Next Issue
Volume 11, March
Previous Issue
Volume 11, January
 
 

Hydrology, Volume 11, Issue 2 (February 2024) – 18 articles

Cover Story (view full-size image): In the context of climate change, population growth, and urbanization, the Di Lorenzo research group in the Department of Earth, Environmental, and Planetary Sciences at Brown University studies how water resources in arid areas are sensitive to uncertainty in input data and presents an innovative assessment strategy to narrow uncertainty and provide robust groundwater recharge estimations. In this study, authors emphasize the pivotal role of climatic parameters in governing groundwater recharge assessment, followed by land use inputs and soil classification. They believe these findings will contribute to harmonizing a balance between aquifers’ economic sustainability and environmental responsibilities in arid regions. While the case study is Qatar, the authors believe the proposed method also applies to other arid areas. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
19 pages, 86476 KiB  
Article
Hydrogeological Characteristics of the Makaresh Carbonate Karst Massif (Central Albania)
by Romeo Eftimi, Isabella Serena Liso and Mario Parise
Hydrology 2024, 11(2), 29; https://doi.org/10.3390/hydrology11020029 - 15 Feb 2024
Viewed by 1705
Abstract
Carbonate rocks cover about 23% of Albania, with exploitable karst water resources estimated at 2.84 × 109 m3/year (about 65% of the total exploitable groundwater resources in the country). The Kruja tectonic zone is characterized by the presence of SE–NW-oriented [...] Read more.
Carbonate rocks cover about 23% of Albania, with exploitable karst water resources estimated at 2.84 × 109 m3/year (about 65% of the total exploitable groundwater resources in the country). The Kruja tectonic zone is characterized by the presence of SE–NW-oriented carbonate structures, rich in fresh and thermal groundwaters. More than 80% of the thermal springs in Albania are present in this tectonic zone. One of its most interesting carbonate structures, with the presence of both cold and thermal waters, is the small karst structure of Makaresh, with a surface of 22 km2. The purpose of this article is to describe the hydrogeological characteristics of this massif; based on the physico-chemical characteristics, groundwaters of the study area are classified as cold waters (belonging to the local flow system) and thermal waters (originating in intermediate/deep flow systems). The former are mainly of HCO3-Ca or HCO3-Ca-Mg type (electrical conductivity 580–650 μS/cm, Temperature 13.9–16.6 °C). Thermal waters are mainly of the Cl-Na-Ca type (EC 7200–7800 μS/cm, T 18.5–22.5 °C); they are further characterized by high hydrogen sulfide concentration, up to about 350 mg/L. The presence of two groundwater types in the Makaresh massif is connected to the presence of two groundwater circulation systems. The main factors of the groundwater physico-chemical quality are the dissolution of rocks and minerals contained therein, the presence of hypogenic speleogenesis, and the mixing of the groundwater of the two systems. The hydrogeological studies proved that karst rocks contain considerable freshwater resources, partly used for water supply. Thermal waters are not currently exploited due to their temperature, but they are potentially suitable for thermal uses by drilling boreholes to a depth of about 1000 m. Full article
Show Figures

Figure 1

13 pages, 2830 KiB  
Article
Sensitivity of Groundwater Recharge Assessment to Input Data in Arid Areas
by Salah Basem Ajjur and Emanuele Di Lorenzo
Hydrology 2024, 11(2), 28; https://doi.org/10.3390/hydrology11020028 - 14 Feb 2024
Viewed by 1475
Abstract
Natural groundwater recharge (GR) assessment depends on several hydrogeological and climatic inputs, where uncertainty is inevitable. Assessing how inputs’ uncertainty affects GR estimation is important; however, it remains unclear in arid areas. This study assesses inputs’ uncertainty by examining the changes in GR [...] Read more.
Natural groundwater recharge (GR) assessment depends on several hydrogeological and climatic inputs, where uncertainty is inevitable. Assessing how inputs’ uncertainty affects GR estimation is important; however, it remains unclear in arid areas. This study assesses inputs’ uncertainty by examining the changes in GR simulations resulting from modifications in climatic, land use, and soil inputs. A physical-based hydrological model was built to estimate GR from 18 different GR scenarios across Qatar. Scenarios S1–S7 were created from different climatic inputs but identical land use and soil maps. Scenarios S8–S14 were created from different land use maps (analyzed from historical Landsat satellite images) but similar climatic and soil inputs. In S15–S18, the soil parameters were changed while the climatic and land use maps were kept the same. The results show that climatic inputs are key factors controlling the GR in arid areas, followed by land use inputs and soil classification. A strong correlation was observed between the GR values and precipitation, while moderate (non-significant) correlations were observed between the GR values and potential evapotranspiration and wind speed. Soil changes affected the GR simulations but inconsiderably compared with climatic and land use inputs. Since GR estimation is fundamental but uncertain in arid areas, the study findings contribute to narrowing the uncertainty in GR estimation. Full article
(This article belongs to the Special Issue Hydrological Processes in Agricultural Watersheds)
Show Figures

