sci. 2021, 100, 100853. [Google Scholar] [CrossRef] [PubMed]
- Homedes, J.; Roura, E.; Keim, N.; Brown, D. Almond hulls in swine diet reduce body fat. Calif. Agric. 1993, 47, 27–28. [Google Scholar] [CrossRef]
- Safarian, S.; Azarmi, Y.; Jahanban-Esfahlan, A.; Jahanban-Esfahlan, H. The beneficial effects of almond (Prunus amygdalus Batsch) hull on serum lipid profile and antioxidant capacity in male rats. Turk. J. Med. Sci. 2016, 46, 1223–1232. [Google Scholar] [CrossRef]
- Holtman, K.M.; Offeman, R.D.; Franqui-Villanueva, D.; Bayati, A.K.; Orts, W.J. Countercurrent Extraction of Soluble Sugars from Almond Hulls and Assessment of the Bioenergy Potential. J. Agric. Food Chem. 2015, 63, 2490–2498. [Google Scholar] [CrossRef] [PubMed]
- Prgomet, I.; Goncalves, B.; Dominguez-Perles, R.; Pascual-Seva, N.; Barros, A. Valorization Challenges to Almond Residues: Phytochemical Composition and Functional Application. Molecules 2017, 22, 1774. [Google Scholar] [CrossRef]
- Rubilar, M.; Pinelo, M.; Shene, C.; Sineiro, J.; Nuñez, M.J. Separation and HPLC-MS identification of phenolic antioxidants from agricultural residues:: Almond hulls and grape pomace. J. Agric. Food Chem. 2007, 55, 10101–10109. [Google Scholar] [CrossRef]
- Takeoka, G.R.; Dao, L.T. Antioxidant constituents of almond Prunus dulis (Mill.) D.A. Webb hulls. J. Agric. Food Chem. 2003, 51, 496–501. [Google Scholar] [CrossRef] [PubMed]
- Wijeratne, S.S.K.; Abou-Zaid, M.M.; Shahidi, F. Antioxidant polyphenols in almond and its coproducts. J. Agric. Food Chem. 2006, 54, 312–318. [Google Scholar] [CrossRef]
- Takeoka, G.; Dao, L.; Teranishi, R.; Wong, R.; Flessa, S.; Harden, L.; Edwards, R. Identification of three triterpenoids in almond hulls. J. Agric. Food Chem. 2000, 48, 3437–3439. [Google Scholar] [CrossRef] [PubMed]
- Sang, S.M.; Lapsley, K.; Rosen, R.T.; Ho, C.T. New prenylated benzoic acid and other constituents from almond hulls (Prunus amygdalus Batsch). J. Agric. Food Chem. 2002, 50, 607–609. [Google Scholar] [CrossRef]
- Sang, S.M.; Cheng, X.F.; Fu, H.Y.; Shieh, D.E.; Bai, N.S.; Lapsley, K.; Stark, R.E.; Rosen, R.T. New type sesquiterpene lactone from almond hulls (Prunus amygdalus Batsch). Tetrahedron Lett. 2002, 43, 2547–2549. [Google Scholar] [CrossRef]
- Oliveira, I.; Meyer, A.S.; Afonso, S.; Sequeira, A.; Vilela, A.; Goufo, P.; Trindade, H.; Gonçalves, B. Effects of Different Processing Treatments on Almond (Prunus dulcis) Bioactive Compounds, Antioxidant Activities, Fatty Acids, and Sensorial Characteristics. Plants 2020, 9, 1627. [Google Scholar] [CrossRef]
- An, J.; Liu, J.; Liang, Y.Y.; Ma, Y.W.; Chen, C.; Cheng, Y.L.; Peng, P.; Zhou, N.; Zhang, R.C.; Addy, M.; et al. Characterization, bioavailability and protective effects of phenolic-rich extracts from almond hulls against pro-oxidant induced toxicity in Caco-2 cells. Food Chem. 2020, 322, 126742. [Google Scholar] [CrossRef]
