Online Prediction of Physico-Chemical Quality Attributes of Beef Using Visible—Near-Infrared Spectroscopy and Chemometrics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Meat Samples Preparation
2.2. Spectra Collection
2.3. Chemical and Physical Analyses
2.3.1. Ultimate pH (pHu)
2.3.2. Colour
2.3.3. Cooking Loss Percentage
2.3.4. Drip Loss
2.4. Data Analysis
3. Results and Discussion
3.1. Spectral Profiles
3.2. Descriptive Statistics of Beef Samples
3.3. Prediction of the pH Ultimate Values of Beef from Vis–NIR Spectra
3.4. Prediction of Drip Loss
3.5. Cooking Loss Measurement
3.6. Prediction of Colour Parameters
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Liang, R.; Zhu, H.; Mao, Y.; Zhang, Y.; Zhu, L.; Cornforth, D.; Wang, R.; Meng, X.; Luo, X. Tenderness and sensory attributes of the longissimus lumborum muscles with different quality grades from Chinese fattened yellow crossbred steers. Meat Sci. 2016, 112, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Troy, D.; Kerry, J. Consumer perception and the role of science in the meat industry. Meat Sci. 2010, 86, 214–226. [Google Scholar] [CrossRef] [PubMed]
- Di Luca, A.; Elia, G.; Hamill, R.; Mullen, A.M. 2D DIGE proteomic analysis of early post mortem muscle exudate highlights the importance of the stress response for improved water-holding capacity of fresh pork meat. Proteomics 2013, 13, 1528–1544. [Google Scholar] [CrossRef] [PubMed]
- Dransfield, E.; Martin, J.-F.; Bauchart, D.; Abouelkaram, S.; Lepetit, J.; Culioli, J.; Jurie, C.; Picard, B. Meat quality and composition of three muscles from French cull cows and young bulls. Anim. Sci. 2003, 76, 387–399. [Google Scholar] [CrossRef]
- Ripoll, G.; Alberti, P.; Panea, B.; Olleta, J.; Sanudo, C. Near-infrared reflectance spectroscopy for predicting chemical, instrumental and sensory quality of beef. Meat Sci. 2008, 80, 697–702. [Google Scholar] [CrossRef]
- Xiaobo, Z.; Xiaowei, H.; Povey, M.J.W. Non-invasive sensing for food reassurance. Analyst 2016, 141, 1587–1610. [Google Scholar] [CrossRef] [Green Version]
- Sahar, A.; Dufour, E. Classification and characterization of beef muscles using front-face fluorescence spectroscopy. Meat Sci. 2015, 100, 69–72. [Google Scholar] [CrossRef]
- Nunes, K.M.; Andrade, M.V.O.; Filho, A.M.S.; Lasmar, M.C.; Sena, M.M. Detection and characterisation of frauds in bovine meat in natura by non-meat ingredient additions using data fusion of chemical parameters and ATR-FTIR spectroscopy. Food Chem. 2016, 205, 14–22. [Google Scholar] [CrossRef]
- Rahman, U.U.; Sahar, A.; Pasha, I.; Rahman, S.U.; Ishaq, A. Assessing the capability of Fourier transform infrared spectroscopy in tandem with chemometric analysis for predicting poultry meat spoilage. PeerJ 2018, 6, e5376. [Google Scholar] [CrossRef] [Green Version]
- Lucarini, M.; Durazzo, A.; Del Pulgar, J.S.; Gabrielli, P.; Lombardi-Boccia, G. Determination of fatty acid content in meat and meat products: The FTIR-ATR approach. Food Chem. 2018, 267, 223–230. [Google Scholar] [CrossRef]
