Modified Atmosphere Systems and Shelf Life Extension of Fish and Fishery Products
Abstract
:1. Introduction
2. Modified Atmosphere Systems
3. Solubility of CO2 in Fish and Fishery Products
4. Preservation Effect of CO2 in Fish and Fishery Products
5. Quality of Raw Material for Modified Atmosphere Applications
- Fish should be bled promptly, and eviscerated as soon as possible [23];
- Fish should be promptly chilled and maintained at a temperature approaching that of melting ice from time of slaughter to processing [59];
- Appearance of the eyes, gills and skin should be evaluated to conform with high quality attributes as described in methods for sensory evaluation of fish and fishery products such as the Torry Fish Quality Assessment System [60,61], the Quality Index Method [62] among others [54,63]. Other important characteristics are:
- Fish should have firm to normal texture (not soft) and odor notes typical of fresh fish (ocean-breeze, briny, cantaloupe, melon and cucumber notes) should be present;
- For fillets, flesh color should be uniform at the typical color range for the species;
- Fillets should have little to no gaping.
- For headed and gutted fish, it is important the kidney is thoroughly removed and that the belly cavity is free of any blood, viscera and debris, and without noticeable structural damage to belly cavity membrane;
- For descaled fish, the descaling process should be conducted using a method that does not cause excessive flesh softening and subsequent muscle gaping;
- The removal of pin bones from fillets, when applicable, should be carried out using either a manual or mechanical method that does not cause excessive muscle tearing, which could result in gaping;
- The initial microbiological load in fresh fish from capture fisheries varies widely with values that may exceed 5 Log10 cfu/g, depending on onboard sanitation and handling practices [64]. The importance of a low bacterial load, preferably at the range of 2 to 3 Log10 cfu/g, has been identified as key factor for maximizing the shelf life extension of seafood packaged in MA systems [41,65,66,67].
- Processing fresh high quality product under hygienically good conditions [65,66] must be underscored because finished products with high microbial load (e.g., 5–6 Log10 cfu/g) are not likely to benefit from MAP. As stated by Farber over two decades ago, there is no enhancement of product quality because MAP simply arrests the natural deterioration process [1].
- It may be desirable to subject the finished product to a final sanitation step prior to MAP. Sanitation of finished product may consist, among others, of application of aqueous ozone, electrolyzed water, aqueous solution of peroxyacetic acid or sodium hypochlorite, and the sanitizer choice will depend on local regulatory requirements and the achievable reduction of surface bacteria by the selected treatment and mode of application.
6. Effect of Processing and Storage Temperatures
7. Microbiological Considerations
8. Additives and Shelf Life Extension
9. Physicochemical and Organoleptic Considerations
10. The Future of MA Systems
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
AO | Antioxidant |
MA | Modified Atmosphere |
MAP | Modified Atmosphere Packaging |
CAP | Controlled Atmosphere Packaging |
DF | Degree of Filling |
SSOs | Specific Spoilage Organisms |
G:P | gas:product ratio |
C | Controlled |
M | Modified |
CHI | Chitosan |
SC | Superchill |
EO | Essential Oil |
OTR | Oxygen Transmission Rate |
PVC | Polyvinyl chloride |
QIM | Quality Index method |
TVB-N | Total Volatile Basic Nitrogen |
TMA | Trimethylamine |
TMAO | Trimethylamine Oxide |
TVC | Total Viable Counts |
TBA | Thiobarbituric Acid Values |
TBARS | Thiobarbituric Acid Reactive Substances |
References
- Farber, J.M. Microbiological aspects of modified-atmosphere packaging technology—A review. J. Food Prot. 1991, 54, 58–70. [Google Scholar]
- Food and Agriculture Organization (FAO). Post-harvest Changes in Fish. 2015. Available online: http://www.fao.org/fishery/topic/12320/en (accessed on 22 March 2016).
- Alfaro, B.; Hernández, I.; Baliño-Zuazo, L.; Barranco, A. Quality changes of Atlantic horse mackerel fillets (Trachurus trachurus) packed in a modified atmosphere at different storage temperatures. J. Sci. Food Agric. 2013, 93, 2179–2187. [Google Scholar] [CrossRef] [PubMed]
- Alfaro, B.; Hernández, I.; Le Marc, Y.; Pin, C. Modelling the effect of the temperature and carbon dioxide on the growth of spoilage bacteria in packed fish products. Food Control 2013, 29, 429–437. [Google Scholar] [CrossRef]
- Sivertsvik, M.; Jeksrud, W.K.; Rosnes, J.T. A review of modified atmosphere packaging of fish and fishery products—Significance of microbial growth, activities and safety. Int. J. Food Sci. Technol. 2002, 37, 107–127. [Google Scholar] [CrossRef]
- Wang, T.; Sveinsdóttir, K.; Magnússon, H.; Martinsdóttir, E. Combined application of modified atmosphere packaging and superchilled storage to extend the shelf life of fresh cod (Gadus morhua) loins. J. Food Sci. 2008, 73, S11–S19. [Google Scholar] [CrossRef] [PubMed]
- Lauzon, H.L.; Magnússon, H.; Sveinsdóttir, K.; Gudjónsdóttir, M.; Martinsdóttir, E. Effect of brining, modified atmosphere packaging, and superchilling on the shelf life of cod (Gadus morhua) loins. J. Food Sci. 2009, 74, M258–M267. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.L.; Lu, F.; Xu, X.B.; Ding, Y.T. Super-chilling maintains freshness of modified atmosphere-packaged Lateolabrax japonicus. Int. J. Food Sci. Technol. 2010, 45, 1932–1938. [Google Scholar] [CrossRef]
- Powell, S.M.; Ratkowsky, D.A.; Tamplin, M.L. Predictive model for the growth of spoilage bacteria on modified atmosphere packaged Atlantic salmon produced in Australia. Food Microbiol. 2015, 47, 111–115. [Google Scholar] [CrossRef] [PubMed]
- McMillin, K.W. Where is MAP going? A review and future potential of modified atmosphere packaging for meat. Meat Sci. 2008, 80, 43–65. [Google Scholar] [CrossRef] [PubMed]
- Arvanitoyannis, I.S.; Stratakos, A.C. Application of modified atmosphere packaging and active/smart technologies to red meat and poultry: A review. Food Bioprocess Technol. 2012, 5, 1423–1446. [Google Scholar] [CrossRef]
- Alonso, V.; Provincial, L.; Gil, M.; Guillén, E.; Roncalés, P.; Beltrán, J.A. The impact of short-term feeding of magnesium supplements on the quality of pork packaged in modified atmosphere. Meat Sci. 2012, 90, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization (FAO). Processing Parameters Needed to Control Pathogens in Cold Smoked Fish. Chapter III. Potential Hazards in Cold-Smoked Fish: Clostridium botulinum Type E. 2016. Available online: http://www.fda.gov/Food/FoodScienceResearch/SafePracticesforFoodProcesses/ucm099239.htm (accessed on 22 March 2016). [Google Scholar]
- Stammen, K.; Gerdes, D.; Caporaso, F.; Martin, R.E. Modified atmosphere packaging of seafood. Crit. Rev. Food Sci. Nutr. 1990, 29, 301–331. [Google Scholar] [CrossRef] [PubMed]
- Gopal, T.K.S.; Ravishankar, C.N. Modified Atmosphere Packaging of Fish—A Review. Fish. Technol. 2005, 42, 138–144. [Google Scholar]
- Kropf, D.H.; Mancini, R.A. Packaging: Modified and controlled atmosphere. In Encyclopedia of Meat Sciences, 2nd ed.; Dikeman, M., Devine, C., Eds.; Elsevier Academic Press: New York, NY, USA, 2014; Volume III, pp. 9–12. [Google Scholar]
- Torrieri, E.; Cavella, S.; Villani, F.; Masi, P. Influence of modified atmosphere packaging on the chilled shelf life of gutted farmed bass (Dicentrarchus labrax). J. Food Eng. 2006, 77, 1078–1086. [Google Scholar] [CrossRef]
- Torrieri, E.; Carlino, P.A.; Cavella, S.; Fogliano, V.; Attianese, I.; Buonocore, G.G.; Masi, P. Effect of modified atmosphere and active packaging on the shelf-life of fresh bluefin tuna fillets. J. Food Eng. 2011, 105, 429–435. [Google Scholar] [CrossRef]
- Tsironi, T.; Tsevdou, M.; Velliou, E.; Taoukis, P. Modelling the effect of temperature and CO2 on microbial spoilage of chilled gilthead seabream fillets. In Proceedings of the IV International Symposium on Applications of Modelling as an Innovative Technology in the Agri-Food-Chain: Model-IT 802, Madrid, Spain, 9–11 June 2008; pp. 345–350.