Figure 1

24 pages, 14363 KiB  
Article
Long-Term Spatiotemporal Investigation of Various Rainfall Intensities over Central India Using EO Datasets
by Nitesh Awasthi, Jayant Nath Tripathi, George P. Petropoulos, Pradeep Kumar, Abhay Kumar Singh, Kailas Kamaji Dakhore, Kripan Ghosh, Dileep Kumar Gupta, Prashant K. Srivastava, Kleomenis Kalogeropoulos, Sartajvir Singh and Dhiraj Kumar Singh
Hydrology 2024, 11(2), 27; https://doi.org/10.3390/hydrology11020027 - 13 Feb 2024
Viewed by 1855
Abstract
This study involved an investigation of the long-term seasonal rainfall patterns in central India at the district level during the period from 1991 to 2020, including various aspects such as the spatiotemporal seasonal trend of rainfall patterns, rainfall variability, trends of rainy days [...] Read more.
This study involved an investigation of the long-term seasonal rainfall patterns in central India at the district level during the period from 1991 to 2020, including various aspects such as the spatiotemporal seasonal trend of rainfall patterns, rainfall variability, trends of rainy days with different intensities, decadal percentage deviation in long-term rainfall patterns, and decadal percentage deviation in rainfall events along with their respective intensities. The central region of India was meticulously divided into distinct subparts, namely, Gujarat, Daman and Diu, Maharashtra, Goa, Dadra and Nagar Haveli, Madhya Pradesh, Chhattisgarh, and Odisha. The experimental outcomes represented the disparities in rainfall distribution across different districts of central India with the spatial distribution of mean rainfall ranges during winter (2.08 mm over Dadra and Nagar Haveli with an average of 24.19 mm over Odisha), premonsoon (6.65 mm over Gujarat to 132.89 mm over Odisha), monsoon (845.46 mm over Gujarat to 3188.21 mm over Goa), and post-monsoon (30.35 mm over Gujarat to 213.87 mm over Goa), respectively. Almost all the districts of central India displayed an uneven pattern in the percentage deviation of seasonal rainfall in all three decades for all seasons, which indicates the seasonal rainfall variability over the last 30 years. A noticeable variation in the percentage deviation of seasonal rainfall patterns has been observed in the following districts: Rewa, Puri, Anuppur, Ahmadabad, Navsari, Chhindwara, Devbhumi Dwarka, Amreli, Panch Mahals, Kolhapur, Kandhamal, Ratnagiri, Porbandar, Bametara, and Sabar Kantha. In addition, a larger number of rainy days of various categories occurred in the monsoon season in comparison to other seasons. A higher contribution of trace rainfall events was found in the winter season. The highest contributions of very light, light rainfall, moderate, rather high, and high events were found in the monsoon season in central India. The percentage of various categories of rainfall events has decreased over the last two decades (2001–2020) in comparison to the third decade (1991–2000), according to the mean number of rainfall events in the last 30 years. This spatiotemporal analysis provides valuable insights into the rainfall trends in central India, which represent regional disparities and the potential challenges impacted by climate patterns. This study contributes to our understanding of the changing rainfall dynamics and offers crucial information for effective water resource management in the region. Full article
Show Figures

Figure 1

20 pages, 4956 KiB  
Article
Increased Hg Methylation Risks in Management-Induced Terrain Depressions in Forests with Organic-Matter-Rich Soils
by Ivars Kļaviņš, Arta Bārdule, Zane Kļaviņa and Zane Lībiete
Hydrology 2024, 11(2), 26; https://doi.org/10.3390/hydrology11020026 - 13 Feb 2024
Viewed by 1586
Abstract
Mercury (Hg) is a toxic contaminant that bioaccumulates in trophic chains in its organic form—methylmercury (MeHg). Hg methylation is driven by microorganisms in favourable conditions, stagnant water pools being among potential methylation hotspots. In the present study, we estimated the total Hg and [...] Read more.
Mercury (Hg) is a toxic contaminant that bioaccumulates in trophic chains in its organic form—methylmercury (MeHg). Hg methylation is driven by microorganisms in favourable conditions, stagnant water pools being among potential methylation hotspots. In the present study, we estimated the total Hg and MeHg concentrations in the sediments of water-filled management-induced terrain depressions (ruts, mounding pits and a partly functional drainage ditch) and in nearby undisturbed soil in six hemiboreal forest sites with organic-matter-rich soils in Latvia. Environmental samples were taken in the spring, summer and autumn of 2022. Furthermore, we evaluated the risks of element leaching from the depressions using high-resolution digital terrain models (DTM) and meteorological data. The results suggested a possible leaching of Hg in the past as THg concentrations in the sediments of the depressions were significantly lower than in the surrounding soil. Furthermore, significantly higher MeHg and %MeHg concentrations were found in the sediments than in the surrounding soil identifying the management-induced depressions as Hg methylation hotspots. Spatial analysis of the DTMs pointed to a very likely periodical leaching of elements from the depressions during high precipitation episodes as well as during snowmelts. Moreover, it was observed that ruts left by heavy machinery often channel surface runoff. Full article
Show Figures