- Kang, Z.-L.; Li, X.; He, H.-J.; Ma, H.-J.; Song, Z.-J. Structural changes evaluation with Raman spectroscopy in meat batters prepared by different processes. J. Food Sci. Technol. 2017, 54, 2852–2860. [Google Scholar] [CrossRef] [PubMed]
- Fowler, S.M.; Schmidt, H.; Van De Ven, R.; Hopkins, D.L. Preliminary investigation of the use of Raman spectroscopy to predict meat and eating quality traits of beef loins. Meat Sci. 2018, 138, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Z.; Sun, D.W.; Pu, H.; Gao, W.; Dai, Q. Applications of emerging imaging techniques for meat quality and safety detection and evaluation: A review. Crit. Rev. Food Sci. Nutr. 2017, 57, 755–768. [Google Scholar] [CrossRef] [PubMed]
- Sahar, A.; Boubellouta, T.; Lepetit, J.; Dufour, E. Front-face fluorescence spectroscopy as a tool to classify seven bovine muscles according to their chemical and rheological characteristics. Meat Sci. 2009, 83, 672–677. [Google Scholar] [CrossRef] [PubMed]
- Allais, I.; Viaud, C.; Pierre, A.; Dufour, E. A rapid method based on front-face fluorescence spectroscopy for the monitoring of the texture of meat emulsions and frankfurters. Meat Sci. 2004, 67, 219–229. [Google Scholar] [CrossRef]
- Aït-Kaddour, A.; Thomas, A.; Mardon, J.; Jacquot, S.; Ferlay, A.; Gruffat, D. Potential of fluorescence spectroscopy to predict fatty acid composition of beef. Meat Sci. 2016, 113, 124–131. [Google Scholar] [CrossRef]
- Aït-Kaddour, A.; Loudiyi, M.; Ferlay, A.; Gruffat, D. Performance of fluorescence spectroscopy for beef meat authentication: Effect of excitation mode and discriminant algorithms. Meat Sci. 2018, 137, 58–66. [Google Scholar] [CrossRef]
- Pieszczek, L.; Czarnik-Matusewicz, H.; Daszykowski, M. Identification of ground meat species using near-infrared spectroscopy and class modeling techniques—Aspects of optimization and validation using a one-class classification model. Meat Sci. 2018, 139, 15–24. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; Elmasry, G.; Sun, D.-W.; Allen, P. Non-destructive prediction and visualization of chemical composition in lamb meat using NIR hyperspectral imaging and multivariate regression. Innov. Food Sci. Emerg. Technol. 2012, 16, 218–226. [Google Scholar] [CrossRef]
- Lohumi, S.; Lee, S.; Lee, H.; Kim, M.S.; Lee, W.-H.; Cho, B.-K. Application of hyperspectral imaging for characterization of intramuscular fat distribution in beef. Infrared Phys. Technol. 2016, 74, 1–10. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; Makino, Y.; Oshita, S. Hyperspectral imaging for real-time monitoring of water holding capacity in red meat. LWT 2016, 66, 685–691. [Google Scholar] [CrossRef]
- Zhao, M.; Esquerre, C.; Downey, G.; O’Donnell, C.P.; Fernandez, C.A.E. Process analytical technologies for fat and moisture determination in ground beef—A comparison of guided microwave spectroscopy and near infrared hyperspectral imaging. Food Control. 2017, 73, 1082–1094. [Google Scholar] [CrossRef]
