Effects of Moisture, Temperature, and Salt Content on the Dielectric Properties of Pecan Kernels during Microwave and Radio Frequency Drying Processes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Pecan Kernel Samples
2.3. Preparation of Cylindrical Samples
2.4. Measurement of DPs
2.5. Power Penetration Depth
2.6. RF Heating Process
3. Results and Discussion
3.1. Frequency-Dependent DPs
3.2. Moisture- and Temperature-Dependent DPs
3.3. Regression Models for the DPs of Pecans
3.4. Effect of the Salt Levels on DPs
3.5. Penetration Depth
3.6. Comparison of Simulated and Experimental Heating Rates of Pecan Kernels
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Atanasov, A.G.; Sabharanjak, S.M.; Zengin, G.; Mollica, A.; Szostak, A.; Simirgiotis, M.; Huminiecki, L.; Horbanczuk, O.K.; Nabavi, S.M.; Mocan, A. Pecan nuts: A review of reported bioactivities and health effects. Trends Food Sci. Technol. 2018, 71, 246–257. [Google Scholar] [CrossRef]
- McKay, D.L.; Eliasziw, M.; Chen, C.Y.O.; Blumberg, J.B. A Pecan-rich diet improves cardiometabolic risk factors in overweight and obese adults: A randomized controlled trial. Nutrients 2018, 10, 339. [Google Scholar] [CrossRef] [PubMed]
- de la Rosa, L.A.; Vazquez-Flores, A.A.; Alvarez-Parrilla, E.; Rodrigo-Garcia, J.; Medina-Campos, O.N.; Avila-Nava, A.; Gonzalez-Reyes, S.; Pedraza-Chaverri, J. Content of major classes of polyphenolic compounds, antioxidant, antiproliferative, and cell protective activity of Pecan crude extracts and their fractions. J. Funct. Foods 2014, 7, 219–228. [Google Scholar] [CrossRef]
- del Gobbo, L.C.; Falk, M.C.; Feldman, R.; Lewis, K.; Mozaffarian, D. Effects of tree nuts on blood lipids, apolipoproteins, and blood pressure: Systematic review, meta-analysis, and dose-response of 61 controlled intervention trials. Am. J. Clin. Nutr. 2015, 102, 1347–1356. [Google Scholar] [CrossRef] [PubMed]
- Dominguez-Avila, J.A.; Alvarez-Parrilla, E.; Lopez-Diaz, J.A.; Maldonado-Mendoza, I.E.; Gomez-Garcia, M.D.; de la Rosa, L.A. The Pecan nut (Carya illinoinensis) and its oil and polyphenolic fractions differentially modulate lipid metabolism and the antioxidant enzyme activities in rats fed high-fat diets. Food Chem. 2015, 168, 529–537. [Google Scholar] [CrossRef] [PubMed]
- Butler, T.J.; Confue, C.; Guild, J.; Mushtaq, S. Effect of a single serving of Pecan nuts on blood lipids and weight: A single blind randomised control trial. Proc. Nutr. Soc. 2018, 77, E164. [Google Scholar] [CrossRef]
- Zhang, R.; Peng, F.R.; Li, Y.R. Pecan production in China. Sci. Hortic. 2015, 197, 719–727. [Google Scholar] [CrossRef]
- Wakeling, L.T.; Mason, R.L.; D’Arcy, B.R.; Caffin, N.A. Australian pecan nut production and processing. Food Aust. 2000, 52, 574–578. [Google Scholar]
- Shirmohammadi, M.; Charrault, E.; Blencowe, A. Micromechanical properties of almond kernels with various moisture content levels. Int. J. Food Prop. 2018, 21, 1820–1832. [Google Scholar] [CrossRef]