Figure 1

17 pages, 8109 KiB  
Article
Predictive Assessment of Climate Change Impact on Water Yield in the Meta River Basin, Colombia: An InVEST Model Application
by Jhon B. Valencia, Vladimir V. Guryanov, Jeison Mesa-Diez, Nilton Diaz, Daniel Escobar-Carbonari and Artyom V. Gusarov
Hydrology 2024, 11(2), 25; https://doi.org/10.3390/hydrology11020025 - 8 Feb 2024
Viewed by 2028
Abstract
This paper presents a hydrological assessment of the 113,981 km2 Meta River basin in Colombia using 13 global climate models to predict water yield for 2050 under two CMIP6 scenarios, SSP 4.5 and SSP 8.5. Despite mixed performance across subbasins, the model [...] Read more.
This paper presents a hydrological assessment of the 113,981 km2 Meta River basin in Colombia using 13 global climate models to predict water yield for 2050 under two CMIP6 scenarios, SSP 4.5 and SSP 8.5. Despite mixed performance across subbasins, the model was notably effective in the upper Meta River subbasin. This study predicts an overall increase in the basin’s annual water yield due to increased precipitation, especially in flatter regions. Under the SSP 4.5, the Meta River basin’s water flow is expected to rise from 5141.6 m3/s to 6397.5 m3/s, and to 6101.5 m3/s under the SSP 8.5 scenario, marking 24% and 19% increases in water yield, respectively. Conversely, the upper Meta River subbasin may experience a slight decrease in water yield, while the upper Casanare River subbasin is predicted to see significant increases. The South Cravo River subbasin, however, is expected to face a considerable decline in water yield, indicating potential water scarcity. This study represents a pioneering large-scale application of the InVEST–AWY model in Colombia using CMIP6 global climate models with an integrated approach to produce predictions of future water yields. Full article
(This article belongs to the Special Issue Runoff Modelling under Climate Change)
Show Figures

Figure 1

20 pages, 9023 KiB  
Article
CMIP5 Decadal Precipitation over an Australian Catchment
by Md Monowar Hossain, A. H. M. Faisal Anwar, Nikhil Garg, Mahesh Prakash and Mohammed Abdul Bari
Hydrology 2024, 11(2), 24; https://doi.org/10.3390/hydrology11020024 - 7 Feb 2024
Viewed by 1500
Abstract
The fidelity of the decadal experiment in Coupled Model Intercomparison Project Phase-5 (CMIP5) has been examined, over different climate variables for multiple temporal and spatial scales, in many previous studies. However, most of the studies were for the temperature and temperature-based climate indices. [...] Read more.
The fidelity of the decadal experiment in Coupled Model Intercomparison Project Phase-5 (CMIP5) has been examined, over different climate variables for multiple temporal and spatial scales, in many previous studies. However, most of the studies were for the temperature and temperature-based climate indices. A quite limited study was conducted on precipitation of decadal experiment, and no attention was paid to the catchment level. This study evaluates the performances of eight GCMs (MIROC4h, EC-EARTH, MRI-CGCM3, MPI-ESM-MR, MPI-ESM-LR, MIROC5, CMCC-CM, and CanCM4) for the monthly hindcast precipitation of decadal experiment over the Brisbane River catchment in Queensland, Australia. First, the GCMs datasets were spatially interpolated onto a spatial resolution of 0.05 × 0.05° (5 × 5 km) matching with the grids of observed data and then were cut for the catchment. Next, model outputs were evaluated for temporal skills, dry and wet periods, and total precipitation (over time and space) based on the observed values. Skill test results revealed that model performances varied over the initialization years and showed comparatively higher scores from the initialization year 1990 and onward. Models with finer spatial resolutions showed comparatively better performances as opposed to the models of coarse spatial resolutions, where MIROC4h outperformed followed by EC-EARTH and MRI-CGCM3. Based on the performances, models were grouped into three categories, where models (MIROC4h, EC-EARTH, and MRI-CGCM3) with high performances fell in the first category, and middle (MPI-ESM-LR and MPI-ESM-MR) and comparatively low-performing models (MIROC5, CanCM4, and CMCC-CM) fell in the second and third categories, respectively. To compare the performances of multi-model ensembles’ mean (MMEMs), three MMEMs were formed. The arithmetic mean of the first category formed MMEM1, the second and third categories formed MMEM2, and all eight models formed MMEM3. The performances of MMEMs were also assessed using the same skill tests, and MMEM2 performed best, which suggests that evaluation of models’ performances is highly important before the formation of MMEM. Full article
Show Figures