- Najari, Z.; Khodaiyan, F.; Yarmand, M.S.; Hosseini, S.S. Almond hulls waste valorization towards sustainable agricultural development: Production of pectin, phenolics, pullulan, and single cell protein. Waste Manag. 2022, 141, 208–219. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.R.; Huang, L.; An, J.; Ma, Y.W.; Cheng, Y.L.; Zhang, R.C.; Peng, P.; Wang, Y.P.; Addy, M.; Chen, P.L.; et al. Application of high-pressure homogenization to improve physicochemical and antioxidant properties of almond hulls. J. Food Process Eng. 2023, 46, e14235. [Google Scholar] [CrossRef]
- Liu, J.R.; Yao, Y.Y.; Cheng, Y.L.; Hua, W.; Zhu, X.Y.; Miao, Q.M.; Huang, G.W.; Mi, S.Q.; Ruan, R.G. Acute Oral Toxicity Evaluation of Almond Hull Powders in BALB/c Mice. Foods 2023, 12, 4111. [Google Scholar] [CrossRef] [PubMed]
- OECD. Test No. 471: Bacterial Reverse Mutation Test; OECD: Paris, France, 2020. [Google Scholar]
- OECD. Test No. 473: In Vitro Mammalian Chromosomal Aberration Test; OECD: Paris, France, 2016. [Google Scholar]
- OECD. Test No. 474: Mammalian Erythrocyte Micronucleus Test; OECD: Paris, France, 2016. [Google Scholar]
- OECD. Test No. 483: Mammalian Spermatogonial Chromosomal Aberration Test; OECD: Paris, France, 2016. [Google Scholar]
- Margolin, B.H.; Byung, S.K.; Risko, K.J. The ames salmonella microsome mutagenicity assay—Issues of inference and validation. J. Am. Stat. Assoc. 1989, 84, 651–661. [Google Scholar] [CrossRef]
- Corcuera, L.A.; Vettorazzi, A.; Arbillaga, L.; Pérez, N.; Gil, A.G.; Azqueta, A.; González-Peñas, E.; García-Jalón, J.A.; de Cerain, A.L. Genotoxicity of Aflatoxin B1 and Ochratoxin A after simultaneous application of the in vivo micronucleus and comet assay. Food Chem. Toxicol. 2015, 76, 116–124. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Services; Food and Drug Administration; Center for Drug Evaluation and Research (CDER). Guidance for Industry. 2005. Available online: https://www.fda.gov/media/72309/download (accessed on 24 April 2024).
- Von Ledebur, M.; Schmid, W. The micronucleus test methodological aspects. Mutat. Res./Fundam. Mol. Mech. Mutagen. 1973, 19, 109–117. [Google Scholar] [CrossRef]
Groups | Dose (μg/plate) | Bacteria Strains | ||
---|---|---|---|---|
Dose | ±S9 | 0.5 mg/mL | 50 | TA97, TA9, TA100, TA102, TA1535 |
1.58 mg/mL | 158 | |||
5.0 mg/mL | 500 | |||
15.8 mg/mL | 1580 | |||
50.0 mg/mL | 5000 | |||
Positive Control | −S9 | Dexon | 50 | TA97, TA98, TA102 |
SA | 1.5 | TA100, TA1535 | ||
+S9 | 2-AF | 10 | TA97, TA98, TA100 | |
Dan | 50 | TA102 | ||
CP | 200 | TA1535 | ||
Negative Control | ±S9 | Sterile distilled water | / | TA97, TA98, TA100, TA102, TA1535 |
Sterile DMSO | / | |||
Blank | / |
Dose (μg/plate) | TA97 | TA98 | TA100 | TA102 | TA1535 | |
---|---|---|---|---|---|---|
Negative Control | ||||||
Sterile distilled water −S9 | 0 | 111 ± 6 | 35 ± 4 | 130 ± 12 | 282 ± 24 | 16 ± 5 |
Sterile distilled water +S9 | 0 | 114 ± 6 | 35 ± 3 | 136 ± 26 | 278 ± 30 | 20 ± 4 |
Sterile distilled DMSO −S9 | 0 | 120 ± 15 | 41 ± 3 | 161 ± 14 | 267 ± 23 | 17 ± 2 |
Sterile distilled DMSO +S9 | 0 | 124 ± 13 | 40 ± 7 | 159 ± 24 | 275 ± 19 | 18 ± 4 |