- Jover, P.; Matta, F.B.; Shah, F.S. Harvest time and storage condition affect germination, moisture, abscisic acid, and indoleacetic acid in pecan. Hortscience 2006, 41, 1235–1237. [Google Scholar] [CrossRef]
- Atungulu, G.G.; Teh, H.E.; Wang, T.; Fu, R.; Wang, X.; Khir, R.; Pan, Z. Infrared pre-drying and dry-dehulling of walnuts for improved processing efficiency and product quality. Appl. Eng. Agric. 2013, 29, 961–971. [Google Scholar] [CrossRef]
- Chandrasekaran, S.; Ramanathan, S.; Basak, T. Microwave food processing-a review. Food Res. Int. 2013, 52, 243–261. [Google Scholar] [CrossRef]
- Atuonwu, J.C.; Tassou, S.A. Energy issues in microwave food processing: A review of developments and the enabling potentials of solid-state power delivery. Crit. Rev. Food. Sci. Nutr. 2018, 59, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Wang, S.J. Recent developments in radio frequency drying of food and agricultural products: A review. Dry. Technol. 2019, 37, 271–286. [Google Scholar] [CrossRef]
- Gabriel, C.; Gabriel, S.; Grant, E.H.; Halstead, B.S.J.; Mingos, D.M.P. Dielectric parameters relevant to microwave dielectric heating. Chem. Soc. Rev. 1998, 27, 213–223. [Google Scholar] [CrossRef]
- Alfaifi, B.; Wang, S.J.; Tang, J.; Rasco, B.; Sablani, S.; Jiao, Y. Radio frequency disinfestation treatments for dried fruit: Dielectric properties. LWT Food Sci. Technol. 2013, 50, 746–754. [Google Scholar] [CrossRef]
- Venkatesh, M.S.; Raghavan, G.S.V. An overview of microwave processing and dielectric properties of agri-food materials. Biosyst. Eng. 2004, 88, 1–18. [Google Scholar] [CrossRef]
- Al Juhaimi, F.; Ozcan, M.M.; Uslu, N.; Dogu, S. Pecan walnut (Carya illinoinensis (Wangenh.) K. Koch) oil quality and phenolic compounds as affected by microwave and conventional roasting. J. Food Sci. Technol. 2017, 54, 4436–4441. [Google Scholar] [CrossRef]
- Zhang, J.G.; Li, M.Y.; Ding, Z.E.; Cheng, J.H.; Yang, S.; Liu, X.M. Microwave airflow drying of pecans at variable microwave power. J. Food Process Eng. 2019, 42, e12946. [Google Scholar] [CrossRef]
- Mitcham, E.J.; Veltman, R.H.; Feng, X.; de Castro, E.; Johnson, J.A.; Simpson, T.L.; Biasi, W.V.; Wang, S.; Tang, J. Application of radio frequency treatments to control insects in in-shell walnuts. Postharvest Biol. Technol. 2004, 33, 93–100. [Google Scholar] [CrossRef]
- Wang, S.; Tang, J.; Johnson, J.A.; Mitcham, E.; Hansen, J.D.; Cavalieri, R.P.; Bower, J.; Biasi, B. Process protocols based on radio frequency energy to control field and storage pests in in-shell walnuts. Postharvest Biol. Technol. 2002, 26, 265–273. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Zhang, L.; Gao, M.X.; Tang, J.; Wang, S.J. Temperature- and moisture-dependent dielectric properties of Macadamia nut kernels. Food Bioprocess Technol. 2013, 6, 2165–2176. [Google Scholar] [CrossRef]