- Davis, H.K. Fish and shellfish. In Principles and Applications of Modified Atmosphere Packaging of Foods, 2nd ed.; Blackistone, B.A., Ed.; Blackie Academic and Professional: London, UK, 2009; pp. 194–239. [Google Scholar]
- Sivertsvik, M. The optimized modified atmosphere for packaging of pre-rigor filleted farmed cod (Gadus morhua) is 63 mL/100 mL oxygen and 37 mL/100 mL carbon dioxide. LWT-Food Sci. Technol. 2007, 40, 430–438. [Google Scholar] [CrossRef]
- Bøknæs, N.; Ǿsterberg, C.; Nielsen, J.; Dalgaard, P. Influence of freshness and frozen storage temperature on quality of thawed cod fillets stored in modified atmosphere packaging. LWT-Food Sci. Technol. 2000, 33, 244–248. [Google Scholar] [CrossRef]
- Himelbloom, B.H.; Oliveira, A.C.M.; Chantarachoti, J.; Crapo, C.A. Ethanol development in tissues of spoiling whole pink salmon (Oncorhynchus gorbuscha). J. Food Qual. 2013, 36, 263–268. [Google Scholar] [CrossRef]
- Hansen, A.A.; Rødbotten, M.; Eie, T.; Lea, P.; Rudi, K.; Mørkøre, T. The effect of crowding stress on bacterial growth and sensory properties of chilled Atlantic salmon fillets. J. Food Sci. 2012, 77, S84–S90. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, G.C.; Summers, G.; Corrigan, V.K.; Johanson, M.R.; Hedderley, D. Optimizing gas mixtures for modified atmosphere packaging of fresh king salmon (Oncorhynchus tshawytscha). J. Aquat. Food Prod. Technol. 2004, 13, 5–28. [Google Scholar] [CrossRef]
- Poli, B.M.; Messini, A.; Parisi, G.; Scappini, F.; Vigiani, V.; Giorgi, G.; Vincenzini, M. Sensory, physical, chemical and microbiological changes in European sea bass (Dicentrarchus labrax) fillets packed under modified atmosphere/air or prepared from whole fish stored in ice. Int. J. Food Sci. Technol. 2006, 41, 444–454. [Google Scholar] [CrossRef]
- Randell, K.; Hattula, T.; Skyttä, E.; Sivertsvik, M.; Bergslien, H.; Ahvenainen, R. Quality of filleted salmon in various retail packages. J. Food Qual. 1999, 22, 483–497. [Google Scholar] [CrossRef]
- Soccol, M.C.H.; Oetterer, M.; Gallo, C.R.; Spoto, M.H.F.; Biato, D.O. Effects of modified atmosphere and vacuum on the shelf life of tilapia (Oreochromis niloticus) fillets. Braz. J. Food Technol. 2005, 8, 7–15. [Google Scholar]
- Chen, G.; Guttmann, R.P.; Xiong, Y.L.; Webster, C.D.; Romaire, R.P. Protease activity in post-mortem red swamp crayfish (Procambarus clarkii) muscle stored in modified atmosphere packaging. J. Agric. Food Chem. 2008, 56, 8658–8663. [Google Scholar] [CrossRef] [PubMed]
- Magnússon, H.; Sveinsdóttir, K.; Lauzon, H.L.; Thorkelsdóttir, Á.; Martinsdóttir, E. Keeping quality of desalted cod fillets in consumer packs. J. Food Sci. 2006, 71, M69–M76. [Google Scholar] [CrossRef]
- Noseda, B.; Goethals, J.; De Smedt, L.; Dewulf, J.; Samapundo, S.; Van Langenhove, H.; Devlieghere, F. Effect of O2:CO2 enriched atmospheres on microbiological growth and volatile metabolite production in packaged cooked peeled gray shrimp (Crangon crangon). Intl. J. Food Microbiol. 2012, 160, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Özogul, F.; Polat, A.; Özogul, Y. The effects of modified atmosphere packaging and vacuum packaging on chemical, sensory and microbiological changes of sardines (Sardina pilchardus). Food Chem. 2004, 85, 49–57. [Google Scholar] [CrossRef]
- Provincial, L.; Gil, M.; Guillén, E.; Alonso, V.; Roncalés, P.; Beltrán, J.A. Effect of modified atmosphere packaging using different CO2 and N2 combinations on physical, chemical, microbiological and sensory changes of fresh sea bass (Dicentrarchus labrax) fillets. Int. J. Food Sci. Technol. 2010, 45, 1828–1836. [Google Scholar] [CrossRef]
- Rodrigues, B.L.; da Silveira Alvares, T.; Sampaio, G.S.L.; Cabral, C.C.; Araujo, J.V.A.; Franco, R.M.; Junior, C.A.C. Influence of vacuum and modified atmosphere packaging in combination with UV-C radiation on the shelf life of rainbow trout (Oncorhynchus mykiss) fillets. Food Control 2016, 60, 596–605. [Google Scholar] [CrossRef]
- Slattery, S.L.; Palmer, P.J. Modified atmosphere packaging (MAP) for control of black spot formation in chilled prawns. J. Aquat. Food Prod. Technol. 2014, 23, 475–488. [Google Scholar] [CrossRef]
- Blackistone, B. Principles and applications of MAP of foods. In Principles and Applications of Modified Atmosphere Packaging of Foods, 2nd ed.; Blackistone, B.A., Ed.; Blackie Academic and Professional: London, UK, 2009; pp. 1–13. [Google Scholar]
- Ruiz-Capillas, C.; Moral, A. Residual effect of CO2 on hake (Merluccius merluccius L.) stored in modified and controlled atmospheres. Eur. Food Res. Technol. 2001, 212, 413–420. [Google Scholar] [CrossRef]
- Alfaro, B.; Hernandez, I. Evolution of the indigenous microbiota in modified atmosphere packaged Atlantic horse mackerel (Trachurus trachurus) identified by conventional and molecular methods. Int. J. Food Microbiol. 2013, 167, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Fernández, K.; Aspé, E.; Roeckel, M. Shelf-life extension on fillets of Atlantic salmon (Salmo salar) using natural additives, superchilling and modified atmosphere packaging. Food Control 2009, 20, 1036–1042. [Google Scholar] [CrossRef]