- Rady, A.; Adedeji, A. Assessing different processed meats for adulterants using visible-near-infrared spectroscopy. Meat Sci. 2018, 136, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Cafferky, J.; Sweeney, T.; Allen, P.; Sahar, A.; Downey, G.; Cromie, A.; Hamill, R.M. Investigating the use of visible and near infrared spectroscopy to predict sensory and texture attributes of beef M. longissimus thoracis et lumborum. Meat Sci. 2019. [Google Scholar] [CrossRef] [PubMed]
- Honikel, K.O.; Hamm, R. Measurement of water-holding capacity and juiciness. In Quality Attributes and their Measurement in Meat, Poultry and Fish Products; Springer Science and Business Media LLC: Boston, MA, USA, 1994; pp. 125–161. [Google Scholar]
- Williams, P.C.; Norris, K. Near Infrared Technology in the Agricultural and Food Industries, 2nd ed.; American Association of Cereal Chemists, Inc.: St. Paul, MN, USA, 1987. [Google Scholar]
- De Marchi, M. On-line prediction of beef quality traits using near infrared spectroscopy. Meat Sci. 2013, 94, 455–460. [Google Scholar] [CrossRef] [PubMed]
- Andrés, S.; Silva, A.; Soares-Pereira, A.; Martins, C.; Bruno-Soares, A.; Murray, I.; Silva, J. The use of visible and near infrared reflectance spectroscopy to predict beef M. longissimus thoracis et lumborum quality attributes. Meat Sci. 2008, 78, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Cozzolino, D.; Murray, I.; Paterson, R.; Scaife, J.R. Visible and near infrared reflectance spectroscopy for the determination of moisture, fat and protein in chicken breast and thigh muscle. J. Near Infrared Spec. 1996, 4, 213–223. [Google Scholar] [CrossRef]
- Kuswandi, B.; Nurfawaidi, A. On-package dual sensors label based on pH indicators for real-time monitoring of beef freshness. Food Control 2017, 82, 91–100. [Google Scholar] [CrossRef]
- Page, J.K.; Wulf, D.M.; Schwotzer, T.R. A survey of beef muscle color and pH. J. Anim. Sci. 2001, 79, 678–687. [Google Scholar] [CrossRef]
- Prieto, N.; Andrés, S.; Giráldez, F.; Mantecon, A.R.; Lavin, P. Ability of near infrared reflectance spectroscopy (NIRS) to estimate physical parameters of adult steers (oxen) and young cattle meat samples. Meat Sci. 2008, 79, 692–699. [Google Scholar] [CrossRef]
- Battagin, M.; Zanetti, E.; Pulici, C.; Cassandro, M.; De Marchi, M.; Penasa, M. Feasibility of the direct application of near-infrared reflectance spectroscopy on intact chicken breasts to predict meat color and physical traits. Poult. Sci. 2011, 90, 1594–1599. [Google Scholar]
- Liu, Y.; Chen, Y.-R. Analysis of visible reflectance spectra of stored, cooked and diseased chicken meats. Meat Sci. 2001, 58, 395–401. [Google Scholar] [CrossRef] [Green Version]
- Prieto, N.; Ross, D.; Navajas, E.; Nute, G.; Richardson, R.; Hyslop, J.; Simm, G.; Roehe, R. On-line application of visible and near infrared reflectance spectroscopy to predict chemical–physical and sensory characteristics of beef quality. Meat Sci. 2009, 83, 96–103. [Google Scholar] [CrossRef] [PubMed]