Figure 1

18 pages, 4099 KiB  
Article
Expanding Karst Groundwater Tracing Techniques: Incorporating Population Genetic and Isotopic Data to Enhance Flow-Path Characterization
by Benjamin W. Tobin, Benjamin V. Miller, Matthew L. Niemiller and Andrea M. Erhardt
Hydrology 2024, 11(2), 23; https://doi.org/10.3390/hydrology11020023 - 4 Feb 2024
Viewed by 1759
Abstract
Karst aquifers are unique among groundwater systems because of variable permeability and flow-path organization changes resulting from dissolution processes. Over time, changes in flow-path connectivity complicate interpretations of conduit network evolution in karst hydrogeology. Natural and artificial tracer techniques have long provided critical [...] Read more.
Karst aquifers are unique among groundwater systems because of variable permeability and flow-path organization changes resulting from dissolution processes. Over time, changes in flow-path connectivity complicate interpretations of conduit network evolution in karst hydrogeology. Natural and artificial tracer techniques have long provided critical information for protecting karst aquifers and understanding the potential impacts on ecosystems and human populations. Conventional tracer methods are useful in karst hydrogeologic studies for delineating flow paths and defining recharge, storage, and discharge properties. However, these methods only provide snapshots of the current conditions and do not provide sufficient information to understand the changes in interconnection or larger-scale evolution of flow paths in the aquifer over time. With advances in population genetics, it is possible to assess population connectivity, which may provide greater insights into complex groundwater flow paths. To assess this potential, we combined the more traditional approaches collected in this and associated studies, including artificial (dye) and natural (geochemistry, isotopes, and discharge) tracers, with the population genetic data of a groundwater crustacean to determine whether these data can provide insights into seasonal or longer changes in connections between conduits. The data collected included dye trace, hydrographs, geochemistry, and asellid isopod (Caecidotea bicrenenta) population genetics in Fern Cave, AL, USA, a 25 km-long cave system. Combined, these data show the connections between two separate flow paths during flood events as the downstream populations of isopods belonging to the same subpopulation were measured in both systems. Additionally, the sub-populations found in higher elevations of the cave suggest a highly interconnected unsaturated zone that allows for genetic movement in the vadose zone. Although upstream populations show some similarities in genetics, hydrologic barriers, in the form of large waterfalls, likely separate populations within the same stream. Full article
Show Figures

Figure 1

21 pages, 7267 KiB  
Article
Evaluation of BMPs in Flatland Watershed with Pumped Outlet
by Rituraj Shukla, Ramesh Rudra, Prasad Daggupati, Colin Little, Alamgir Khan, Pradeep Goel and Shiv Prasher
Hydrology 2024, 11(2), 22; https://doi.org/10.3390/hydrology11020022 - 3 Feb 2024
Viewed by 1685
Abstract
The effectiveness of existing and potential best management practices (BMPs) to cropped lands in the Jeannette Creek watershed (Thames River basin, Ontario, Canada) in reducing P loads at its pumped outlets was assessed using the Soil and Water Assessment Tool (SWAT). Existing BMPs [...] Read more.
The effectiveness of existing and potential best management practices (BMPs) to cropped lands in the Jeannette Creek watershed (Thames River basin, Ontario, Canada) in reducing P loads at its pumped outlets was assessed using the Soil and Water Assessment Tool (SWAT). Existing BMPs consisted of banded, incorporated, and variable phosphorus (P)-rate application, conservation tillage, cover crops, and vegetative buffer strips. Potential BMPs consisted of banded P application, no-till, and a cover crop following winter wheat. Two separately delineated sub-watersheds, J1 and J2, characterized by a flat topography and distinct pumped outlets, were selected for analysis. Despite challenges in delineation, the SWAT model was successfully set up to assess the impact of BMPs in reducing P loads in these sub-watersheds. Each BMP was systematically removed, and the resulting simulated P loads were compared with the baseline scenario. Compared to cover crops or vegetative buffer strips, the implementation of conservation tillage and no-till, along with altering the mode of P application, offered superior effectiveness in reducing the P load. On average, the annual reduction in total P (Ptot) loads under existing BMPs was 9.2% in J1 and 11.3% in J2, whereas, under potential BMPs, this reduction exceeded 60% in both watersheds. Full article
(This article belongs to the Special Issue Hydrological Processes in Agricultural Watersheds)
Show Figures