- Hansen, A.Å.; Mørkøre, T.; Rudi, K.; Langsrud, Ø.; Eie, T. The combined effect of superchilling and modified atmosphere packaging using CO2 emitter on quality during chilled storage of pre-rigor salmon fillets (Salmo salar). J. Sci. Food Agric. 2009, 89, 1625–1633. [Google Scholar] [CrossRef]
- Messina, C.M.; Bono, G.; Renda, G.; La Barbera, L.; Santulli, A. Effect of natural antioxidants and modified atmosphere packaging in preventing lipid oxidation and increasing the shelf-life of common dolphinfish (Coryphaena hippurus) fillets. LWT-Food Sci. Technol. 2015, 62, 271–277. [Google Scholar] [CrossRef]
- Yesudhason, P.; Gopal, T.K.S.; Ravishankar, C.N.; Lalitha, K.V.; Kumar, K.N.A. Effect of modified atmosphere packaging on chemical, textural, microbiological and sensory quality of seer fish (Scomberomorus commerson) steaks packaged in thermoformed trays at 0–2 °C. J. Food Proc. Preserv. 2009, 33, 777–797. [Google Scholar] [CrossRef]
- Kolbe, H.B. Antiseptische eigenschaften der kohlensäure. J. Prakt. Chem. 1882, 26, 249–255. [Google Scholar] [CrossRef]
- Knoche, W. Chemical reactions of CO2 in water. In Biophysics and Physiology of Carbon Dioxide; Springer Berlin Heidelberg: Berlin, Germany, 1980; pp. 3–11. [Google Scholar]
- Sivertsvik, M.; Jeksrud, W.K.; Vågane, Å.; Rosnes, J.T. Solubility and absorption rate of carbon dioxide into non-respiring foods: Part 1: Development and validation of experimental apparatus using a manometric method. J. Food Eng. 2004, 61, 449–458. [Google Scholar] [CrossRef]
- Sivertsvik, M.; Jensen, J.S. Solubility and absorption rate of carbon dioxide into non-respiring foods. Part 3: Cooked meat products. J. Food Eng. 2005, 70, 499–505. [Google Scholar] [CrossRef]
- Sivertsvik, M.; Rosnes, J.T.; Jeksrud, W.K. Solubility and absorption rate of carbon dioxide into non-respiring foods: Part 2: Raw fish fillets. J. Food Eng. 2004, 63, 451–458. [Google Scholar] [CrossRef]
- Rotabakk, B.T.; Lekang, O.I.; Sivertsvik, M. Volumetric method to determine carbon dioxide solubility and absorption rate in foods packaged in flexible or semi rigid package. J. Food Eng. 2007, 82, 43–50. [Google Scholar] [CrossRef]
- Dalgaard, P.; Gram, L.; Huss, H.H. Spoilage and shelf-life of cod fillets packed in vacuum or modified atmospheres. Int. J. Food Microbiol. 1993, 19, 283–294. [Google Scholar] [CrossRef]
- González-Rodrı́guez, M.A.-N.; Sanz, J.-J.; Santos, J.-Á.; Otero, A.; Garcı́a-López, M.A.-L. Numbers and types of microorganisms in vacuum-packed cold-smoked freshwater fish at the retail level. Int. J. Food Microbiol. 2002, 77, 161–168. [Google Scholar] [CrossRef]
- Powell, S.M.; Tamplin, M.L. Microbial communities on Australian modified atmosphere packaged Atlantic salmon. Food Microbiol. 2012, 30, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Macé, S.; Cardinal, M.; Jaffrès, E.; Cornet, J.; Lalanne, V.; Chevalier, F.; Pilet, M.-F.; Dousset, X.; Joffraud, J.J. Evaluation of the spoilage potential of bacteria isolated from spoiled cooked whole tropical shrimp (Penaeus vannamei) stored under modified atmosphere packaging. Food Microbiol. 2014, 40, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Chaix, E.; Couvert, O.; Guillaume, C.; Gontard, N.; Guillard, V. Predictive microbiology coupled with gas (O2/CO2) transfer in food/packaging systems: How to develop an efficient decision support tool for food packaging dimensioning. Comp. Rev. Food Sci. Food Saf. 2015, 14, 1–21. [Google Scholar] [CrossRef]
- Huss, H. Quality and Quality Changes in Fresh Fish; FAO Fisheries Technical Paper 348; FAO: Rome, Italy, 1995. [Google Scholar]
- Nielsen, J.; Hyldig, G.; Larsen, E. ‘Eating Quality’ of Fish—A Review. J. Aquat. Food Prod. Technol. 2002, 11, 125–141. [Google Scholar] [CrossRef]
- Botta, J.R. Sensory evaluation: Freshness quality grading. In Evaluation of Seafood Freshness and Quality; Botta, J.R., Ed.; VHC Publishers, Inc.: New York, NY, USA, 1995; pp. 67–97. [Google Scholar]
- Olafsdóttir, G.; Martinsdóttir, E.; Oehlenschläger, J.; Dalgaard, P.; Jensen, B.; Undeland, I.; Nilsen, H. Methods to evaluate fish freshness in research and industry. Trend. Food Sci. Technol. 1997, 8, 258–265. [Google Scholar] [CrossRef]
- Sveinsdóttir, K.; Martinsdóttir, E.; Thorsdóttir, F.; Schelvis, R.; Kole, A.; Thorsdóttir, I. Evaluation of farmed cod products by a trained sensory panel and consumers in different test settings. J. Sens. Stud. 2010, 25, 280–293. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Scientific and technical assistance on the evaluation of the temperature to be applied to pre-packed fishery products at retail level. EFSA J. 2015, 13, 1–48. [Google Scholar]
- Howgate, P.; Johnston, A.; Whittle, K.J. Multilingual Guide to EC Freshness Grades for Fishery Products; Torry Research Station: Aberdeen, UK, 1992. [Google Scholar]
- Sea Fish Industry Authority (SFIA). Fish Purchase Specifications. 1984. Available online: http://www.seafish.org/media/Publications/specifications_for_the_purchase_of_fish_revised_03.pdf (accessed on 23 March 2016).
- QIM Eurofish. Available online: http://www.qim-eurofish.com (accessed on 22 March 2016).
