Microalgae Biomass Production from Rice Husk as Alternative Media Cultivation and Extraction of Phycocyanin Using 3D-Printed Ohmic Heating Reactor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pre-Inoculum and Growth Conditions
2.2. Rice Husk Extract as a Cultivation Medium
2.3. Experimental Setup for the Growth of S. platensis Using Rice Husk as a Culture Medium
2.4. Analytical Methods for the Characterization of Rice Husk Extract and S. platensis Biomass
2.4.1. Carbohydrate Determination in Rice Husk Extract
2.4.2. Fourier-Transform Infrared Spectroscopy (FTIR) for the Analysis of Rice Husk and Phycocyanin
2.4.3. Elemental Characterization by X-ray Fluorescence of Rice Husk
2.4.4. Characterization of the Rice Husk by HPLC
2.5. Determination of the Biomass Growth S. platensis
2.6. Determination of Protein Content in Microalgal Biomass
Determination of Phycocyanin Content
2.7. Design of Ohmic 3D Reactor for the Phycocyanin Extraction
2.8. Experimental Design to Optimize the Phycocyanin Extraction by Ohmic Heating
2.9. Statistical Analysis for the Evaluation of Rice Husk Extract as a Culture Medium
3. Results
3.1. Rice Husk and Phycocyanin Composition Analysis by FTIR
3.2. Ash Content and Elemental Composition of Rice Husk Extract by X-ray Fluorescence Spectrometry
3.3. Total Carbohydrates Present in Rice Husk Extract
3.4. Effect of the Concentrations of Rice Husk Extract on the Concentration of S. platensis Biomass
3.5. Effect of the Concentrations of Rice Husk Extract on the Growth Rate, Protein Content, and Phycocyanin Content of S. platensis
3.6. Central Composite Rotatable Design Model for the Optimization of Phycocyanin Extraction Using Ohmic Heating
3.7. Optimization of the Extraction of Phycocyanin Using Ohmic Heating
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sen, T.; Barrow, C.J.; Deshmukh, S.K. Microbial Pigments in the Food Industry—Challenges and the Way Forward. Front. Nutr. 2019, 6, 7. [Google Scholar] [CrossRef] [PubMed]
- Dilrukshi, P.G.T.; Munasinghe, H.; Silva, A.B.G.; De Silva, P.G.S.M. Identification of Synthetic Food Colours in Selected Confectioneries and Beverages in Jaffna District, Sri Lanka. J. Food Qual. 2019, 7453169. [Google Scholar] [CrossRef]
- Mota, I.G.C.; Neves, R.A.M.D.; Nascimento, S.S.D.C.; Maciel, B.L.L.; Morais, A.H.D.A.; Passos, T.S. Artificial Dyes: Health Risks and the Need for Revision of International Regulations. Food Rev. Int. 2023, 39, 1578–1593. [Google Scholar] [CrossRef]
- Martelli, G.; Folli, C.; Visai, L.; Daglia, M.; Ferrari, D. Thermal Stability Improvement of Blue Colorant C-Phycocyanin from Spirulina Platensis for Food Industry Applications. Process Biochem. 2014, 49, 154–159. [Google Scholar] [CrossRef]
- Roda-Serrat, M.C.; Christensen, K.V.; El-Houri, R.B.; Fretté, X.; Christensen, L.P. Fast Cleavage of Phycocyanobilin from Phycocyanin for Use in Food Colouring. Food Chem. 2018, 240, 655–661. [Google Scholar] [CrossRef] [PubMed]