- Zhang, S.; Zhou, L.Y.; Ling, B.; Wang, S.J. Dielectric properties of peanut kernels associated with microwave and radio frequency drying. Biosyst. Eng. 2016, 145, 108–117. [Google Scholar] [CrossRef]
- Ling, B.; Guo, W.C.; Hou, L.X.; Li, R.; Wang, S.J. Dielectric properties of pistachio kernels as influenced by frequency, temperature, moisture and salt content. Food Bioprocess Technol. 2015, 8, 420–430. [Google Scholar] [CrossRef]
- Jeong, S.G.; Ryu, S.; Kang, D.H. Salt content dependent dielectric properties of pistachios relevant to radio-frequency pasteurization. Sci. Rep. 2019, 9, 2400. [Google Scholar] [CrossRef] [PubMed]
- Nelson, S.O.; Payne, J.A. RF dielectric heating for pecan weevil control. Trans. ASAE 1982, 25, 456–458. [Google Scholar] [CrossRef]
- Senter, S.D.; Forbus, W.R., Jr.; Nelson, S.O.; Horvat, R.J. Effects of dielectric and steam heating treatments on the pre-storage and storage color characteristics of pecan kernels. J. Food Sci. 1984, 49, 1532–1534. [Google Scholar] [CrossRef]
- Goto, S.; Yamano, M.; Morita, S.; Kanamatsu, T.; Hachikubo, A.; Kataoka, S.; Tanahashi, M.; Matsumoto, R. Physical and thermal properties of mud-dominant sediment from the Joetsu basin in the eastern margin of the Japan sea. Mar. Geophys. Res. 2017, 38, 393–407. [Google Scholar] [CrossRef]
- Tiwari, G.; Wang, S.; Tang, J.; Birla, S.L. Computer simulation model development and validation for radio frequency (RF) heating of dry food materials. J. Food Eng. 2011, 105, 48–55. [Google Scholar] [CrossRef]
- Feng, H.; Tang, J.; Cavalieri, R.P. Dielectric properties of dehydrated apples as affected by moisture and temperature. Trans. ASAE 2002, 45, 129–135. [Google Scholar] [CrossRef]
- Wang, S.; Tang, J.; Cavalieri, R.P.; Davies, D.C. Differential heating of insects in dried nuts and fruits associated with radio frequency and microwave treatments. Trans. ASAE 2003, 46, 1175–1182. [Google Scholar] [CrossRef]
- Trabelsi, S.; Nelson, S.O. Microwave dielectric properties of shelled and unshelled peanuts. Trans. ASAE 2004, 47, 1215–1222. [Google Scholar] [CrossRef]
- Zhao, Y.Y.; Flugstad, B.; Kolbe, E.; Park, J.W.; Wells, J.H. Using capacitive (radio frequency) dielectric heating in food processing and preservation—A review. J. Food Process Eng. 2000, 23, 25–55. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, M.; Mujumdar, A.S.; Jiang, H. Effect of salt and sucrose content on dielectric properties and microwave freeze drying behavior of re-structured potato slices. J. Food Eng. 2011, 106, 290–297. [Google Scholar] [CrossRef]
- Koskiniemi, C.B.; Truong, V.D.; McFeeters, R.F.; Simunovic, J. Effects of acid, salt, and soaking time on the dielectric properties of acidified vegetables. Int. J. Food Prop. 2013, 16, 917–927. [Google Scholar] [CrossRef]
- Ozturk, S.; Kong, F.B.; Singh, R.K.; Kuzy, J.D.; Li, C.Y.; Trabelsi, S. Dielectric properties, heating rate, and heating uniformity of various seasoning spices and their mixtures with radio frequency heating. J. Food Eng. 2018, 228, 128–141. [Google Scholar] [CrossRef]