Blank −S9 | 0 | 120 ± 14 | 34 ± 3 | 137 ± 21 | 265 ± 17 | 15 ± 7 |
Blank +S9 | 0 | 115 ± 15 | 35 ± 4 | 141 ± 32 | 276 ± 12 | 17 ± 6 |
AH −S9 | 50 | 128 ± 14 | 37 ± 5 | 142 ± 21 | 291 ± 9 | 18 ± 5 |
158 | 121 ± 11 | 40 ± 3 | 156 ± 28 | 271 ± 15 | 19 ± 4 | |
500 | 108 ± 4 | 40 ± 4 | 143 ± 23 | 286 ± 29 | 19 ± 6 | |
1580 | 125 ± 13 | 35 ± 6 | 155 ± 20 | 259 ± 29 | 16 ± 4 | |
5000 | 122 ± 7 | 39 ± 5 | 142 ± 17 | 284 ± 13 | 19 ± 6 | |
AH +S9 | 50 | 121 ± 8 | 36 ± 5 | 144 ± 14 | 266 ± 22 | 20 ± 5 |
158 | 112 ± 11 | 35 ± 4 | 153 ±18 | 275 ± 25 | 12 ± 2 | |
500 | 120 ± 13 | 39 ± 6 | 139 ± 23 | 290 ± 22 | 15 ± 3 | |
1580 | 114 ± 14 | 36 ± 3 | 160 ± 33 | 278 ± 19 | 21 ± 3 | |
5000 | 118 ± 16 | 34 ± 2 | 149 ± 25 | 286 ± 32 | 19 ± 3 | |
Positive Control | ||||||
Dexon | 50.0 | 1866 ± 198 *** | 768 ± 70 *** | 816 ± 96 *** | ||
SA | 1.5 | 993 ± 116 *** | 556 ± 37 *** | |||
2-AF | 10.0 | 1554 ± 75 *** | 2099 ± 175 *** | 960 ± 105 *** | ||
DAN | 50.0 | 800 ± 86 *** | ||||
CP | 200.0 | 489 ± 10 *** |
Dose (μg/mL) | Chromosomal Aberration% (Without Gap) | Chromosomal Aberration (%) | Chromatid Aberration (%) | |||||
---|---|---|---|---|---|---|---|---|
Break | Exchange | Gap | Break | Exchange | Gap | |||
+S9/4 h | 0 | 0.11 ± 0.16 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.11 ± 0.16 | 0.00 ± 0.00 | 0.22 ± 0.16 |
1250 | 0.11 ± 0.16 | 0.00 ± 0.00 | 0.11 ± 0.16 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | |
2500 | 0.11 ± 0.16 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.11 ± 0.16 | 0.00 ± 0.00 | 0.11 ± 0.16 | |
5000 | 0.11 ± 0.16 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.11 ± 0.16 | 0.00 ± 0.00 | 0.56 ± 0.57 | |
CP | 11.11 ± 0.42 ** | 3.33 ± 1.19 | 1.56 ± 0.57 | 2.11 ± 1.03 | 4.56 ± 1.26 | 1.67 ± 0.54 | 5.33 ± 1.19 | |
−S9/4 h | 1250 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.11 ± 0.16 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.22 ± 0.31 |
2500 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.22 ± 0.16 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.11 ± 0.16 | |
5000 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | |
−S9/24 h | 0 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 |
1250 | 0.11 ± 0.16 | 0.11 ± 0.16 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.56 ± 0.16 | |
2500 | 0.22 ± 0.31 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.11 ± 0.16 | 0.22 ± 0.31 | 0.00 ± 0.00 | 0.22 ± 0.31 | |
5000 | 0.11 ± 0.16 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.11 ± 0.16 | 0.11 ± 0.16 | 0.00 ± 0.00 | 0.22 ± 0.16 | |
MMC | 14.11 ± 0.31 ** | 4.33 ± 1.19 | 1.56 ± 0.42 | 5.56 ± 1.85 | 6.11 ± 1.81 | 2.11 ± 0.16 | 2.78 ± 0.83 |
Groups | Dose | Sampling Point | PCE Number | MNPCE (%) | PCE/NCE | PCE/(PCE + NCE) |
---|---|---|---|---|---|---|
(mg/kg∙BW) | (h) | (Mean ± SD) | ||||
Male | ||||||
Solvent control | 0 | 24 | 2000 × 6 | 0.01 ± 0.02 | 1.24 ± 0.19 | 0.55 ± 0.04 |
48 | 2000 × 6 | 0.03 ± 0.04 | 1.23 ± 0.36 | 0.54 ± 0.05 | ||
Positive control (CP) | 80 | 48 | 2000 × 6 | 6.48 ± 0.87 ### | 0.38 ± 0.04 ## | 0.27 ± 0.02 ## |