- Chappell, G.A.; Britt, J.K.; Borghoff, S.J. Systematic Assessment of Mechanistic Data for FDA-Certified Food Colors and Neurodevelopmental Processes. Food Chem. Toxicol. 2020, 140, 111310. [Google Scholar] [CrossRef] [PubMed]
- Leuschner, R.G.K.; Robinson, T.P.; Hugas, M.; Cocconcelli, P.S.; Richard-Forget, F.; Klein, G.; Licht, T.R.; Nguyen-The, C.; Querol, A.; Richardson, M. Qualified Presumption of Safety (QPS): A Generic Risk Assessment Approach for Biological Agents Notified to the European Food Safety Authority (EFSA). Trends Food Sci. Technol. 2010, 21, 425–435. [Google Scholar] [CrossRef]
- Nabi, B.G.; Mukhtar, K.; Ahmed, W.; Manzoor, M.F.; Ranjha, M.M.A.N.; Kieliszek, M.; Bhat, Z.F.; Aadil, R.M. Natural Pigments: Anthocyanins, Carotenoids, Chlorophylls, and Betalains as Colorants in Food Products. Food Biosci. 2023, 52, 102403. [Google Scholar] [CrossRef]
- Di Salvo, E.; Lo Vecchio, G.; De Pasquale, R.; De Maria, L.; Tardugno, R.; Vadalà, R.; Cicero, N. Natural Pigments Production and Their Application in Food, Health and Other Industries. Nutrients 2023, 15, 1923. [Google Scholar] [CrossRef] [PubMed]
- Nwoba, E.G.; Ogbonna, C.N.; Ishika, T.; Vadiveloo, A. Microalgal Pigments: A Source of Natural Food Colors. In Microalgae Biotechnology for Food, Health and High Value Products; Springer: Berlin/Heidelberg, Germany, 2020; pp. 81–123. [Google Scholar]
- Prabakaran, G.; Sampathkumar, P.; Kavisri, M.; Moovendhan, M. Extraction and Characterization of Phycocyanin from Spirulina platensis and Evaluation of Its Anticancer, Antidiabetic and Antiinflammatory Effect. Int. J. Biol. Macromol. 2020, 153, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Yuan, B.; Li, Z.; Shan, H.; Dashnyam, B.; Xu, X.; McClements, D.J.; Zhang, B.; Tan, M.; Wang, Z.; Cao, C. A Review of Recent Strategies to Improve the Physical Stability of Phycocyanin. Curr. Res. Food Sci. 2022, 5, 2329–2337. [Google Scholar] [CrossRef] [PubMed]
- Imchen, T.; Singh, K.S. Marine Algae Colorants: Antioxidant, Anti-Diabetic Properties and Applications in Food Industry. Algal. Res. 2023, 69, 102898. [Google Scholar] [CrossRef]
- Hsieh-Lo, M.; Castillo, G.; Ochoa-Becerra, M.A.; Mojica, L. Phycocyanin and Phycoerythrin: Strategies to Improve Production Yield and Chemical Stability. Algal. Res. 2019, 42, 101600. [Google Scholar] [CrossRef]
- Ashaolu, T.J.; Samborska, K.; Lee, C.C.; Tomas, M.; Capanoglu, E.; Tarhan, Ö.; Taze, B.; Jafari, S.M. Phycocyanin, a Super Functional Ingredient from Algae; Properties, Purification Characterization, and Applications. Int. J. Biol. Macromol. 2021, 193, 2320–2331. [Google Scholar] [CrossRef] [PubMed]
- Gorgich, M.; Passos, M.L.C.; Mata, T.M.; Martins, A.A.; Saraiva, M.L.M.F.S.; Caetano, N.S. Enhancing Extraction and Purification of Phycocyanin from Arthrospira Sp. with Lower Energy Consumption. Energy Rep. 2020, 6, 312–318. [Google Scholar] [CrossRef]