- De Marchi, M.; Berzaghi, P.; Boukha, A.; Mirisola, M.; Galol, L.; Gallo, L. Use of near infrared spectroscopy for assessment of beef quality traits. Ital. J. Anim. Sci. 2007, 6, 421–423. [Google Scholar] [CrossRef]
- Cafferky, J.; Hamill, R.M.; Allen, P.; O’Doherty, J.V.; Cromie, A.; Sweeney, T. Effect of Breed and Gender on Meat Quality of M. longissimus thoracis et lumborum Muscle from Crossbred Beef Bulls and Steers. Foods 2019, 8, 173. [Google Scholar] [CrossRef] [PubMed]
Parameter | n | Range | Mean | SD | CV (%) |
---|---|---|---|---|---|
Ultimate pH | 366 | 5.16–6.91 | 5.58 | 0.18 | 3.23 |
Drip Loss (%) | 224 | 0.29–9.04 | 2.94 | 1.50 | 51.02 |
Cook Loss (%) | 293 | 16.81–38.02 | 31.22 | 2.98 | 9.55 |
Colour L* | 368 | 35.17–50.91 | 42.99 | 2.44 | 5.68 |
Colour a* | 368 | 8.20–19.80 | 14.30 | 1.82 | 12.73 |
Colour b* | 368 | 6.34–16.94 | 11.40 | 1.76 | 15.44 |
pH Ultimate | Math Treatment | n | F | R2C | RMSEC | R2CV | RMSECV |
---|---|---|---|---|---|---|---|
Neck 1 h-PM | Log (1/R) | 357 | 1 | 0.13 | 0.18 | 0.22 | 0.18 |
Neck2 h-PM | Log (1/R) | 153 | 4 | 0.22 | 0.20 | 0.16 | 0.21 |
Rump 1 h-PM | Log (1/R) | 358 | 6 | 0.11 | 0.16 | 0.04 | 0.17 |
Rump 2 h-PM | Log (1/R) | 153 | 4 | 0.30 | 0.19 | 0.23 | 0.20 |
Quartering 24 h-PM | Log (1/R) | 361 | 4 | 0.74 | 0.13 | 0.66 | 0.15 |
Quartering 24 h-PM | BS + SNV | 361 | 6 | 0.92 | 0.34 | 0.91 | 0.17 |
Quartering 25 h-PM | Log (1/R) | 366 | 9 | 0.36 | 0.14 | 0.22 | 0.16 |
LTL muscle 48 h-PM | Log (1/R) | 223 | 6 | 0.71 | 0.10 | 0.67 | 0.11 |
LTL muscle 48 h-PM | SNV | 223 | 5 | 0.96 | 0.33 | 0.96 | 0.25 |
LTL muscle 49 h-PM | Log (1/R) | 191 | 8 | 0.80 | 0.09 | 0.73 | 0.11 |
Drip Loss (%) | Math Treatment | n | F | R2C | RMSEC | R2CV | RMSECV |
---|---|---|---|---|---|---|---|
Neck 1 h-PM | Log (1/R) | 213 | 4 | 0.24 | 1.32 | 0.20 | 1.36 |
Neck 2 h-PM | Log (1/R) | 153 | 4 | 0.17 | 1.10 | 0.10 | 1.15 |
Rump 1 h-PM | Log (1/R) | 212 | 3 | 0.18 | 1.37 | 0.17 | 1.38 |
Rump 2 h-PM | Log (1/R) | 153 | 4 | 0.17 | 1.10 | 0.09 | 1.16 |
Quartering 24 h-PM | Log (1/R) | 214 | 4 | 0.54 | 1.22 | 0.51 | 1.34 |
Quartering 24 h-PM | BS + SNV | 214 | 3 | 0.82 | 1.44 | 0.82 | 1.43 |
Quartering 25 h-PM | Log (1/R) | 219 | 4 | 0.22 | 1.32 | 0.17 | 1.37 |
LTL muscle 48 h-PM | Log (1/R) | 224 | 2 | 0.99 | 0.11 | 0.99 | 1.12 |
LTL muscle 49 h-PM | Log (1/R) | 192 | 7 | 0.43 | 1.12 | 0.32 | 1.24 |
Cook Loss (%) | Math | n | F | R2C | RMSEC | R2CV | RMSECV |
---|---|---|---|---|---|---|---|
Neck 1 h-PM | Log (1/R) | 286 | 8 | 0.34 | 2.44 | 0.19 | 2.70 |
Neck 2 h-PM | Log (1/R) | 81 | 2 | 0.18 | 3.20 | 0.09 | 3.41 |
Rump 1 h-PM | Log (1/R) | 285 | 8 | 0.26 | 2.50 | 0.14 | 2.79 |
Rump 2 h-PM | Log (1/R) | 81 | 8 | 0.58 | 2.28 | 0.28 | 2.99 |
Quartering 24 h-PM | Log (1/R) | 293 | 10 | 0.43 | 2.25 | 0.25 | 2.59 |
Quartering 25 h-PM | Log (1/R) | 293 | 10 | 0.41 | 2.28 | 0.22 | 2.64 |
LTL muscle 48 h-PM | Log (1/R) | 151 | 6 | 0.51 | 2.00 | 0.43 | 2.27 |
LTL muscle 49 h-PM | Log (1/R) | 150 | 6 | 0.53 | 2.06 | 0.45 | 2.23 |
Colour L* | Math | n | F | R2C | RMSEC | R2CV | RMSECV |
---|---|---|---|---|---|---|---|
Neck 1 h-PM | Log (1/R) | 361 | 6 | 0.24 | 2.11 | 0.18 | 2.20 |
Neck 2 h-PM | Log (1/R) | 155 | 1 | 0.03 | 2.30 | 0.01 | 2.30 |
Rump 1 h-PM | Log (1/R) | 360 | 7 | 0.29 | 2.05 | 0.20 | 2.18 |
Rump 2 h-PM | Log (1/R) | 155 | 9 | 0.37 | 1.88 | 0.11 | 2.26 |
Quartering 24 h-PM | Log (1/R) | 368 | 9 | 0.42 | 1.85 | 0.33 | 1.99 |
Quartering 2 5 h-PM | Log (1/R) | 368 | 8 | 0.42 | 1.84 | 0.36 | 1.95 |
LTL muscle 48 h-PM | Log (1/R) | 224 | 8 | 0.60 | 1.55 | 0.49 | 1.76 |
LTL muscle 49h-PM | Log (1/R) | 191 | 7 | 0.53 | 1.65 | 0.44 | 1.80 |
Colour a* | |||||||
Neck 1h-PM | Log (1/R) | 361 | 8 | 0.21 | 1.62 | 0.08 | 1.75 |
Neck 2 h-PM | Log (1/R) | 155 | 5 | 0.18 | 1.67 | 0.11 | 1.75 |
Rump 1 h-PM | Log (1/R) | 360 | 1 | 0.02 | 1.81 | 0.09 | 1.82 |
Rump 2 h-PM | Log (1/R) | 155 | 1 | 0.06 | 1.78 | 0.06 | 1.81 |
Quartering 24 h-PM | Log (1/R) | 368 | 7 | 0.23 | 1.58 | 0.15 | 1.67 |
Quartering 25 h-PM | Log (1/R) | 368 | 3 | 0.09 | 1.72 | 0.07 | 0.75 |
LTL muscle 48 h-PM | Log (1/R) | 224 | 6 | 0.41 | 1.35 | 0.32 | 1.46 |
LTL muscle 49 h-PM | Log (1/R) | 191 | 4 | 0.31 | 1.37 | 0.28 | 1.41 |
Colour b* | |||||||
Neck 1 h-PM | Log (1/R) | 361 | 1 | 0.00 | 1.76 | NA | 1.79 |
Neck 2 h-PM | Log (1/R) | 155 | 1 | 0.01 | 1.80 | NA | 1.83 |
Rump 1 h-PM | Log (1/R) | 360 | 1 | 0.00 | 1.76 | NA | 1.79 |
Rump 2 h-PM | Log (1/R) | 155 | 1 | 0.01 | 1.80 | NA | 1.82 |
Quartering 24 h-PM | Log (1/R) | 368 | 8 | 0.30 | 1.47 | 0.19 | 1.57 |
Quartering 25 h-PM | Log (1/R) | 368 | 9 | 0.34 | 1.43 | 0.20 | 1.57 |
LTL muscle 48 h-PM | Log (1/R) | 224 | 6 | 0.46 | 1.30 | 0.39 | 1.39 |
LTL muscle 49 h-PM | Log (1/R) | 191 | 5 | 0.40 | 1.33 | 0.32 | 1.41 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sahar, A.; Allen, P.; Sweeney, T.; Cafferky, J.; Downey, G.; Cromie, A.; Hamill, R.M. Online Prediction of Physico-Chemical Quality Attributes of Beef Using Visible—Near-Infrared Spectroscopy and Chemometrics. Foods 2019, 8, 525. https://doi.org/10.3390/foods8110525
Sahar A, Allen P, Sweeney T, Cafferky J, Downey G, Cromie A, Hamill RM. Online Prediction of Physico-Chemical Quality Attributes of Beef Using Visible—Near-Infrared Spectroscopy and Chemometrics. Foods. 2019; 8(11):525. https://doi.org/10.3390/foods8110525
Chicago/Turabian StyleSahar, Amna, Paul Allen, Torres Sweeney, Jamie Cafferky, Gerard Downey, Andrew Cromie, and Ruth M. Hamill. 2019. "Online Prediction of Physico-Chemical Quality Attributes of Beef Using Visible—Near-Infrared Spectroscopy and Chemometrics" Foods 8, no. 11: 525. https://doi.org/10.3390/foods8110525
APA StyleSahar, A., Allen, P., Sweeney, T., Cafferky, J., Downey, G., Cromie, A., & Hamill, R. M. (2019). Online Prediction of Physico-Chemical Quality Attributes of Beef Using Visible—Near-Infrared Spectroscopy and Chemometrics. Foods, 8(11), 525. https://doi.org/10.3390/foods8110525