- Ling, B.; Lyng, J.G.; Wang, S.J. Radio-frequency treatment for stabilization of wheat germ: Dielectric properties and heating uniformity. Innov. Food Sci. Emerg. Technol. 2018, 48, 66–74. [Google Scholar] [CrossRef]
- Jiao, Y.; Tang, J.; Wang, S.J.; Koral, T. Influence of dielectric properties on the heating rate in free-running oscillator radio frequency systems. J. Food Eng. 2014, 120, 197–203. [Google Scholar] [CrossRef]
Composition | Content | Method |
---|---|---|
Fat | 67.12 ± 0.37 | AOAC 948.22 |
Protein a | 14.60 ± 0.29 | AOAC 950.48 |
Moisture | 2.76 ± 0.55 | AOAC 925.40 |
Ash | 2.84 ± 0.32 | AOAC 950.49 |
Dietary fiber | 7.59 ± 0.63 | AOAC 985.29 |
Carbohydrate | 10.18 ± 0.24 | Estimated by difference b |
Moisture Content (% wb) | Density ± SD (g cm−3) | Specific Heat (J kg−1 °C−1) |
---|---|---|
10 | 0.8150 ± 0.0102 | 970 ± 35 |
15 | 0.9431 ± 0.0075 | 1138 ± 46 |
20 | 1.0005 ± 0.0037 | 1267 ± 53 |
25 | 1.1024 ± 0.0008 | 1382 ± 37 |
30 | 1.2715 ± 0.0103 | 1469 ± 48 |
Frequency (MHz) | Dielectric Constant (ε′) |
---|---|
27 | ε′ = 5.165 − 0.325M + 0.022T + 0.009M2 − 0.001T2 + 0.01M·T (2) |
40 | ε′ = 5.254 − 0.321M + 0.007T + 0.008M2 − 0.001T2 + 0.009M·T (3) |
915 | ε′ = 5.615 − 0.301M − 0.107T + 0.007M2 + 0.001T2 + 0.009M·T (4) |
2450 | ε′ = 5.151 − 0.255M − 0.178T + 0.005M2 + 0.002T2 + 0.008M·T (5) |
Frequency (MHz) | Dielectric Loss Factor (ε″) |
---|---|
27 | ε″ = 3.649 − 0.245M − 0.238T + 0.003M2 + 0.003T2 + 0.014M·T (6) |
40 | ε′ = 3.318 − 0. 215M − 0.218T + 0.003M2 − 0.003T2 + 0.013M·T (7) |
915 | ε″ = 1.153 + 0.004M − 0.177T − 0.002M2 + 0.002T2 + 0.007M·T (8) |
2450 | ε″ = 1.125 − 0.031M − 0.153T − 0.001M2 + 0.002T2 + 0.006M·T (9) |
Variance and R | 27 MHz (2) | 40 MHz (3) | 915 MHz (4) | 2450 MHz (5) |
---|---|---|---|---|
M | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
T | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
M2 | 0.1560 | 0.0523 | 0.0579 | 0.3928 |
T2 | 0.0654 | 0.2180 | 0.0904 | 0.0062 |
M × T | 0.0460 | <0.0001 | 0.0065 | 0.0062 |
Model | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
R | 0.9787 | 0.9801 | 0.9752 | 0.9419 |
Variance and R | 27 MHz (6) | 40 MHz (7) | 915 MHz (8) | 2450 MHz (9) |
---|---|---|---|---|
M | <0.0001 | 0.0029 | <0.0001 | <0.0001 |
T | <0.0001 | 0.0009 | <0.0001 | <0.0001 |
M2 | 0.0005 | 0.0523 | <0.0001 | <0.0001 |
T2 | 0.6775 | 0.7083 | 0.5121 | 0.7620 |
M × T | <0.0001 | <0.0001 | <0.0001 | 0.0002 |
Model | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
R | 0.9753 | 0.9730 | 0.9850 | 0.9897 |
Samples | T (°C) | Dielectric Properties | Frequency (MHz) 2450 MHz | |||
---|---|---|---|---|---|---|
27 | 40 | 915 | 2450 | |||
No salt | 5 | ε′ ± SD | 3.47 ± 0.03 | 3.38 ± 0.04 | 2.50 ± 0.05 | 1.77 ± 0.01 |
ε″ ± SD | 0.47 ± 0.01 | 0.44 ± 0.02 | 0.24 ± 0.01 | 0.11 ± 0.00 | ||