- Ferreira-Santos, P.; Genisheva, Z.; Pereira, R.N.; Teixeira, J.A.; Rocha, C.M.R. Moderate Electric Fields as a Potential Tool for Sustainable Recovery of Phenolic Compounds from Pinus Pinaster Bark. ACS Sustain. Chem. Eng. 2019, 7, 8816–8826. [Google Scholar] [CrossRef]
- Pez Jaeschke, D.; Rocha Teixeira, I.; Marczak, D.F.; Domeneghini Mercali, G. Phycocyanin from Spirulina: A Review of Extraction Methods and Stability. Food Res. Int. 2021, 143, 110314. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.T.; Khong, N.M.H.; Khaw, Y.S.; Ahmad, S.A.; Yusoff, F.M. Optimization of the Freezing-Thawing Method for Extracting Phycobiliproteins from Arthrospira sp. Molecules 2020, 25, 3894. [Google Scholar] [CrossRef] [PubMed]
- Alkanan, Z.T.; Altemimi, A.B.; Al-Hilphy, A.R.S.; Watson, D.G.; Pratap-Singh, A. Ohmic Heating in the Food Industry: Developments in Concepts and Applications during 2013–2020. Appl. Sci. 2021, 11, 2507. [Google Scholar] [CrossRef]
- Patel, A.; Singh, M. Ohmic Heating for Food Products—A Review. Curr. Appl. Sci. Technol. 2018, 27, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Ramamoorthy, D.; Verma, D.K.; Kumar, A.; Kumar, N.; Kanak, K.R.; Marwein, B.M.; Mohan, K. Antioxidant and Phytonutrient Activities of Spirulina Platensis. Energy Nexus 2022, 6, 100070. [Google Scholar] [CrossRef]
- Khan, S.; Das, P.; Thaher, M.I.; Abdul Quadir, M.; Mahata, C.; Al Jabri, H. Utilization of Nitrogen-Rich Agricultural Waste Streams by Microalgae for the Production of Protein and Value-Added Compounds. Curr. Opin. Green Sustain. Chem. 2023, 41, 100797. [Google Scholar] [CrossRef]
- Nur, M.M.A.; Rahmawati, S.D.; Sari, I.W.; Achmad, Z.; Setyoningrum, T.M.; Jaya, D.; Murni, S.W.; Djarot, I.N. Enhancement of Phycocyanin and Carbohydrate Production from Spirulina platensis Growing on Tofu Wastewater by Employing Mixotrophic Cultivation Condition. Biocatal. Agric. Biotechnol. 2023, 47, 102600. [Google Scholar] [CrossRef]
- Girard, J.-M.; Roy, M.-L.; Hafsa, M.B.; Gagnon, J.; Faucheux, N.; Heitz, M.; Tremblay, R.; Deschênes, J.-S. Mixotrophic Cultivation of Green Microalgae Scenedesmus Obliquus on Cheese Whey Permeate for Biodiesel Production. Algal. Res. 2014, 5, 241–248. [Google Scholar] [CrossRef]
- Shanthi, G.; Premalatha, M.; Anantharaman, N. Potential Utilization of Fish Waste for the Sustainable Production of Microalgae Rich in Renewable Protein and Phycocyanin-Arthrospira platensis/Spirulina. J. Clean Prod. 2021, 294, 126106. [Google Scholar] [CrossRef]
- Lim, J.S.; Abdul Manan, Z.; Wan Alwi, S.R.; Hashim, H. A Review on Utilisation of Biomass from Rice Industry as a Source of Renewable Energy. Renew. Suste Energy Rev. 2012, 16, 3084–3094. [Google Scholar] [CrossRef]
- Goodman, B.A. Utilization of Waste Straw and Husks from Rice Production: A Review. J. Bioresour. Bioprod. 2020, 5, 143–162. [Google Scholar] [CrossRef]