AH | 1250 | 24 | 2000 × 6 | 0.08 ± 0.11 | 1.19 ± 0.26 | 0.54 ± 0.06 |
48 | 2000 × 6 | 0.02 ± 0.04 | 1.05 ± 0.19 | 0.51 ± 0.04 | ||
2500 | 24 | 2000 × 6 | 0.03 ± 0.06 | 1.20 ± 0.24 | 0.54 ± 0.05 | |
48 | 2000 × 6 | 0.09 ± 0.13 | 1.22 ± 0.13 | 0.54 ± 0.03 | ||
5000 | 24 | 2000 × 6 | 0.24 ± 0.11 * | 0.93 ± 0.26 | 0.46 ± 0.07 | |
48 | 2000 × 6 | 0.26 ± 0.13 # | 1.11 ± 0.17 | 0.52 ± 0.04 | ||
Female | ||||||
Solvent control | 0 | 24 | 2000 × 6 | 0.19 ± 0.40 | 1.21 ± 0.16 | 0.54 ± 0.03 |
48 | 2000 × 6 | 0.04 ± 0.05 | 1.27 ± 0.19 | 0.56 ± 0.04 | ||
Positive control (CP) | 80 | 48 | 2000 × 6 | 6.57 ± 0.72 ### | 0.39 ± 0.04 ## | 0.28 ± 0.02 ## |
AH | 1250 | 24 | 2000 × 6 | 0 | 1.07 ± 0.17 | 0.51 ± 0.04 |
48 | 2000 × 6 | 0.02 ± 0.04 | 1.20 ± 0.17 | 0.54 ± 0.05 | ||
2500 | 24 | 2000 × 6 | 0.03 ± 0.04 | 1.18 ± 0.24 | 0.54 ± 0.05 | |
48 | 2000 × 6 | 0.03 ± 0.04 | 1.13 ± 0.21 | 0.53 ± 0.05 | ||
5000 | 24 | 2000 × 6 | 0.10 ± 0.07 | 1.10 ± 0.29 | 0.52 ± 0.06 | |
48 | 2000 × 6 | 0.05 ± 0.05 | 1.09 ± 0.17 | 0.52 ± 0.04 |
Groups | Dose (mg/kg∙BW) | Sampling Point | Animals | Midterm Cells | Abnormalities Count | Chromatid | Chromosome | Fragment | Micronucleus | Chromosome Aberration (Including Gaps) | Chromosome Aberration (Excluding Gaps) | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Break | Gap | Break | Gap | ||||||||||
Negative control | 0 | 24 h | 6 | 1829 | 19 | 12 | 2 | 4 | 0 | 1 | 0 | 1.04 ± 0.25 | 0.93 ± 0.24 |
48 h | 6 | 1821 | 17 | 7 | 4 | 6 | 0 | 0 | 0 | 0.93 ± 0.32 | 0.71 ± 0.44 | ||
Positive control | 80 | 24 h | 6 | 1824 | 1036 | 512 | 149 | 275 | 48 | 56 | 17 | 56.80 ± 3.40 *** | 46.01 ± 3.33 *** |
AH | 1250 | 24 h | 6 | 1822 | 24 | 13 | 2 | 5 | 3 | 2 | 0 | 1.37 ± 0.37 | 1.09 ± 0.26 |
48 h | 6 | 1822 | 19 | 9 | 4 | 5 | 0 | 1 | 0 | 1.04 ± 0.39 | 0.82 ± 0.34 | ||
2500 | 24 h | 6 | 1811 | 14 | 4 | 4 | 4 | 0 | 2 | 0 | 0.77 ± 0.34 | 0.55 ± 0.27 | |
48 h | 6 | 1835 | 15 | 7 | 2 | 5 | 1 | 0 | 0 | 0.82 ± 0.17 | 0.65 ± 0.20 | ||
5000 | 24 h | 6 | 1888 | 22 | 4 | 3 | 8 | 0 | 5 | 0 | 1.17 ± 0.43 | 1.01 ± 0.37 | |
48 h | 6 | 1832 | 23 | 11 | 1 | 4 | 0 | 7 | 0 | 1.26 ± 0.37 | 1.21 ± 0.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, Y.; Liu, J.; Miao, Q.; Zhu, X.; Hua, W.; Zhang, N.; Huang, G.; Lin, X.; Mi, S.; Cheng, Y.; et al. Evaluation of the Genotoxicity of Almond Hull: Implications for Its Use as a Novel Food Ingredient. Foods 2024, 13, 1404. https://doi.org/10.3390/foods13091404
Yao Y, Liu J, Miao Q, Zhu X, Hua W, Zhang N, Huang G, Lin X, Mi S, Cheng Y, et al. Evaluation of the Genotoxicity of Almond Hull: Implications for Its Use as a Novel Food Ingredient. Foods. 2024; 13(9):1404. https://doi.org/10.3390/foods13091404
Chicago/Turabian StyleYao, Yuyang, Juer Liu, Qiming Miao, Xinyue Zhu, Wei Hua, Na Zhang, Guangwei Huang, Xiangyang Lin, Shengquan Mi, Yanling Cheng, and et al. 2024. "Evaluation of the Genotoxicity of Almond Hull: Implications for Its Use as a Novel Food Ingredient" Foods 13, no. 9: 1404. https://doi.org/10.3390/foods13091404