Figure 1

13 pages, 1595 KiB  
Article
A Modified Rational Method Approach for Calculating First Flush Design Flow Rates to Mitigate Nonpoint Source Pollution from Stormwater Runoff
by David C. Froehlich
Hydrology 2024, 11(2), 21; https://doi.org/10.3390/hydrology11020021 - 2 Feb 2024
Viewed by 1815
Abstract
Mitigating nonpoint source pollution from stormwater runoff demands effective strategies for treating the first flush depth. Whether through off-stream storage or pass-through treatment devices, designing diversion structures and filtering materials is critical. This study proposes a streamlined procedure for determining first flush design [...] Read more.
Mitigating nonpoint source pollution from stormwater runoff demands effective strategies for treating the first flush depth. Whether through off-stream storage or pass-through treatment devices, designing diversion structures and filtering materials is critical. This study proposes a streamlined procedure for determining first flush design flow rates, employing the modified rational method and rainfall intensity–duration equations applicable to any U.S. location. The dimensionless solution, which is presented as an equation requiring an iterative calculation for the desired flow rates, is complemented by precision graphs. Examples from the semi-arid Southwestern United States illustrate the methodology’s utility. Full article
Show Figures

Figure 1

28 pages, 9893 KiB  
Article
Simulation and Application of Water Environment in Highly Urbanized Areas: A Case Study in Taihu Lake Basin
by Pengxuan Zhao, Chuanhai Wang, Jinning Wu, Gang Chen, Tianshu Zhang, Youlin Li and Pingnan Zhang
Hydrology 2024, 11(2), 20; https://doi.org/10.3390/hydrology11020020 - 1 Feb 2024
Viewed by 1481
Abstract
In the wake of frequent and intensive human activities, highly urbanized areas consistently grapple with severe water environmental challenges. It becomes imperative to establish corresponding water environment models for simulating and forecasting regional water quality, addressing the associated environmental risks. The distributed framework [...] Read more.
In the wake of frequent and intensive human activities, highly urbanized areas consistently grapple with severe water environmental challenges. It becomes imperative to establish corresponding water environment models for simulating and forecasting regional water quality, addressing the associated environmental risks. The distributed framework water environment modeling system (DF-WEMS) incorporates fundamental principles, including the distributed concept and node concentration mass conservation. It adeptly merges point source and non-point source pollution load models with zero-dimensional, one-dimensional, and two-dimensional water quality models. This integration is specifically tailored for various Hydrological Feature Units (HFUs), encompassing lakes, reservoirs, floodplains, paddy fields, plain rivers, and hydraulic engineering structures. This holistic model enables the simulation and prediction of the water environment conditions within the watershed. In the Taihu Lake basin of China, a highly urbanized region featuring numerous rivers, lakes and gates, the DF-WEMS is meticulously constructed, calibrated, and validated based on 26 key water quality monitoring stations. The results indicate a strong alignment between the simulation of water quality indicators (WQIs) and real-world conditions, demonstrating the model’s reliability. This model proves applicable to the simulation, prediction, planning, and management of the water environment within the highly urbanized watershed. Full article
Show Figures

Figure 1

12 pages, 5248 KiB  
Article
A Conceptual Framework for Modeling Spatiotemporal Dynamics of Diesel Attenuation Capacity: A Case Study across Namyangju, South Korea
by Livinia Saputra, Sang Hyun Kim, Kyung-Jin Lee, Seo Jin Ki, Ho Young Jo, Seunghak Lee and Jaeshik Chung
Hydrology 2024, 11(2), 19; https://doi.org/10.3390/hydrology11020019 - 1 Feb 2024
Viewed by 1382
Abstract
The vadose zone acts as a natural buffer against groundwater contamination, and thus, its attenuation capacity (AC) directly affects groundwater vulnerability to pollutants. A regression model from the previous study predicting the overall AC of soils against diesel was further expanded to the [...] Read more.
The vadose zone acts as a natural buffer against groundwater contamination, and thus, its attenuation capacity (AC) directly affects groundwater vulnerability to pollutants. A regression model from the previous study predicting the overall AC of soils against diesel was further expanded to the GIS-based overlay-index model. Among the six physicochemical parameters used in the regression model, saturation degree (SD) is notably susceptible to climatological and meteorological events. To accommodate the lack of soil SD historical data, a series of infiltration simulations were separately conducted using Phydrus code with moving boundary conditions (i.e., rainfall records). The temporal variation of SD and the resulting AC under transient conditions are captured by building a space–time cube using a temporal raster across the study area within the designated time frame (1997–2022). The emerging hot spot analysis (EHSA) tool, based on the Getis–Ord Gi* and Mann–Kendall statistics, is applied to further identify any existing pattern associated with both SD and AC in both space and time simultaneously. Under stationary conditions, AC decreases along depth and is relatively lower near water bodies. Similarly, AC cold spot trends also show up near water bodies under transient conditions. The result captures not only the trends across time but also shows the exact location where the changes happen. The proposed framework provides an efficient tool to look for locations that have a persistently low or a gradually decreasing ability to attenuate diesel over time, indicating the need for stricter management regulations from a long-term perspective. Full article
(This article belongs to the Topic Groundwater Pollution Control and Groundwater Management)
Show Figures