- Badar, R.; Qureshi, S.A. Composted Rice Husk Improves the Growth and Biochemical Parameters of Sunflower Plants. J Bot. 2014, 2014, 427648. [Google Scholar] [CrossRef]
- Soltani, N.; Bahrami, A.; Pech-Canul, M.I.; González, L.A. Review on the Physicochemical Treatments of Rice Husk for Production of Advanced Materials. J. Chem. Eng. 2015, 264, 899–935. [Google Scholar] [CrossRef]
- Rosero-Chasoy, G.; Rodríguez-Jasso, R.M.; Aguilar, C.N.; Buitrón, G.; Chairez, I.; Ruiz, H.A. Hydrothermal Kinetic Modeling for Microalgae Biomass under Subcritical Condition Cultivated in a Close Bubble Tubular Photobioreactor. Fuel 2023, 334, 126585. [Google Scholar] [CrossRef]
- Wanyo, P.; Kaewseejan, N.; Meeso, N.; Siriamornpun, S. Bioactive Compounds and Antioxidant Properties of Different Solvent Extracts Derived from Thai Rice By-Products. Appl. Biol. Chem. 2016, 59, 373–384. [Google Scholar] [CrossRef]
- Darvehei, P.; Bahri, P.A.; Moheimani, N.R. Model Development for the Growth of Microalgae: A Review. Renew. Sustain. Energy Rev. 2018, 97, 233–258. [Google Scholar] [CrossRef]
- Vázquez-Vuelvas, O.F.; Chávez-Camacho, F.A.; Meza-Velázquez, J.A.; Mendez-Merino, E.; Ríos-Licea, M.M.; Contreras-Esquivel, J.C. A Comparative FTIR Study for Supplemented Agavin as Functional Food. Food Hydrocoll. 2020, 103, 105642. [Google Scholar] [CrossRef]
- García-García, J.D.; Anguiano-Cabello, J.C.; Arredondo-Valdés, R.; Candido del Toro, C.A.; Martínez-Hernández, J.L.; Segura-Ceniceros, E.P.; Govea-Salas, M.; González-Chávez, M.L.; Ramos-González, R.; Esparza-González, S.C. Phytochemical Characterization of Phoradendron Bollanum and Viscum album subs. austriacum as Mexican Mistletoe Plants with Antimicrobial Activity. Plants 2021, 10, 1299. [Google Scholar] [CrossRef] [PubMed]
- Shiva; Rodríguez-Jasso, R.M.; Rosero-Chasoy, G.; López-Sandin, I.; Morais, A.R.C.; Ruiz, H.A. Enzymatic Hydrolysis, Kinetic Modeling of Hemicellulose Fraction, and Energy Efficiency of Autohydrolysis Pretreatment Using Agave Bagasse. Bioenergy Res. 2023, 16, 75–87. [Google Scholar] [CrossRef]
- Rosero-Chasoy, G.; Rodríguez-Jasso, R.M.; Aguilar, C.N.; Buitrón, G.; Chairez, I.; Ruiz, H.A. Growth Kinetics and Quantification of Carbohydrate, Protein, Lipids, and Chlorophyll of Spirulina platensis under Aqueous Conditions Using Different Carbon and Nitrogen Sources. Bioresour. Technol. 2022, 346, 126456. [Google Scholar] [CrossRef] [PubMed]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. Renew. Sustain. Energy Rev. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Pagels, F.; Pereira, R.N.; Amaro, H.M.; Vasconcelos, V.; Guedes, A.C.; Vicente, A.A. Continuous Pressurized Extraction versus Electric Fields-Assisted Extraction of Cyanobacterial Pigments. J. Biotechnol. 2021, 334, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Ferreira-Santos, P.; Miranda, S.M.; Belo, I.; Spigno, G.; Teixeira, J.A.; Rocha, C.M.R. Sequential Multi-Stage Extraction of Biocompounds from Spirulina platensis: Combined Effect of Ohmic Heating and Enzymatic Treatment. Innov. Food Sci. Emerg. Technol. 2021, 71, 102707. [Google Scholar] [CrossRef]