- Howgate, P. A history of the development of sensory methods for the evaluation of freshness of fish. J. Aquat. Food Prod. Technol. 2015, 24, 516–532. [Google Scholar] [CrossRef]
- Svanevik, C.S.; Roiha, I.S.; Levsen, A.; Lunestad, B.T. Microbiological assessment along the fish production chain of the Norwegian pelagic fisheries sector—Results from a spot sampling programme. Food Microbiol. 2015, 51, 144–153. [Google Scholar] [CrossRef] [PubMed]
- Sivertsvik, M.; Rosnes, J.T.; Kleiberg, G.H. Effect of modified atmosphere packaging and superchilled storage on the microbial and sensory quality of Atlantic salmon (Salmo salar) fillets. J. Food Sci. 2003, 68, 451–458. [Google Scholar] [CrossRef]
- Hansen, A.Å.; Mørkøre, T.; Rudi, K.; Olsen, E.; Eie, T. Quality changes during refrigerated storage of MA-packaged pre-rigor fillets of farmed Atlantic cod (Gadus morhua L.) using traditional MAP, CO2 emitter, and vacuum. J. Food Sci. 2007, 72, M423–M430. [Google Scholar] [CrossRef] [PubMed]
- Milne, D.; Powell, S.M. Limited microbial growth in Atlantic salmon packed in a modified atmosphere. Food Control 2014, 42, 29–33. [Google Scholar] [CrossRef]
- Mørkøre, T.; Tahirovic, V.; Einen, O. Impact of starvation and handling stress on rigor development and quality of Atlantic salmon (Salmon salar L.). Aquaculture 2008, 277, 231–238. [Google Scholar] [CrossRef]
- Kaale, L.D.; Eikevik, T.M. The development of ice crystals in food products during the superchilling process and following storage, a review. Trends Food Sci. Technol. 2014, 39, 91–103. [Google Scholar] [CrossRef]
- Duun, A.S.; Rustad, T. Quality changes during superchilled storage of cod (Gadus morhua) fillets. Food Chem. 2007, 105, 1067–1075. [Google Scholar] [CrossRef]
- Yassoralipour, A.; Bakar, J.; Rahman, R.A.; Bakar, F.A. Biogenic amines formation in barramundi (Lates calcarifer) fillets at 8 °C kept in modified atmosphere packaging with varied CO2 concentration. LWT-Food Sci. Technol. 2012, 48, 142–146. [Google Scholar] [CrossRef]
- Caglak, E.; Cakli, S.; Kilinc, B. Effect of modified atmosphere packaging on quality and shelf life of salted bonito (Sarda sarda). J. Aquat. Food Prod. Technol. 2012, 21, 206–221. [Google Scholar] [CrossRef]
- Hudecová, K.; Buchtová, H.; Steinhauserová, I. Effects of modified atmosphere packaging on the microbiological properties of fresh common carp (Cyprinus carpio L.). Acta Vet. Brno 2010, 79, 93–100. [Google Scholar] [CrossRef]
- Bøknæs, N.; Østerberg, C.; Sørensen, R.; Nielsen, J.; Dalgaard, P. Effects of technological parameters and fishing ground on quality attributes of thawed, chilled cod fillets stored in modified atmosphere packaging. LWT-Food Sci. Technol. 2001, 34, 513–520. [Google Scholar] [CrossRef]
- Bøknæs, N.; Jensen, K.N.; Guldager, H.S.; Østerberg, C.; Nielsen, J.; Dalgaard, P. Thawed chilled Barents Sea cod fillets in modified atmosphere packaging-application of multivariate data analysis to select key parameters in good manufacturing practice. LWT-Food Sci. Technol. 2002, 35, 436–443. [Google Scholar] [CrossRef]
- Hovda, M.B.; Lunestad, B.T.; Sivertsvik, M.; Rosnes, J.T. Characterization of the bacterial flora of modified atmosphere packaged farmed Atlantic cod (Gadus morhua) by PCR-DGGE of conserved 16S rRNA gene regions. Int. J. Food Microbiol. 2007, 117, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Gudjónsdóttir, M.; Lauzon, H.L.; Magnússon, H.; Sveinsdóttir, K.; Arason, S.; Martinsdóttir, E.; Rustad, T. Low field nuclear magnetic resonance on the effect of salt and modified atmosphere packaging on cod (Gadus morhua) during superchilled storage. Food Res. Int. 2011, 44, 241–249. [Google Scholar] [CrossRef]
- Hansen, A.Å.; Rødbotten, M.; Lea, P.; Rotabakk, B.T.; Birkeland, S.; Pettersen, M.K. Effect of transport packaging and repackaging into modified atmosphere on shelf life and quality of thawed Atlantic cod loins. Packag. Technol. Sci. 2015, 28, 925–938. [Google Scholar] [CrossRef]
- Chen, G.; Xiong, Y.L. Shelf-stability enhancement of precooked red claw crayfish (Cherax quadricarinatus) tails by modified CO2/O2/N2 gas packaging. LWT-Food Sci. Technol. 2008, 41, 1431–1436. [Google Scholar] [CrossRef]
- Arritt, F.M.; Eifert, J.D.; Jahncke, M.L.; Pierson, M.D.; Williams, R.C. Effects of modified atmosphere packaging on toxin production by Clostridium botulinum in raw aquacultured summer flounder fillets (Paralichthys dentatus). J. Food Prot. 2007, 70, 1159–1164. [Google Scholar] [PubMed]
- Hovda, M.B.; Sivertsvik, M.; Lunestad, B.T.; Lorentzen, G.; Rosnes, J.T. Characterization of the dominant bacterial population in modified atmosphere packaged farmed halibut (Hippoglossus hippoglossus) based on 16S rDNA-DGGE. Food Microbiol. 2007, 24, 362–371. [Google Scholar] [CrossRef] [PubMed]
- Duan, J.; Jiang, Y.; Cherian, G.; Zhao, Y. Effect of combined chitosan-krill oil coating and modified atmosphere packaging on the storability of cold-stored lingcod (Ophiodon elongates) fillets. Food Chem. 2010, 122, 1035–1042. [Google Scholar] [CrossRef]
- Gornik, S.G.; Albalat, A.; Theethakaew, C.; Neil, D.M. Shelf life extension of whole Norway lobster Nephrops norvegicus using modified atmosphere packaging. Int J. Food Microbiol. 2013, 167, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Yew, C.C.; Bakar, F.A.; Rahman, R.A.; Bakar, J.; Zaman, M.Z.; Velu, S.; Shariat, M. Effects of modified atmosphere packaging with various carbon dioxide composition on biogenic amines formation in Indian mackerel (Rastrelliger kanagurta) stored at 5 ± 1 °C. Packag. Technol. Sci. 2014, 27, 249–254. [Google Scholar] [CrossRef]
- Bono, G.; Badalucco, C. Combining ozone and modified atmosphere packaging (MAP) to maximize shelf-life and quality of striped red mullet (Mullus surmuletus). LWT-Food Sci. Technol. 2012, 47, 500–504. [Google Scholar] [CrossRef]
- Caglak, E.; Cakli, S.; Kilinc, B. Microbiological, chemical and sensory assessment of mussels (Mytilus galloprovincialis) stored under modified atmosphere packaging. Eur. Food Res. Technol. 2008, 226, 1293–1299. [Google Scholar] [CrossRef]
- Ulusoy, Ş.; Özden, Ö. Preservation of stuffed mussels at 4 °C in modified atmosphere packaging. J. Aquat. Food Prod. Technol. 2011, 20, 319–330. [Google Scholar] [CrossRef]