Figure 1

17 pages, 7519 KiB  
Article
Assessing the Efficiency of Rainstorm Drainage Networks Using Different Arrangements of Grate Inlets
by Ismail Fathy, Gamal M. Abdel-Aal, Maha Rashad Fahmy, Amira Fathy, Martina Zelenakova, Hany F. Abd-ElHamid, Jakub Raček and Ahmed Moustafa A. Moussa
Hydrology 2024, 11(2), 18; https://doi.org/10.3390/hydrology11020018 - 31 Jan 2024
Viewed by 1459
Abstract
Urban flooding is a problem faced by most countries because of climate change. Without storm drainage systems, negative impacts may occur, such as traffic problems and increasing groundwater levels, especially in lowlands. The implementation of storm drainage networks and their fittings in poor [...] Read more.
Urban flooding is a problem faced by most countries because of climate change. Without storm drainage systems, negative impacts may occur, such as traffic problems and increasing groundwater levels, especially in lowlands. The implementation of storm drainage networks and their fittings in poor countries is affecting their economic development. Therefore, improving the efficiency of the storm drainage network is an important issue that should be considered. This paper aims to study the most appropriate position or arrangements of grate inlets to upgrade drainage efficiency at less cost. Different arrangements of grates were studied and their efficiency was determined. A comparison between the total grate’s efficiency was conducted and the best arrangement was selected. Additionally, a dimensional analysis equation was developed to determine the total efficiency of the system. Finally, the FLOW-3D program was used to simulate the laboratory results using different discharges and numbers of inlets. The error of calculation ranged between 5% and 8%. Therefore, the results indicated that this program is a powerful tool for predicting the discharge efficiency and velocity direction for large discharges. A comparison was made between this study and previous studies. The results indicated that the same trend existed. A new equation was developed to correlate discharge efficiency (E) with relative total discharge Q and number of inlets. The equation can be used by planning engineers to conduct initial planning of storm drainage layout systems and achieve cost saving. Full article
Show Figures

Figure 1

18 pages, 8338 KiB  
Article
Mountain Streambed Roughness and Flood Extent Estimation from Imagery Using the Segment Anything Model (SAM)
by Beata Baziak, Marek Bodziony and Robert Szczepanek
Hydrology 2024, 11(2), 17; https://doi.org/10.3390/hydrology11020017 - 31 Jan 2024
Viewed by 1694
Abstract
Machine learning models facilitate the search for non-linear relationships when modeling hydrological processes, but they are equally effective for automation at the data preparation stage. The tasks for which automation was analyzed consisted of estimating changes in the roughness coefficient of a mountain [...] Read more.
Machine learning models facilitate the search for non-linear relationships when modeling hydrological processes, but they are equally effective for automation at the data preparation stage. The tasks for which automation was analyzed consisted of estimating changes in the roughness coefficient of a mountain streambed and the extent of floods from images. The Segment Anything Model (SAM) developed in 2023 by Meta was used for this purpose. Images from many years from the Wielka Puszcza mountain stream located in the Polish Carpathians were used as the only input data. The model was not additionally trained for the described tasks. The SAM can be run in several modes, but the two most appropriate were used in this study. The first one is available in the form of a web application, while the second one is available in the form of a Jupyter notebook run in the Google Colab environment. Both methods do not require specialized knowledge and can be used by virtually any hydrologist. In the roughness estimation task, the average Intersection over Union (IoU) ranges from 0.55 for grass to 0.82 for shrubs/trees. Ultimately, it was possible to estimate the roughness coefficient of the mountain streambed between 0.027 and 0.059 based solely on image data. In the task of estimation of the flood extent, when selecting appropriate images, one can expect IoU at the level of at least 0.94, which seems to be an excellent result considering that the SAM is a general-purpose segmentation model. It can therefore be concluded that the SAM can be a useful tool for a hydrologist. Full article
(This article belongs to the Special Issue Flood Inundation Mapping in Hydrological Systems)
Show Figures