- Kassama, L.S.; Shi, J.; Mittal, G.S. Optimization of Supercritical Fluid Extraction of Lycopene from Tomato Skin with Central Composite Rotatable Design Model. Sep. Purif. Technol. 2008, 60, 278–284. [Google Scholar] [CrossRef]
- Ganim, Z.; Chung, H.S.; Smith, A.W.; DeFlores, L.P.; Jones, K.C.; Tokmakoff, A. Amide I Two-Dimensional Infrared Spectroscopy of Proteins. Chem. Res. 2008, 41, 432–441. [Google Scholar] [CrossRef] [PubMed]
- Bhayani, K.; Mitra, M.; Ghosh, T.; Mishra, S. C-Phycocyanin as a Potential Biosensor for Heavy Metals like Hg 2+ in Aquatic Systems. RSC Adv. 2016, 6, 111599–111605. [Google Scholar] [CrossRef]
- Brasil, B.D.S.A.F.; de Siqueira, F.G.; Salum, T.F.C.; Zanette, C.M.; Spier, M.R. Microalgae and Cyanobacteria as Enzyme Biofactories. Algal Res. 2017, 25, 76–89. [Google Scholar] [CrossRef]
- Chen, T.; Zheng, W.; Wong, Y.-S.; Yang, F.; Bai, Y. Accumulation of Selenium in Mixotrophic Culture of Spirulina platensis on Glucose. Bioresour. Technol. 2006, 97, 2260–2265. [Google Scholar] [CrossRef] [PubMed]
- Chittapun, S.; Jonjaroen, V.; Khumrangsee, K.; Charoenrat, T. C-Phycocyanin Extraction from Two Freshwater Cyanobacteria by Freeze Thaw and Pulsed Electric Field Techniques to Improve Extraction Efficiency and Purity. Algal. Res. 2020, 46, 101789. [Google Scholar] [CrossRef]
- Pereira, R.N.; Rodrigues, R.M.; Ramos, Ó.L.; Malcata, X.; Teixeira, J.A.; Vicente, A.A. Production of Whey Protein-Based Aggregates Under Ohmic Heating. Food Biop. Technol. 2015, 9, 576–587. [Google Scholar] [CrossRef]
- Ogbuefi, P.S.; Nwaokafor, P.; Njoku, I.J.; Uzuegbunam, O.J. Elemental Characterization of Rice Husk Ash from Local Rice Species in South Eastern Nigeria. Chem. Afr. 2020, 3, 1081–1085. [Google Scholar] [CrossRef]
- Stunda-Zujeva, A. Review of Spirulina/Arthrospira. Growth Medium Modifications. Key Eng. Mater. 2020, 850, 153–158. [Google Scholar] [CrossRef]
- Ferreira-Santos, P.; Nunes, R.; De Biasio, F.; Spigno, G.; Gorgoglione, D.; Teixeira, J.A.; Rocha, C.M.R. Influence of Thermal and Electrical Effects of Ohmic Heating on C-Phycocyanin Properties and Biocompounds Recovery from Spirulina platensis. Lebensm.-Wiss. Technol. 2020, 128, 109491. [Google Scholar] [CrossRef]
Treatments | Rice Husk Extract */Medium (%, v/v) | Distilled Water (%, v/v) |
---|---|---|
T1 | 0 | 100 |
T2 | 10 | 90 |
T3 | 20 | 80 |
T4 | 40 | 60 |
T5 | 80 | 20 |
T6 | 100 | 0 |
T7 (blank) | Zarrouk | NA |
Variables | Symbols | −1.68 (α) | −1 | 0 | +1 | 1.68 (α) |
---|---|---|---|---|---|---|
Temperature (°C) | X1 | 29.77 | 40 | 55 | 70 | 80.23 |