- Simoes, J.S.; Mársico, E.T.; Lázaro, C.A.; Ferreira, M.D.S.; Franco, R.M.; Pereira, A.P.A.; Conte-Junior, C.A. Microbiological, physical and chemical characteristics of freshwater prawns (Macrobrachium rosenbergii) in modified-atmosphere packaging. Int. J. Food Sci. Technol. 2015, 50, 128–135. [Google Scholar] [CrossRef]
- Mendes, R.; Silva, H.A.; Anacleto, P.; Cardoso, C. Effect of CO2 dissolution on the shelf life of ready-to-eat Octopus vulgaris. Innov. Food Sci. Emerg. Technol. 2011, 12, 551–561. [Google Scholar] [CrossRef]
- Gunsen, U.; Ozcan, A.; Aydin, A. The Effect of modified atmosphere packaging on extending shelf-lifes of cold storage marinated seafood salad. J. Anim. Vet. Adv. 2010, 9, 2017–2024. [Google Scholar]
- Emborg, J.; Laursen, B.G.; Rathjen, T.; Dalgaard, P. Microbial spoilage and formation of biogenic amines in fresh and thawed modified atmosphere-packed salmon (Salmo salar) at 2 °C. J. Appl. Microbiol. 2002, 92, 790–799. [Google Scholar] [CrossRef] [PubMed]
- Macé, S.; Cornet, J.; Chevalier, F.; Cardinal, M.; Pilet, M.F.; Dousset, X.; Joffraud, J.J. Characterisation of the spoilage microbiota in raw salmon (Salmo salar) steaks stored under vacuum or modified atmosphere packaging combining conventional methods and PCR–TTGE. Food Microbiol. 2012, 30, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Simpson, R.; Carevic, E.; Rojas, S. Modelling a modified atmosphere packaging system for fresh scallops (Argopecten purpuratus). Packag. Technol. Sci. 2007, 20, 87–97. [Google Scholar] [CrossRef]
- Masniyom, P.; Benjakul, S.; Visessanguan, W. ATPase activity, surface hydrophobicity, sulfhydryl content and protein degradation in refrigerated seabass muscle in modified atmosphere packaging. J. Food Biochem. 2004, 28, 43–60. [Google Scholar] [CrossRef]
- Goulas, A.E.; Kontominas, M.G. Combined effect of light salting, modified atmosphere packaging and oregano essential oil on the shelf-life of sea bream (Sparus aurata): Biochemical and sensory attributes. Food Chem. 2007, 100, 287–296. [Google Scholar] [CrossRef]
- Tsironi, T.N.; Taoukis, P.S. Modeling microbial spoilage and quality of gilthead seabream fillets: Combined effect of osmotic pretreatment, modified atmosphere packaging, and nisin on shelf life. J. Food Sci. 2010, 75, M243–M251. [Google Scholar] [PubMed]
- Campus, M.; Bonaglini, E.; Cappuccinelli, R.; Porcu, M.C.; Tonelli, R.; Roggio, T. Effect of modified atmosphere packaging on Quality Index Method (QIM) scores of farmed gilthead seabream (Sparus aurata L.) at low and abused temperatures. J. Food Sci. 2011, 76, S185–S191. [Google Scholar] [CrossRef] [PubMed]
- Speranza, B.; Bevilacqua, A.; Conte, A.; Del Nobile, M.A.; Sinigaglia, M.; Corbo, M.R. Use of desirability approach to predict the inhibition of Pseudomonas fluorescens, Shewanella putrefaciens and Photobacterium phosphoreum in fish fillets through natural antimicrobials and modified atmosphere packaging. Food Bioprocess Technol. 2013, 6, 2319–2330. [Google Scholar] [CrossRef]
- Yesudhason, P.; Lalitha, K.V.; Gopal, T.K.S.; Ravishankar, C.N. Retention of shelf like and microbial quality of seer fish stored in modified atmosphere packaging and sodium acetate pretreatment. Food Packag. Shelf Life 2014, 1, 146–159. [Google Scholar]
- Zhou, S.; Sheen, S.; Pang, Y.H.; Liu, L.; Yam, K.L. Antimicrobial effects of vapor phase thymol, modified atmosphere, and their combination against Salmonella spp. on raw shrimp. J. Food Sci. 2013, 78, M725–M730. [Google Scholar] [CrossRef] [PubMed]
- Kamadia, V.V.; Schilling, M.W.; Marshall, D.L. Cooking and packaging methods affect consumer acceptability and shelf Life of ready-to-eat gulf brown shrimp. J. Aquat. Food Prod. Technol. 2013, 22, 146–159. [Google Scholar] [CrossRef]
- Calliauw, F.; De Mulder, T.; Broekaert, K.; Vlaemynck, G.; Michiels, C.; Heyndrickx, M. Assessment throughout a whole fishing year of the dominant microbiota of peeled brown shrimp (Crangon crangon) stored for 7 days under modified atmosphere packaging at 4 °C without preservatives. Food Microbiol. 2016, 54, 60–71. [Google Scholar] [CrossRef]
- Lu, S. Effects of bactericides and modified atmosphere packaging on shelf-life of Chinese shrimp (Fenneropenaeus chinensis). LWT-Food Sci. Technol. 2009, 42, 286–291. [Google Scholar] [CrossRef]
- Goncalves, A.C.; López-Caballero, M.E.; Nunes, M.L. Quality changes of deepwater pink shrimp (Parapenaeus longirostris) packed in modified atmosphere. J. Food Sci. 2003, 68, 2586–2590. [Google Scholar] [CrossRef]
- Bak, L.S.; Andersen, A.B.; Andersen, E.M.; Bertelsen, G. Effect of modified atmosphere packaging on oxidative changes in frozen stored cold water shrimp (Pandalus borealis). Food Chem. 1999, 64, 169–175. [Google Scholar] [CrossRef]
- Mejlholm, O.; Bøknæs, N.; Dalgaard, P. Shelf life and safety aspects of chilled cooked and peeled shrimps (Pandalus borealis) in modified atmosphere packaging. J. Appl. Microbiol. 2005, 99, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Mejlholm, O.; Devitt, T.D.; Dalgaard, P. Effect of brine marination on survival and growth of spoilage and pathogenic bacteria during processing and subsequent storage of ready-to-eat shrimp (Pandalus borealis). Intl. J. Food Microbiol. 2012, 157, 16–27. [Google Scholar] [CrossRef] [PubMed]
- Bono, G.; Badalucco, C.V.; Cusumano, S.; Palmegiano, G.B. Toward shrimp without chemical additives: A combined freezing-MAP approach. LWT-Food Sci. Technol. 2011, 46, 274–279. [Google Scholar] [CrossRef]
- Macé, S.; Joffraud, J.J.; Cardinal, M.; Malcheva, M.; Cornet, J.; Lalanne, V.; Chevalier, F.; Sérot, T.; Pilet, M.-F.; Dousset, X. Evaluation of the spoilage potential of bacteria isolated from spoiled raw salmon (Salmo salar) fillets stored under modified atmosphere packaging. Int. J. Food Microbiol. 2013, 160, 227–238. [Google Scholar] [CrossRef] [PubMed]
- Thepnuan, R.; Benjakul, S.; Visessanguan, W. Effect of pyrophosphate and 4-hexylresorcinol pretreatment on quality of refrigerated white shrimp (Litopenaeus vannamei) kept under modified atmosphere packaging. J. Food Sci. 2008, 73, S124–S133. [Google Scholar] [CrossRef] [PubMed]