25 | ε′ ± SD | 8.97 ± 0.04 | 7.73 ± 0.06 | 4.66 ± 0.03 | 2.65 ± 0.07 | |
ε″ ± SD | 3.35 ± 0.03 | 3.20 ± 0.01 | 1.71 ± 0.04 | 1.01 ± 0.02 | ||
45 | ε′ ± SD | 15.09 ± 0.08 | 17.53 ± 0.09 | 6.33 ± 0.06 | 4.18 ± 0.05 | |
ε″ ± SD | 10.18 ± 0.04 | 8.58 ± 0.05 | 3.69 ± 0.06 | 2.78 ± 0.03 | ||
65 | ε′ ± SD | 20.01 ± 0.11 | 19.56 ± 0.09 | 8.57 ± 0.12 | 6.19 ± 0.08 | |
ε″ ± SD | 15.19 ± 0.13 | 10.03 ± 0.14 | 6.96 ± 0.07 | 6.49 ± 0.10 | ||
Light- salt | 5 | ε′ ± SD | 5.32 ± 0.09 | 5.03 ± 0.07 | 3.82 ± 0.05 | 3.15 ± 0.04 |
ε″ ± SD | 1.28 ± 0.03 | 1.19 ± 0.06 | 0.86 ± 0.05 | 0.73 ± 0.04 | ||
25 | ε′ ± SD | 11.46 ± 0.13 | 10.07 ± 0.14 | 6.87 ± 0.08 | 5.33 ± 0.07 | |
ε″ ± SD | 8.58 ± 0.05 | 7.34 ± 0.03 | 2.89 ± 0.02 | 2.55 ± 0.05 | ||
45 | ε′ ± SD | 18.93 ± 0.15 | 17.89 ± 0.17 | 8.35 ± 0.14 | 7.49 ± 0.13 | |
ε″ ± SD | 15.23 ± 0.07 | 14.89 ± 0.07 | 5.96 ± 0.04 | 4.64 ± 0.05 | ||
65 | ε′ ± SD | 23.71 ± 0.27 | 22.15 ± 0.32 | 13.84 ± 0.18 | 11.15 ± 0.19 | |
ε″ ± SD | 27.02 ± 0.11 | 26.85 ± 0.08 | 9.27 ± 0.05 | 9.12 ± 0.04 | ||
Medium-salt | 5 | ε′ ± SD | 7.45 ± 0.14 | 7.23 ± 0.16 | 3.96 ± 0.13 | 3.66 ± 0.17 |
ε″ ± SD | 5.18 ± 0.06 | 5.04 ± 0.03 | 3.14 ± 0.05 | 3.02 ± 0.02 | ||
25 | ε′ ± SD | 13.97 ± 0.14 | 13.12 ± 0.15 | 7.94 ± 0.11 | 7.59 ± 0.07 | |
ε″ ± SD | 14.96 ± 0.03 | 13.82 ± 0.06 | 5.15 ± 0.05 | 4.89 ± 0.04 | ||
45 | ε′ ± SD | 20.79 ± 0.28 | 20.24 ± 0.35 | 10.64 ± 0.17 | 9.08 ± 0.13 | |
ε″ ± SD | 25.89 ± 0.09 | 22.33 ± 0.06 | 7.28 ± 0.03 | 7.04 ± 0.04 | ||
65 | ε′ ± SD | 27.43 ± 0.36 | 26.56 ± 0.25 | 14.81 ± 0.22 | 14.17 ± 0.18 | |
ε″ ± SD | 34.83 ± 0.12 | 31.21 ± 0.09 | 13.14 ± 0.08 | 12.85 ± 0.07 | ||
Heavy-salt | 5 | ε′ ± SD | 10.66 ± 0.12 | 10.14 ± 0.09 | 4.23 ± 0.04 | 3.97 ± 0.02 |
ε″ ± SD | 13.38 ± 0.06 | 11.15 ± 0.07 | 5.42 ± 0.05 | 4.25 ± 0.02 | ||
25 | ε′ ± SD | 15.48 ± 0.15 | 14.06 ± 0.11 | 8.39 ± 0.09 | 8.01 ± 0.08 | |
ε″ ± SD | 24.26 ± 0.06 | 22.09 ± 0.06 | 8.29 ± 0.07 | 7.03 ± 0.05 | ||
45 | ε′ ± SD | 23.54 ± 0.23 | 22.78 ± 0.25 | 13.26 ± 0.17 | 12.87 ± 0.13 | |
ε″ ± SD | 33.17 ± 0.11 | 28.89 ± 0.13 | 11.32 ± 0.08 | 10.13 ± 0.10 | ||
65 | ε′ ± SD | 29.37 ± 0.24 | 28.93 ± 0.27 | 15.78 ± 0.18 | 15.32 ± 0.16 | |
ε″ ± SD | 47.96 ± 0.13 | 43.37 ± 0.08 | 15.41 ± 0.10 | 14.91 ± 0.07 |
T (°C) | M (%) | Penetration Depth (cm) | |||
---|---|---|---|---|---|
27 MHz | 40 MHz | 915 MHz | 2450 MHz | ||
5 | 10 | 1339.26 ± 21.43 | 856.58 ± 18.86 | 47.29 ± 2.38 | 24.23 ± 1.37 |
15 | 1021.34 ± 26.79 | 496.43 ± 13.76 | 34.3 ± 1.54 | 19.92 ± 1.29 | |
20 | 712.56 ± 20.16 | 382.88 ± 9.43 | 26.23 ± 1.17 | 16.31 ± 1.07 | |
25 | 397.75 ± 17.89 | 220.19 ± 11.87 | 19.21 ± 1.14 | 13.68 ± 0.86 | |
30 | 272.74 ± 8.89 | 206.36 ± 13.69 | 15.83 ± 0.86 | 10.05 ± 0.65 | |
25 | 10 | 949.54 ± 24.71 | 758.12 ± 17.89 | 39.83 ± 4.35 | 22.24 ± 2.14 |
15 | 607.56 ± 19.59 | 449.77 ± 14.36 | 26.53 ± 2.07 | 16.93 ± 1.69 | |
20 | 357.19 ± 11.37 | 319.49 ± 12.76 | 21.42 ± 2.49 | 12.50 ± 1.32 | |
25 | 287.35 ± 14.27 | 263.18 ± 8.63 | 17.75 ± 1.77 | 9.15 ± 0.68 | |