Time (min) | X2 | 1.59 | 50 | 10 | 15 | 18.41 |
pH | X3 | 5.66 | 6 | 6.5 | 7 | 7.34 |
Treatments/Rice Husk (%) | Specific Growth Rate µ (h−1) | Protein Content (mg/g) | Phycocyanin Content (mg/g) |
---|---|---|---|
T1 Zarrouk | 0.109 ± 0.003 c | 608.940 ± 12.720 b | 25.25 ± 2.600 ab |
T2 R.H 10 | 0.107 ± 0.002 e | 499.000± 24.030 c | 31.46 ± 0.750 a |
T3 R.H 20 | 0.115 ± 0.001 b | 544.550± 22.690 c | 29.31 ± 0.240 a |
T4 R.H 40 | 0.125 ± 0.000 a | 672.270 ± 0.260 a | 28.47 ± 3.040 a |
T5 R.H 80 | 0.108 ± 0.002 d | 502.330 ± 8.810 c | 21.55 ± 1.890 bc |
T6 R.H 100 | 0.099 ± 0.002 f | 591.220 ± 17.100 b | 23.24 ± 0.260 c |
T7 Water * | 0.055 ± 0.038 g | 326.770 ± 17.100 d | 19.83 ± 6.380 ab |
Run | X1 | X2 | X3 | Phycocyanin (mg/g) |
---|---|---|---|---|
1 | 0 | 0 | 0 | 64.70 |
2 | 0 | 0 | −1.68 | 33.70 |
3 | −1 | −1 | 1 | 39.80 |
4 | −1.68 | 0 | 0 | 44.20 |
5 | 0 | 0 | 0 | 68.40 |
6 | 1.68 | 0 | 0 | 7.90 |
7 | −1 | −1 | −1 | 24.30 |
8 | −1 | 1 | 1 | 43.10 |
9 | 1 | −1 | −1 | 7.70 |
10 | −1 | 1 | −1 | 20.80 |
11 | 0 | 0 | 0 | 52.50 |
12 | 0 | −1.68 | 0 | 55.00 |
13 | 1 | −1 | 1 | 12.30 |
14 | 1 | 1 | −1 | 12.00 |
15 | 1 | 1 | 1 | 7.80 |
16 | 0 | 0 | 1.68 | 8.00 |
17 | 0 | 0 | 0 | 52.15 |
18 | 0 | 1.68 | 0 | 15.20 |
Source | Estimated | Stnd. Err | tStat | p-Value |
---|---|---|---|---|
b1 | 59.700 | 6.257 | 9.541 | 0.000 |
b2 | −21.915 | 6.826 | −3.210 | 0.012 |
b3 | −9.741 | 6.938 | −1.403 | 0.197 |
b4 | −28.787 | 7.041 | −4.088 | 0.003 |
b5 | −25.494 | 7.134 | −3.573 | 0.007 |
b6 | −20.710 | 7.617 | −2.718 | 0.02 |
b7 | −0.724 | 6.803 | −0.106 | 0.917 |
b8 | 0.016 | 8.885 | 0.001 | 0.99 |
b9 | −9.344 | 8.885 | −1.05 | 0.323 |
b10 | −0.513 | 8.885 | −0.057 | 0.955 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cid-Ibarra, G.; Rodríguez-Jasso, R.M.; Rosero-Chasoy, G.; Belmares, R.; Carlos Contreras-Esquivel, J.; Machado-Cepeda, S.; Cabello-Galindo, A.; Ruiz, H.A. Microalgae Biomass Production from Rice Husk as Alternative Media Cultivation and Extraction of Phycocyanin Using 3D-Printed Ohmic Heating Reactor. Foods 2024, 13, 1421. https://doi.org/10.3390/foods13091421
Cid-Ibarra G, Rodríguez-Jasso RM, Rosero-Chasoy G, Belmares R, Carlos Contreras-Esquivel J, Machado-Cepeda S, Cabello-Galindo A, Ruiz HA. Microalgae Biomass Production from Rice Husk as Alternative Media Cultivation and Extraction of Phycocyanin Using 3D-Printed Ohmic Heating Reactor. Foods. 2024; 13(9):1421. https://doi.org/10.3390/foods13091421
Chicago/Turabian StyleCid-Ibarra, Gabriela, Rosa M. Rodríguez-Jasso, Gilver Rosero-Chasoy, Ruth Belmares, Juan Carlos Contreras-Esquivel, Samanta Machado-Cepeda, Alejandra Cabello-Galindo, and Héctor A. Ruiz. 2024. "Microalgae Biomass Production from Rice Husk as Alternative Media Cultivation and Extraction of Phycocyanin Using 3D-Printed Ohmic Heating Reactor" Foods 13, no. 9: 1421. https://doi.org/10.3390/foods13091421