- Nirmal, N.P.; Benjakul, S. Retardation of quality changes of Pacific white shrimp by green tea extract treatment and modified atmosphere packaging during refrigerated storage. Int. J. Food Microbiol. 2011, 149, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Kalleda, R.K.; Han, I.Y.; Toler, J.E.; Chen, F.; Kim, H.J.; Dawson, P.L. Shelf life extension of shrimp (white) using modified atmosphere packaging. Pol. J. Food Nutr. Sci. 2013, 63, 87–94. [Google Scholar] [CrossRef]
- Qian, Y.F.; Yang, S.P.; Xie, J.; Xiong, Q.; Gao, Z.L. Impact of the O2 concentrations on bacterial communities and quality of modified atmosphere packaged Pacific white shrimp (Litopenaeus Vannamei). J. Food Sci. 2013, 78, M1878–M1884. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.F.; Xie, J.; Yang, S.P.; Wu, W.H. Study of the quality changes and myofibrillar proteins of white shrimp (Litopenaeus vannamei) under modified atmosphere packaging with varying CO2 levels. Eur. Food Res. Technol. 2013, 236, 629–635. [Google Scholar] [CrossRef]
- Qian, Y.F.; Xie, J.; Yang, S.P.; Wu, W.H.; Xiong, Q.; Gao, Z.L. In vivo study of spoilage bacteria on polyphenoloxidase activity and melanosis of modified atmosphere packaged Pacific white shrimp. Food Chem. 2014, 155, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.F.; Xie, J.; Yang, S.P.; Huang, S.; Wu, W.H.; Li, L. Inhibitory effect of a quercetin-based soaking formulation and modified atmospheric packaging (MAP) on muscle degradation of Pacific white shrimp (Litopenaeus vannamei). LWT-Food Sci. Technol. 2015, 63, 1339–1346. [Google Scholar] [CrossRef]
- Zhang, B.; Ma, L.K.; Deng, S.G.; Xie, C.; Qiu, X.H. Shelf-life of pacific white shrimp (Litopenaeus vannamei) as affected by weakly acidic electrolyzed water ice-glazing and modified atmosphere packaging. Food Control 2015, 51, 114–121. [Google Scholar] [CrossRef]
- Bouletis, A.D.; Arvanitoyannis, I.S.; Hadjichristodoulou, C.; Neofitou, C.; Sakkomitrou, M.; Kolokythopoulou, F. The effect of modified atmosphere packaging on the microbiological, physical, chemical and sensory characteristics of broadtail squid (Illex coindetii). Int. J. Food Sci. Technol. 2014, 49, 329–336. [Google Scholar] [CrossRef]
- Gimenez, B.; Roncales, P.; Beltran, J.A. Modified atmosphere packaging of filleted rainbow trout. J. Sci. Food Agric. 2002, 82, 1154–1159. [Google Scholar] [CrossRef]
- Choubert, G.; Brisbarre, F.; Parfouru, D.; Baccaunaud, M. Argon modified atmosphere packaging for fillets of rainbow trout (Oncorhynchus mykiss) fed astaxanthin or canthaxanthin. J. Aquat. Food Prod. Technol. 2008, 17, 117–136. [Google Scholar] [CrossRef]
- Yilmaz, M.; Ceylan, Z.G.; Kocaman, M.; Kaya, M.; Yilmaz, H. The effect of vacuum and modified atmosphere packaging on growth of Listeria in rainbow trout (Oncorhynchus mykiss) fillets. J. Muscle Foods 2009, 20, 465–477. [Google Scholar] [CrossRef]
- Pyrgotou, N.; Giatrakou, V.; Ntzimani, A.; Savvaidis, I.N. Quality assessment of salted, modified atmosphere packaged rainbow trout under treatment with oregano essential oil. J. Food Sci. 2010, 75, M406–M411. [Google Scholar] [CrossRef] [PubMed]
- Kaba, N.; Corapci, B. Effects of two different modified atmosphere compositions on durability of steam-cooked rainbow trout (Oncorhynchus Mykiss, Walbaum, 1792). J. Food Proc. Preserv. 2014, 38, 2155–2166. [Google Scholar] [CrossRef]
- Emborg, J.; Dalgaard, P. Modelling the effect of temperature, carbon dioxide, water activity and pH on growth and histamine formation by Morganella psychrotolerans. Int. J. Food Microbiol. 2008, 128, 226–233. [Google Scholar] [CrossRef] [PubMed]
- Tanimoto, S.; Song, X.A.; Sakaguchi, M.; Sugawara, T.; Hirata, T. Levels of glutathione and related enzymes in yellowtail fish muscle subjected to ice storage in a modified atmosphere. J. Food Sci. 2011, 76, C974–C979. [Google Scholar] [CrossRef] [PubMed]
- Olafsdóttir, G.; Lauzon, H.L.; Martinsdóttir, E.; Oehlenschláuger, J.; Kristbergsson, K. Evaluation of shelf life of superchilled cod (Gadus morhua) fillets and the influence of temperature fluctuations during storage on microbial and chemical quality indicators. J. Food Sci. 2006, 71, S97–S109. [Google Scholar] [CrossRef]
- Duun, A.S.; Rustad, T. Quality of superchilled vacuum packed Atlantic salmon (Salmo salar) fillets stored at −1.4 and −3.6 °C. Food Chem. 2008, 106, 122–131. [Google Scholar] [CrossRef]
- Kaale, L.D.; Eikevik, T.M. The influence of superchilling storage methods on the location/distribution of ice crystals during storage of Atlantic salmon (Salmo salar). Food Control 2015, 52, 19–26. [Google Scholar] [CrossRef]
- Bahuaud, D.; Mørkøre, T.; Langsrud, Ø.; Sinnes, K.; Veiseth, E.; Ofstad, R.; Thomassen, M.S. Effects of −1.5 °C super-chilling on quality of Atlantic salmon (Salmo salar) pre-rigor fillets: Cathepsin activity, muscle histology, texture and liquid leakage. Food Chem. 2008, 111, 329–339. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.Z.; Thorarinsdóttir, K.A.; Olafsdóttir, G. Quality changes of shrimp (Pandalus borealis) stored under different cooling conditions. J. Food Sci. 2005, 70, S459–S466. [Google Scholar] [CrossRef]
- Barnett, H.J.; Stone, F.E.; Roberts, G.C.; Hunter, P.J.; Nelson, R.W.; Kwok, J. Study in the use of a high concentration of CO2 in a modified atmosphere to preserve fresh salmon. Mar. Fish. Rev. 1982, 44, 7–11. [Google Scholar]
- Gram, L.; Dalgaard, P. Fish spoilage bacteria–problems and solutions. Curr. Opin. Biotechnol. 2002, 13, 262–266. [Google Scholar] [CrossRef]
- Li, J.; Liu, Y.; Li, X.; Zhu, J.; Fu, L.; Li, T. Research advance in modified atmosphere packaging of aquatic products. J. Fish. Sci. China 2010, 4, 869–877. [Google Scholar]
Product Type | Storage Temperature (oC) | Gas (CO2:N2:O2) | Ratio G:P | Storage Time (Days) | Source | Study Highlights |
---|---|---|---|---|---|---|
Bass (gutted) | 3 | 70:30:0 | 2:1 | 9 | [17] | 50:20:30 preserved best microbial and sensorial quality for 7–9 days of shelf life |
70:10:20 | ||||||
60:10:30 | ||||||
60:40 | ||||||
50:20:30 | ||||||
0:79:21 | ||||||
Barramundi | 8 | 100:0:0 | 2:1 | 20 | [71] | 100 and 75% CO2 had significantly less biogenic amines than other treatments |
75:25:0 | ||||||
50:50:0 | ||||||
25:75:0 | ||||||
Air | ||||||
Bonito (salted) | 2 | 30:60:10 | 31 | [72] | All treatments < 7log CFU after 31 days, * significantly less bacteria at day 31 | |
65:35:0 * | ||||||
80:20:0 | ||||||
Vacuum | ||||||
Air | ||||||
Carp (portions) | 4 | 30:70:0 20:0:80 | 10 | [73] | 6 days shelf life | |
8 days shelf life | ||||||
3 days shelf life | ||||||
Cod, Atlantic (de-salted fillets) | 1 | 75:20:5 | 21 | [30] | Up to 14 additional days shelf life with MAP alone. Combination of MAP and citric or sorbate adds up to 4 or 10 days, respectively | |
Air | ||||||
Cod | 2 | 60:40:0 | 2:1 | 17 | [22] | Effects of chilling prior to MAP. |
Cod | 2 | 40:40:20 | 2:1 | 21 | [74] | Effects of chilling in MAP or Air prior to Frozen Storage and subsequent thawed shelf life |
Cod | 2 | 40:40:20 | 2:1 | 21 | [75] | Effects of long term frozen storage. Shelf life 14 days after thawing |
Cod, Atlantic | 0 | Optimization study | 2:1 | 14 | [21] | 37:0:63 optimal for bacterial growth limit coupled with exudate min |
Cod, Atlantic | 1.3 | 60:40 | 21 | [66] | Use of CO2 emitter without emitter | |
Cod, Atlantic | 0 | 50:50:0 | 2:1 | 11 | [76] | MAP w/O2 judged best, 16 days shelf life |
50:0:50 | ||||||
Air | ||||||
Cod, Atlantic | 1.5, −0.9 | 50:45:5 | 21 | [6] | Superchilled and MAP synergistic, 21 days or more shelf life | |
Air | ||||||
Cod, Atlantic (loins) | −2 | 50:45:5 | 2 to 1 | [7] | Brining of loins reduced shelf life, 21 days or more shelf life | |
Cod, Atlantic (brined) | 0, −2, −3.6 | 50:45:5 | 28 | [77] | Superchilled storage, 28 days or longer by TPC | |
Air | ||||||
Cod, Atlantic | 1.7 | 40:0:60 | 2:1 | 15 | [78] | Transportation method effects |
Air | ||||||
Crayfish | 2 | 80:10:10 | 21 | [79] | 21 days shelf life by APC | |
PVC film | ||||||
Vacuum | ||||||
Crayfish | 2 | 80:10:10 | 10 | [29] | MAP promoted activation of m-calpain and loss of calpastatin, but proteolysis did not correlate with texture | |
PVC film | ||||||
Vacuum | ||||||
Dolphinfish | 1 | 45:50:5 | 2.5:1 | 18 | [42] | AO = antioxidants (halophyte plant extract includes polyphenols: flavonoids, caffeic acid esters, coumarins) |
45:50:5 + AO | ||||||
Flounder (fillets) | 4, 10 | 100:0:0 | 6:1 | 25 | [80] | 3000 OTR (oxygen transmission rate) at 4 °C, no C. bot toxin production up to 25 days but spoilage on day 15, at 10 °C sensory rejection on day 5 and toxin formation on day 8. VP: spoilage on day 8–9 at 10 °C, and toxic on day 20 at 4 °C |
VP | ||||||
3000 OTR | ||||||
Hake (whole gutted) | 2 | 60:25:15 (C) | 30 | [38] | modified (M) or controlled (°C) atmosphere packaging. Controlled more effective. Suggest 40% CO2 for least flavor issues | |
60:25:15 (M) | ||||||
80:0:20 (C) | ||||||
80:0:20 (M) | ||||||
40:20:40 (C) | ||||||
40:20:40 (M) | ||||||
Air | ||||||
Halibut (fillets) | 4 | 50:50:0 | 2:1 | 23 | [81] | Shelf life 20 days, MAP w/O2 best |
50:0:50 | ||||||
Air | ||||||
Lingcod | 2 | 60:60:0 + CHI * | 21 | [82] | TPC shelf life 21 days for all but Air, * CHI:Chitosan, ** krill oil | |
MAP + CHI + EO ** | ||||||
Vacuum + CHI | ||||||
Vacuum + CHI + EO | ||||||
Air | ||||||
Lobster, Norway | 2 6 | * | 5 + 3 (8 total) | [83] | * 20 gas mixtures evaluated 80:10:10 = 13 days shelf life | |
L. japonicus | −1.5 | 40:30:30 + SC * | 16 | [8] | * superchill | |
MAP | ||||||
Mackerel | 5 | 30:65:5 | 12 | [84] | min 60% CO2 for inhibitory effect on biogenic amines | |
60:35:5 | ||||||
80:15:5 | ||||||
100:0:0 | ||||||
Vacuum | ||||||
Air | ||||||
Mackerel | 6 | 40:50:2 | 2:1 | 7 | [39] | 5 days shelf life |
Mackerel, Atlantic horse | 2, 4, 6, 10 | 48:50:2 | 2:1 | 11 | [3] | 7 days shelf life at 2C |
Mullet, red striped | 1 | 50:50:0 * | 2.5:1 | 24 | [85] | * Pre-treatment with ozone 10 days shelf life |
50:50:0 | ||||||
Air | ||||||
Mussels | 2 | 50:50:0 | 3:1 | 12 | [86] | 65 & 80% CO2 longest shelf life at 8 days |
80:20:0 | ||||||
65:35:0 | ||||||
Air | ||||||
Vacuum | ||||||
Mussels | 4 | 50:50:0 | 15 | [87] | Shelf life Air 7 days, MAP 11 days by APC; Air 11 days, MAP 13 days by sensory | |
100:0:0 | ||||||
Air | ||||||
Prawns | 0 | 50:50:0 | 10 | [88] | MAP increased shelf life by 40 h | |
Air | ||||||
Prawns | 4 | 60:40:0 | 16 | [35] | MAP controls black spot | |
Octopus, cooked | 3, 24 | CO2 * | 4:1 | 28 | [89] | * CO2 solubilized into product prior to packaging |
Vacuum | ||||||
Salad, marinated seafood | 2 | 70:30:0 | 2:1 | 7 months | [90] | Sensory shelf life 7 months MAP, 4 months Air, TPC acceptable entire study |
50:50:0 | ||||||
Air | ||||||
Salmon, Atlantic (fillets) | 2 | 60:40:0 * | 21 | [91] | Effect of freezing at −20 and −30 °C prior to MAP. | |
Salmon, Atlantic | 2 | 90:10:0 | 1.2, 2.2, 2.5 | 28 | [40] | 90% CO2 22 days shelf life Evaluated various barriers and additives |
75:25:0 | ||||||
60:40:0 | ||||||
40:60:0 | ||||||
25:75:0 | ||||||
Salmon, Atlantic | −2 | 60:40:0 | 24 | [65] | Superchill vs. Chill 24 days SC + MAP, <1000 cfu/g | |
Air | ||||||
Salmon, Atlantic (fillets pre-rigor) | 0.1 | 60:40:0 | 28 | [41] | Superchill vs. Chill Shelf life 28 days superchill w/MAP | |
Air | ||||||
Salmon, Atlantic | 2 | 90:10:0 to 60:40:0 | 2.5 to 1 and 1.2 to 1 | 23 | [40] | Modeling study with superchilling |
Salmon, Atlantic | 0.3 | 60:40:0 | 3:1 | 22 | [24] | Effect of crowding stress/pre-rigor packaging/Longest shelf life with low stress, 15 days |
Salmon, Atlantic | 2 (2 days) then 20 (2 h) then 8 | 50:50:0 | 10 | [92] | P. Phosphoreum and L. piscium dominate | |
Vacuum | ||||||
Salmon, Atlantic * | 4 | 55:45:0 | 15 | [51] | * Australian raised Shewanella and Carnobacterium predominate | |
30:70:0 | 12 | |||||
Salmon, Atlantic | 8 | 50:50:0 | 12 | [52] | ||
Salmon, Atlantic | 0, 10 | 98:2:0 | 3:1 | [9] | Develop model to predict rate of spoilage | |
55:45:0 | ||||||
30:70:0 | ||||||
Sardine | 4 | 60:40:0 | 2:1 | 15 | [32] | Shelf life 12 days MAP |
Vacuum | ||||||
Air | ||||||
Scallops | 0, 6, 20 | 30:10:60 | 0.5:1, 1:1, 1.5:1, 2:1, 3:1 | modeled | [93] | Optimal at 0 °C, 60:10:30, at 2:1 g:p = shelf life 21 days |
45:10:45 | ||||||
60:10:30 | ||||||
75:10:15 | ||||||
Sea bass | 4 | 80:10:10 | 3:1 | 18 | [94] | Protection of protein functionality |
Sea bass | 2 | 40:60:0 | 1.5:1 | 8 | [26] | MAP extended shelf life by 1 day |
Air | ||||||
Sea bass | 4 | 40:60:0 | 3:1 | 21 | [33] | 11 days shelf life |
50:50:0 | 14 days shelf life | |||||
60:40:0 | 14 days shelf life | |||||
Air | 4 days shelf life | |||||
Seabream | 4 | 40:30:30 | 2:1 | 33 | [95] | MAP combined with 0.8%, 0.4% oregano or light salting extends shelf life >17, 17, and 12 days, respectively |
Air | ||||||
Seabream, Gilthead | 0, 5, 10, 15 | 20:0:80 * | [19] | * Used Air instead of O2 Models predict shelf life at 7, 8, 12, and 32 days for 5 °C with 0, 20, 50, 80% CO2, respectively | ||
50:0:50 * | ||||||
80:0:20 * | ||||||
Seabream, Gilthead | 0 | 50:0:50 * | 48 | [96] | * Used Air instead of O2 Treatment with nisin osmotic solution (20,000 IU/100 g) | |
Seabream, Gilthead | 2, 4, 8 | 60:40:0 | 13 | [97] | MAP effect on QIM | |
60:10:30 | ||||||
Seabream, Gilthead * | 4 | 40:30:30 | 28 | [98] | Not treated or treated w/alcohol + lactic acid, Chitosan, grapefruit seed extract, or thymol | |
95:0:5 | ||||||
Seer fish | 0–2 | 70:0:30 | 32 | [99] | Treatments include Sodium Acetate | |
Air | ||||||
Shrimp | 8, 12, 16 | 59.5:39.5:1 | 100:1 | >20 | [100] | Thymol and MAP inhibition of Salmonella synergistic |
Air | ||||||
Shrimp, brown (cooked in package) | 2 | 35:50:15 | 50 | [101] | 39 days shelf life w/MAP by sensory | |
Vacuum | ||||||
Air | ||||||
Shrimp, brown | 4 | 40:60:0 | 3:1 | 7 | [102] | H2S producers higher in summer |
Shrimp, Chinese | 2 | 40:30:30 * | 21 | [103] | * 13 days shelf life | |
100:0:0 ** | ** 17 days shelf life | |||||
Air | Treatment evaluation includes ozone and bactericides | |||||
Shrimp, gray (brown) | 4 | 0:100:0 | 2:1 | 12 | [31] | Presence of O2 had inhibitory effect on TMA and ethanol production and some sulfides. Recommend MAP with high CO2 to inhibit bacteria and O2 to inhibit undesirable volatiles |
0:90:10 | ||||||
0:70:30 | ||||||
0:50:50 | ||||||
50:50:0 | ||||||
50:40:10 | ||||||
50:20:30 | ||||||
50:0:50 | ||||||
Shrimp, pink | Ice 1.6 | --- | 1:2 | 9 | [104] | MAP 9 days shelf life |
Air | ||||||
40:30:30 | ||||||
45:50:5 | ||||||
Shrimp, pink | −17 | 0:100:0 | 365 | [105] | Light did not impact oxidation, less tough, better color | |
Shrimp, pink | 2, 5, 8 | 50:30:20 | 4:1 | 65+ | [106] | Lm growth in MA packaged, 2 °C, 20–21 days max |
Shrimp, pink | 7, 15 | 40:60:0 | 3:1 | 25+ | [107] | Brine treatments evaluated include lactic, acetic, citric, benzoic, sorbic acids. Evaluates growth of specific spoilage and pathogenic bacteria |
Shrimp, red | −18 | 0:100:0 | 2.25:1 | [108] | Melanosis inhibited w/MAP | |
50:50:0 | ||||||
Vacuum | ||||||
Sulfite | ||||||
Shrimp, tropical | 8 | 50:50:0 | 32 | [109] | C. maltaromaticum and S. baltica major spoilage organisms | |
Shrimp, white | 4 | 80:10:10 | 3:1 | [110] | MAP in combination with hexylresorcinol shelf life 12 days | |
Air | ||||||
Shrimp, white | 4 | 50:45:5 | 3:1 | 10 | [111] | * Green Tea Extract, ** AS: Ascorbic acid MAP not able to inhibit lactic acid bacteria or melanosis |
MAP + GTE * | ||||||
MAP + GTE + AS ** | ||||||
Air | ||||||
Shrimp, white | ? | 60:22:18 * | 3:1 | 10 | [112] | * bi-sulfite wash Shelf life 10 days MAP |
36:64:0 * | ||||||
Air * | ||||||
Air | ||||||
Shrimp, white | 4 | 40:55:5 | 10 | [113] | MAP treatment could retard break-down of the structure protein. | |
60:35:5 | ||||||
80:15:5 | ||||||
Air | ||||||
Shrimp, white | 4 | 80:15:5 | 3:1 | 10 | [114] | Lower O2 helps with melanosis |
80:10:10 | ||||||
80:0:20 | ||||||
Air | ||||||
Shrimp, white | 80:10:10 | 3:1 | 10 | [115] | S. putrefaciens has role in melanosis | |
Shrimp, white | 4 | 80:10:10 * | 3:1 | 12 | [116] | * Quercetin, cinnamic acid, 4-hexylresorcinol treatment, AO’s help with melanosis, not bacteria |
Air * | ||||||
Shrimp, white | −18 | 40:50:10 | 100 | [117] | w/electrolyzed water treatment decreased bacteria but neg effect on volatile flavor | |
30:50:20 | ||||||
Air | ||||||
Squid | 2 | 20:80:0 | 2.5:1 | 10 | [118] | 10 days shelf life with 70% CO2 |
50:50:0 | ||||||
70:30:0 | ||||||
Vacuum | ||||||
Tilapia (fillets) | 0–2 | Vacuum | 20 | [28] | Products pre-treated with acetic acid (1%) | |
60:40 | 7 | |||||
Trout, Rainbow (fillets) | 0–2 | 50:40:10 | 16–20 | [119] | Substitution of nitrogen for argon did not improve quality or shelf life | |
50:30:20 | ||||||
50:20:30 | ||||||
Trout, Rainbow | 2 | 40:60:0 | 26 | [120] | Ar instead of N, less reduction in pH, color | |
40:60 (Ar):0 | ||||||
Air | ||||||
Trout, Rainbow (fillets) | 50:50:0 | 2:1 | 18 | [121] | MAP delayed Lm growth | |
20:0:80 | ||||||
90:7.5:2.5 | ||||||
Air | ||||||
Vacuum | ||||||
Trout, Rainbow (brined) | 4 | 45:50:5 | 21 | [122] | 13–14 days shelf life w/o EO + 7–8 days w/EO * Essential Oil, oregano | |
MAP + 0.2% EO * | ||||||
MAP + 0.4% EO | ||||||
Trout, Rainbow (cooked) | 4 | 60:40:0 | 27 | [123] | 27 days shelf life MAP | |
40:60:0 | ||||||
Air | ||||||
Trout, Rainbow | 4 | 80:20:0 | 22 | [34] | Treatments w/UV-C radiation did not extend shelf life, higher oxidation as well | |
Air | ||||||
Vacuum | ||||||
Tuna | 0, 2, 5, 10, 20 | Varying * | 3:1 | 25 | [124] | * CO2:N2 varied. |
Tuna, Bluefin | 3 | 40:60:0 | 2.5:1 | 18 | [18] | Treatment with α-tocopherol (0.5% w/w) for color retention |
0:100:0 | ||||||
Air | ||||||
Tuna, Yellowtail | ice | 100:0:0 * | 7 | 3:1 | [125] | * w/oxygen absorber, 1 CO2 generator; MAP protected natural antioxidant enzymes in the muscle |
100:0:0 *,1 | ||||||
Air * |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
DeWitt, C.A.M.; Oliveira, A.C.M. Modified Atmosphere Systems and Shelf Life Extension of Fish and Fishery Products. Foods 2016, 5, 48. https://doi.org/10.3390/foods5030048
DeWitt CAM, Oliveira ACM. Modified Atmosphere Systems and Shelf Life Extension of Fish and Fishery Products. Foods. 2016; 5(3):48. https://doi.org/10.3390/foods5030048
Chicago/Turabian StyleDeWitt, Christina A. Mireles, and Alexandra C.M. Oliveira. 2016. "Modified Atmosphere Systems and Shelf Life Extension of Fish and Fishery Products" Foods 5, no. 3: 48. https://doi.org/10.3390/foods5030048
APA StyleDeWitt, C. A. M., & Oliveira, A. C. M. (2016). Modified Atmosphere Systems and Shelf Life Extension of Fish and Fishery Products. Foods, 5(3), 48. https://doi.org/10.3390/foods5030048