Figure 1

21 pages, 7295 KiB  
Article
Vulnerability to Aquifer Pollution in the Mexican Wine Producing Valley of Guadalupe, México
by Guadalupe Díaz-Gutiérrez, Luis Walter Daesslé, Francisco José Del-Toro-Guerrero, Mariana Villada-Canela and Georges Seingier
Hydrology 2024, 11(2), 16; https://doi.org/10.3390/hydrology11020016 - 31 Jan 2024
Viewed by 1684
Abstract
Groundwater pollution is one of the main challenges in our society, especially in semi-arid Mediterranean regions. This issue becomes especially critical in predominantly agricultural areas that lack comprehensive knowledge about the characteristics and functioning of their aquifer system. Vulnerability to groundwater pollution is [...] Read more.
Groundwater pollution is one of the main challenges in our society, especially in semi-arid Mediterranean regions. This issue becomes especially critical in predominantly agricultural areas that lack comprehensive knowledge about the characteristics and functioning of their aquifer system. Vulnerability to groundwater pollution is defined as the sensitivity of the aquifer to being adversely affected by an imposed pollution load. For the Guadalupe aquifer, various indicators including water level depth, level variation, aquifer properties, soil composition, topography, impact on the vadose zone, and hydraulic conductivity were evaluated to establish spatial vulnerability categories ranging from very low to very high. Two pollution vulnerability scenarios (wet and dry) were studied. The results were compared with the analysis of nitrate concentration and distribution (2001, 2020, and 2021) from samples collected in the field. In the Calafia area, which predominantly relies on viticulture, the primary recharge inputs were identified in areas with a high vulnerability to pollution. Surprisingly, these vulnerable areas exhibited lower nitrate concentrations. This scenario underscores the need for effective management measures to safeguard aquifers in agricultural regions. Full article
(This article belongs to the Section Surface Waters and Groundwaters)
Show Figures

Figure 1

9 pages, 466 KiB  
Communication
Ratingcurve: A Python Package for Fitting Streamflow Rating Curves
by Timothy O. Hodson, Keith J. Doore, Terry A. Kenney, Thomas M. Over and Muluken B. Yeheyis
Hydrology 2024, 11(2), 14; https://doi.org/10.3390/hydrology11020014 - 28 Jan 2024
Viewed by 1761
Abstract
Streamflow is one of the most important variables in hydrology, but it is difficult to measure continuously. As a result, nearly all streamflow time series are estimated from rating curves that define a mathematical relationship between streamflow and some easy-to-measure proxy like water [...] Read more.
Streamflow is one of the most important variables in hydrology, but it is difficult to measure continuously. As a result, nearly all streamflow time series are estimated from rating curves that define a mathematical relationship between streamflow and some easy-to-measure proxy like water surface elevation (stage). Despite the existence of automated methods, most rating curves are still fit manually, which can be time-consuming and subjective. Although several automated methods exist, they vary greatly in performance because of the non-convex nature of the problem. In this work, we develop a parameterization of the segmented power law that works reliably with minimal data, which could serve operationally or as a benchmark for evaluating other methods. The model, along with test data and tutorials, is available as an open-source Python package called ratingcurve. The implementation uses a modern probabilistic machine-learning framework, which is relatively easy to modify so that others can improve upon it. Full article
(This article belongs to the Special Issue Advances in River Monitoring)
Show Figures

Figure 1

35 pages, 16124 KiB  
Article
Meteorological Signal on Hydrodynamics in the Ilha Grande and Sepetiba Bays: Lag Effects and Coastal Currents
by Nair Emmanuela da Silveira Pereira, Susana Beatriz Vinzón, Marcos Nicolás Gallo and Mariela Gabioux
Hydrology 2024, 11(2), 15; https://doi.org/10.3390/hydrology11020015 - 27 Jan 2024
Viewed by 1396
Abstract
On the southeastern coast of Brazil, the bays of Ilha Grande and Sepetiba are linked by the Ilha Grande Channel, where remarkably strong currents have been consistently observed. Tidal forces cannot explain the strength of these currents. Previous researchers have focused on investigating [...] Read more.
On the southeastern coast of Brazil, the bays of Ilha Grande and Sepetiba are linked by the Ilha Grande Channel, where remarkably strong currents have been consistently observed. Tidal forces cannot explain the strength of these currents. Previous researchers have focused on investigating factors like baroclinic effects due to salinity differences or seiches between two basins without a conclusive answer. This study aims to elucidate the role of remote meteorological effects within this complex hydrodynamic system. A numerical approach with a coastal model nested within an ocean model was employed, enabling an in-depth examination of the intricate interplay between meteorological and tidal forcings. The study revealed a significant finding: the lag in signal propagation plays a pivotal role in determining how these signals impact the dynamics of the bays. The astronomical signal exhibits a minimal lag along the coast (1 min) and leads to water level differences between the sea and the coastline, resulting in the generation of tidal currents at the bay entrances. On the other hand, the remote meteorological signal, with a stronger signal lag along the coast (4.92 h), leads to the creation of a water level difference between the bay entrances, inducing significant fluxes along the narrow Ilha Grande Channel. Full article
Show Figures