30 | 169.94 ± 9.25 | 117.19 ± 6.52 | 13.66 ± 1.94 | 8.62 ± 0.63 | |
45 | 10 | 707.56 ± 19.74 | 675.33 ± 15.47 | 32.69 ± 2.05 | 16.93 ± 1.36 |
15 | 424.49 ± 16.63 | 407.8 ± 14.33 | 22.99 ± 1.65 | 15.68 ± 1.17 | |
20 | 207.93 ± 15.39 | 177.79 ± 7.12 | 17.73 ± 1.44 | 12.49 ± 0.95 | |
25 | 153.88 ± 11.47 | 106.34 ± 6.26 | 11.96 ± 0.68 | 8.24 ± 0.69 | |
30 | 94.3 ± 4.48 | 78.89 ± 2.78 | 13.84 ± 1.23 | 6.61 ± 0.52 | |
65 | 10 | 249.42 ± 13.86 | 177.45 ± 9.93 | 21.87 ± 1.43 | 14.77 ± 0.78 |
15 | 129.86 ± 6.57 | 96.28 ± 7.26 | 16.22 ± 1.27 | 12.29 ± 0.63 | |
20 | 84.79 ± 7.32 | 58.94 ± 4.37 | 12.58 ± 1.83 | 10.02 ± 0.59 | |
25 | 55.34 ± 3.98 | 41.03 ± 2.55 | 9.94 ± 0.87 | 7.59 ± 0.48 | |
30 | 31.89 ± 2.17 | 27.48 ± 1.18 | 7.15 ± 0.69 | 5.43 ± 0.28 |
Salt Sample | T (°C) | Penetration Depth (cm) | |||
---|---|---|---|---|---|
27 MHz | 40 MHz | 915 MHz | 2450 MHz | ||
Light | 5 | 128.57 ± 4.54 | 101.75 ± 3.69 | 26.39 ± 1.89 | 18.17 ± 1.54 |
25 | 69.65 ± 3.87 | 42.79 ± 2.28 | 19.54 ± 1.23 | 12.28 ± 1.17 | |
45 | 48.43 ± 3.25 | 31.65 ± 1.55 | 11.39 ± 1.64 | 8.64 ± 1.18 | |
65 | 29.54 ± 1.87 | 20.35 ± 0.98 | 8.53 ± 1.09 | 6.32 ± 0.94 | |
Medium | 5 | 94.79 ± 3.65 | 66.79 ± 2.79 | 22.45 ± 1.25 | 15.26 ± 0.63 |
25 | 51.69 ± 2.36 | 38.54 ± 1.78 | 15.17 ± 1.07 | 10.19 ± 0.73 | |
45 | 37.23 ± 1.65 | 21.97 ± 0.84 | 9.31 ± 0.89 | 7.26 ± 0.89 | |
65 | 22.79 ± 1.23 | 16.29 ± 1.02 | 7.37 ± 0.67 | 6.11 ± 0.94 | |
Heavy | 5 | 63.88 ± 2.74 | 40.26 ± 1.59 | 18.46 ± 1.05 | 11.37 ± 0.44 |
25 | 42.69 ± 2.29 | 27.83 ± 1.34 | 13.65 ± 1.17 | 8.29 ± 0.72 | |
45 | 29.43 ± 1.69 | 18.48 ± 1.27 | 8.14 ± 1.19 | 6.39 ± 0.49 | |
65 | 13.76 ± 0.88 | 11.28 ± 1.19 | 7.02 ± 0.65 | 4.21 ± 0.83 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Li, M.; Cheng, J.; Wang, J.; Ding, Z.; Yuan, X.; Zhou, S.; Liu, X. Effects of Moisture, Temperature, and Salt Content on the Dielectric Properties of Pecan Kernels during Microwave and Radio Frequency Drying Processes. Foods 2019, 8, 385. https://doi.org/10.3390/foods8090385
Zhang J, Li M, Cheng J, Wang J, Ding Z, Yuan X, Zhou S, Liu X. Effects of Moisture, Temperature, and Salt Content on the Dielectric Properties of Pecan Kernels during Microwave and Radio Frequency Drying Processes. Foods. 2019; 8(9):385. https://doi.org/10.3390/foods8090385
Chicago/Turabian StyleZhang, Jigang, Maoye Li, Jianghua Cheng, Jiao Wang, Zhien Ding, Xiaolong Yuan, Sumei Zhou, and Xinmin Liu. 2019. "Effects of Moisture, Temperature, and Salt Content on the Dielectric Properties of Pecan Kernels during Microwave and Radio Frequency Drying Processes" Foods 8, no. 9: 385. https://doi.org/10.3390/foods8090385
APA StyleZhang, J., Li, M., Cheng, J., Wang, J., Ding, Z., Yuan, X., Zhou, S., & Liu, X. (2019). Effects of Moisture, Temperature, and Salt Content on the Dielectric Properties of Pecan Kernels during Microwave and Radio Frequency Drying Processes. Foods, 8(9), 385. https://doi.org/10.3390/foods8090385