Figure 1

19 pages, 3560 KiB  
Article
Detection of Strobilurin Fungicides in Trout Streams within an Agricultural Watershed
by Cole R. Weaver, Meghan Brockman, Neal D. Mundahl, William A. Arnold, Dylan Blumentritt, Will L. Varela and Jeanne L. Franz
Hydrology 2024, 11(2), 13; https://doi.org/10.3390/hydrology11020013 - 25 Jan 2024
Cited by 1 | Viewed by 1646
Abstract
The use of strobilurin fungicides in agriculture has increased steadily during the past 25 years, and although strobilurins have minimal water solubility, they regularly appear in surface waters, at times in concentrations approaching toxic levels for aquatic life. The present study examined concentrations [...] Read more.
The use of strobilurin fungicides in agriculture has increased steadily during the past 25 years, and although strobilurins have minimal water solubility, they regularly appear in surface waters, at times in concentrations approaching toxic levels for aquatic life. The present study examined concentrations of strobilurin fungicides in designated trout streams draining an agricultural watershed in southeastern Minnesota, USA, where fungicides may have contributed to a recent fish kill. Water samples (n = 131) were analyzed for the presence of five different strobilurin fungicides (azoxystrobin, fluoxastrobin, picoxystrobin, pyraclostrobin, trifloxystrobin). Samples were collected via grab and automated sampling during baseflow and stormflow events throughout an entire crop-growing season from sites on each of the three forks of the Whitewater River. Detection frequencies for the five strobilurins ranged from 44 to 82%. Fluoxastrobin and pyraclostrobin concentrations were above known toxic levels in 3% and 15% of total samples analyzed, respectively. The highest concentrations were detected in mid-summer (mid-June to mid-August) samples, coincident with likely strobilurin applications. Lower concentrations were present in water samples collected during the nonapplication periods in spring and fall, suggesting groundwater–stream interactions or steady leaching of fungicides from watershed soils or stream sediments. Further study is required to determine strobilurin concentrations in sediments, soils, and groundwater. Better tracking and guidance regarding strobilurin use is necessary to adequately protect aquatic life as fungicide use continues to increase. Full article
(This article belongs to the Special Issue Hydrological Processes in Agricultural Watersheds)
Show Figures

Figure 1

15 pages, 3154 KiB  
Article
Hydrodynamic Modeling for Flow and Velocity Estimation from an Arduino Ultrasonic Sensor
by Tatiane Souza Rodrigues Pereira, Thiago Pires de Carvalho, Thiago Augusto Mendes, Guilherme da Cruz dos Reis and Klebber Teodomiro Martins Formiga
Hydrology 2024, 11(2), 12; https://doi.org/10.3390/hydrology11020012 - 23 Jan 2024
Viewed by 1701
Abstract
Flow is a crucial variable in water resources, although its determination is challenging. Rating curves are standard but have conceptual limitations, leading to significantly high uncertainties. Hydrodynamic models offer a more precise alternative, but they necessitate continuous measurements of velocities, which are complex [...] Read more.
Flow is a crucial variable in water resources, although its determination is challenging. Rating curves are standard but have conceptual limitations, leading to significantly high uncertainties. Hydrodynamic models offer a more precise alternative, but they necessitate continuous measurements of velocities, which are complex and expensive to obtain. Thus, this article aimed to validate a hydrodynamic model that estimates flows and velocities in transient conditions based on water levels measured using a low-cost ultrasonic sensor. The results indicated that these estimates can be reliable if (1) hydrodynamic models are used to represent the flow, (2) the channel bed slope is well represented in the geometric data, and (3) Manning’s coefficients are accurately estimated during calibration. The calculated flow and velocity showed a maximum variation of 40% for the same water level compared to estimates using the rating curve. The model exhibited higher sensitivity in terms of the flow when varying the channel bed slope, highlighting the importance of topographic surveys for the estimates. The validity of the implemented model was assessed with experimental data, indicating precision and reliability for practical applications in natural channels. Full article
(This article belongs to the Special Issue Advances in River Monitoring)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop