Knee Joint Preservation in Tactical Athletes: A Comprehensive Approach Based upon Lesion Location and Restoration of the Osteochondral Unit
Abstract
:1. Introduction
2. Components of the Osteochondral Unit
3. Layers of the Osteochondral Unit
4. Classification of Articular Cartilage Injuries
5. Aging and Articular Cartilage Degeneration
6. Preoperative Evaluation and Imaging
7. Lesion Location-Specific Considerations
7.1. Patellofemoral Joint Cartilage Lesion
7.2. Tibiofemoral Joint Cartilage Lesion
8. Non-Surgical Management
9. Surgical Management
9.1. Chondroplasty
9.2. Marrow Stimulation
9.3. Juvenile Allograft Cartilage
9.4. Cartilage Extracellular Matrix Allograft
9.5. Matrix-Associated Autologous Chondrocyte Transplantation (MACT)
9.6. Osteochondral Autograft Transfer (OAT)
9.7. Osteochondral Allograft Transplantation (OCA)
10. Rehabilitation Guidelines
11. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Everhart, J.S.; Boggs, Z.; DiBartola, A.C.; Wright, B.; Flanigan, D.C. Knee Cartilage Defect Characteristics Vary among Symptomatic Recreational and Competitive Scholastic Athletes Eligible for Cartilage Restoration Surgery. Cartilage 2021, 12, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Mow, V.C.; Huiskes, R. (Eds.) Basic Orthopaedic Biomechanics & Mechano-Biology, 3rd ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2005; ISBN 978-0-7817-3933-7. [Google Scholar]
- Cohen, N.P.; Foster, R.J.; Mow, V.C. Composition and Dynamics of Articular Cartilage: Structure, Function, and Maintaining Healthy State. J. Orthop. Sports Phys. Ther. 1998, 28, 203–215. [Google Scholar] [CrossRef]
- Teshima, R.; Otsuka, T.; Takasu, N.; Yamagata, N.; Yamamoto, K. Structure of the Most Superficial Layer of Articular Cartilage. J. Bone Jt. Surg. 1995, 77, 460–464. [Google Scholar] [CrossRef]
- Jung, C.K. Articular Cartilage: Histology and Physiology. In Techniques in Cartilage Repair Surgery; ESSKA ASBL; Shetty, A.A., Kim, S.-J., Nakamura, N., Brittberg, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 17–21. ISBN 978-3-642-41920-1. [Google Scholar]
- Lyu, J.; Zhang, Y.; Zhu, W.; Li, D.; Lin, W.; Chen, K.; Xia, J. Correlation between the Subchondral Bone Marrow Lesions and Cartilage Repair Tissue after Matrix-Associated Autologous Chondrocyte Implantation in the Knee: A Cross-Sectional Study. Acta Radiol. 2021, 62, 1072–1079. [Google Scholar] [CrossRef] [PubMed]
- Jung, M.; Ruschke, S.; Karampinos, D.C.; Holwein, C.; Baum, T.; Gersing, A.S.; Bamberg, F.; Jungmann, P.M. The Predictive Value of Early Postoperative MRI-Based Bone Marrow Parameters for Mid-Term Outcome after MACI with Autologous Bone Grafting at the Knee. Cartilage 2022, 13, 194760352210930. [Google Scholar] [CrossRef]
- Merkely, G.; Ogura, T.; Bryant, T.; Minas, T. Severe Bone Marrow Edema Among Patients Who Underwent Prior Marrow Stimulation Technique Is a Significant Predictor of Graft Failure After Autologous Chondrocyte Implantation. Am. J. Sports Med. 2019, 47, 1874–1884. [Google Scholar] [CrossRef]
- Felson, D.T.; McLaughlin, S.; Goggins, J.; LaValley, M.P.; Gale, M.E.; Totterman, S.; Li, W.; Hill, C.; Gale, D. Bone Marrow Edema and Its Relation to Progression of Knee Osteoarthritis. Ann. Intern. Med. 2003, 139, 330. [Google Scholar] [CrossRef]
- Peters, A.E.; Akhtar, R.; Comerford, E.J.; Bates, K.T. The Effect of Ageing and Osteoarthritis on the Mechanical Properties of Cartilage and Bone in the Human Knee Joint. Sci. Rep. 2018, 8, 5931. [Google Scholar] [CrossRef]
- Martin, J.A.; Buckwalter, J.A. Roles of Articular Cartilage Aging and Chondrocyte Senescence in the Pathogenesis of Osteoarthritis. Iowa Orthop. J. 2001, 21, 1–7. [Google Scholar] [PubMed]
- Desrochers, J.; Amrein, M.W.; Matyas, J.R. Viscoelasticity of the Articular Cartilage Surface in Early Osteoarthritis. Osteoarthr. Cartil. 2012, 20, 413–421. [Google Scholar] [CrossRef]
- Buckwalter, J.A.; Mankin, H.; Grodzinsky, A. Articular Cartilage and Osteoarthritis. AAOS Instr. Course Lect. 2005, 54, 465–480. [Google Scholar]
- Tiderius, C.J.; Olsson, L.E.; Leander, P.; Ekberg, O.; Dahlberg, L. Delayed Gadolinium-enhanced MRI of Cartilage (dGEMRIC) in Early Knee Osteoarthritis. Magn. Reson. Med. 2003, 49, 488–492. [Google Scholar] [CrossRef] [PubMed]
- Harris, J.D.; Brophy, R.H.; Jia, G.; Price, B.; Knopp, M.; Siston, R.A.; Flanigan, D.C. Sensitivity of Magnetic Resonance Imaging for Detection of Patellofemoral Articular Cartilage Defects. Arthrosc. J. Arthrosc. Relat. Surg. 2012, 28, 1728–1737. [Google Scholar] [CrossRef] [PubMed]
- Draper, C.E.; Besier, T.F.; Gold, G.E.; Fredericson, M.; Fiene, A.; Beaupre, G.S.; Delp, S.L. Is Cartilage Thickness Different in Young Subjects with and without Patellofemoral Pain? Osteoarthr. Cartil. 2006, 14, 931–937. [Google Scholar] [CrossRef] [PubMed]
- Froimson, M.I.; Ratcliffe, A.; Gardner, T.R.; Mow, V.C. Differences in Patellofemoral Joint Cartilage Material Properties and Their Significance to the Etiology of Cartilage Surface Fibrillation. Osteoarthr. Cartil. 1997, 5, 377–386. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Li, J.; Yu, S.; Wu, C.; Zhang, W. The Mechanical Properties of Tibiofemoral and Patellofemoral Articular Cartilage in Compression Depend on Anatomical Regions. Sci. Rep. 2021, 11, 6128. [Google Scholar] [CrossRef]
- Hinckel, B.B.; Pratte, E.L.; Baumann, C.A.; Gowd, A.K.; Farr, J.; Liu, J.N.; Yanke, A.B.; Chahla, J.; Sherman, S.L. Patellofemoral Cartilage Restoration: A Systematic Review and Meta-Analysis of Clinical Outcomes. Am. J. Sports Med. 2020, 48, 1756–1772. [Google Scholar] [CrossRef]
- Stannard, J.P.; Cook, J.L. Prospective Assessment of Outcomes After Primary Unipolar, Multisurface, and Bipolar Osteochondral Allograft Transplantations in the Knee: A Comparison of 2 Preservation Methods. Am. J. Sports Med. 2020, 48, 1356–1364. [Google Scholar] [CrossRef] [PubMed]
- Meric, G.; Gracitelli, G.C.; Görtz, S.; De Young, A.J.; Bugbee, W.D. Fresh Osteochondral Allograft Transplantation for Bipolar Reciprocal Osteochondral Lesions of the Knee. Am. J. Sports Med. 2015, 43, 709–714. [Google Scholar] [CrossRef]
- Giannini, S.; Buda, R.; Ruffilli, A.; Pagliazzi, G.; Ensini, A.; Grigolo, B.; Desando, G.; Vannini, F. Failures in Bipolar Fresh Osteochondral Allograft for the Treatment of End-Stage Knee Osteoarthritis. Knee Surg. Sports Traumatol. Arthrosc. 2015, 23, 2081–2089. [Google Scholar] [CrossRef]
- Melugin, H.P.; Bernard, C.D.; Camp, C.L.; Saris, D.B.F.; Krych, A.J. Bipolar Cartilage Lesions of the Knee: A Systematic Review of Techniques, Outcomes, and Complications. Cartilage 2021, 13, 17S–30S. [Google Scholar] [CrossRef] [PubMed]
- Cook, J.L.; Rucinski, K.; Crecelius, C.R.; Ma, R.; Stannard, J.P. Return to Sport After Large Single-Surface, Multisurface, or Bipolar Osteochondral Allograft Transplantation in the Knee Using Shell Grafts. Orthop. J. Sports Med. 2021, 9, 232596712096792. [Google Scholar] [CrossRef] [PubMed]
- Krych, A.J.; Saris, D.B.F.; Stuart, M.J.; Hacken, B. Cartilage Injury in the Knee: Assessment and Treatment Options. J. Am. Acad. Orthop. Surg. 2020, 28, 914–922. [Google Scholar] [CrossRef] [PubMed]
- Gowd, A.K.; Weimer, A.E.; Rider, D.E.; Beck, E.C.; Agarwalla, A.; O’Brien, L.K.; Alaia, M.J.; Ferguson, C.M.; Waterman, B.R. Cartilage Restoration for Tibiofemoral Bipolar Lesions Results in Promising Failure Rates: A Systematic Review. Arthrosc. Sports Med. Rehabil. 2021, 3, e1227–e1235. [Google Scholar] [CrossRef] [PubMed]
- Hannon, C.P.; Weber, A.E.; Gitelis, M.; Meyer, M.A.; Yanke, A.B.; Cole, B.J. Does Treatment of the Tibia Matter in Bipolar Chondral Defects of the Knee? Clinical Outcomes with Greater Than 2 Years Follow-Up. Arthrosc. J. Arthrosc. Relat. Surg. 2018, 34, 1044–1051. [Google Scholar] [CrossRef] [PubMed]
- Sharma, L.; Chmiel, J.S.; Almagor, O.; Felson, D.; Guermazi, A.; Roemer, F.; Lewis, C.E.; Segal, N.; Torner, J.; Cooke, T.D.V.; et al. The Role of Varus and Valgus Alignment in the Initial Development of Knee Cartilage Damage by MRI: The MOST Study. Ann. Rheum. Dis. 2013, 72, 235–240. [Google Scholar] [CrossRef]
- Fukuda, Y.; Takai, S.; Yoshino, N.; Murase, K.; Tsutsumi, S.; Ikeuchi, K.; Hirasawa, Y. Impact Load Transmission of the Knee Joint-Influence of Leg Alignment and the Role of Meniscus and Articular Cartilage. Clin. Biomech. 2000, 15, 516–521. [Google Scholar] [CrossRef]
- Antosh, I.J.; Cameron, K.L.; Marsh, N.A.; Posner, M.A.; DeBerardino, T.M.; Svoboda, S.J.; Owens, B.D. Likelihood of Return to Duty Is Low After Meniscal Allograft Transplantation in an Active-Duty Military Population. Clin. Orthop. Relat. Res. 2020, 478, 722–730. [Google Scholar] [CrossRef]
- Horn, S.; Gregory, P.; Guskiewicz, K.M. Self-Reported Anabolic-Androgenic Steroids Use and Musculoskeletal Injuries: Findings from the Center for the Study of Retired Athletes Health Survey of Retired NFL Players. Am. J. Phys. Med. Rehabil. 2009, 88, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Davies-Tuck, M.L.; Wluka, A.E.; Forbes, A.; Wang, Y.; English, D.R.; Giles, G.G.; Cicuttini, F. Smoking Is Associated with Increased Cartilage Loss and Persistence of Bone Marrow Lesions over 2 Years in Community-Based Individuals. Rheumatology 2009, 48, 1227–1231. [Google Scholar] [CrossRef] [PubMed]
- Gersing, A.S.; Schwaiger, B.J.; Nevitt, M.C.; Joseph, G.B.; Chanchek, N.; Guimaraes, J.B.; Mbapte Wamba, J.; Facchetti, L.; McCulloch, C.E.; Link, T.M. Is Weight Loss Associated with Less Progression of Changes in Knee Articular Cartilage among Obese and Overweight Patients as Assessed with MR Imaging over 48 Months? Data from the Osteoarthritis Initiative. Radiology 2017, 284, 508–520. [Google Scholar] [CrossRef]
- Anandacoomarasamy, A.; Leibman, S.; Smith, G.; Caterson, I.; Giuffre, B.; Fransen, M.; Sambrook, P.N.; March, L. Weight Loss in Obese People Has Structure-Modifying Effects on Medial but Not on Lateral Knee Articular Cartilage. Ann. Rheum. Dis. 2012, 71, 26–32. [Google Scholar] [CrossRef]
- Denning, W.M.; Winward, J.G.; Pardo, M.B.; Hopkins, J.T.; Seeley, M.K. Body Weight Independently Affects Articular Cartilage Catabolism. J. Sports Sci. Med. 2015, 14, 290–296. [Google Scholar] [PubMed]
- Watterson, J.R.; Esdaile, J.M. Viscosupplementation: Therapeutic Mechanisms and Clinical Potential in Osteoarthritis of the Knee. J. Am. Acad. Orthop. Surg. 2000, 8, 277–284. [Google Scholar] [CrossRef] [PubMed]
- American Academy of Orthopaedic Surgeons Management of Osteoarthritis of the Knee (NonArthroplasty) Evidence-Based Clinical Practice Guideline. Available online: https://www.Aaos.Org/Oak3cpg (accessed on 14 December 2023).
- Wernecke, C.; Braun, H.J.; Dragoo, J.L. The Effect of Intra-Articular Corticosteroids on Articular Cartilage: A Systematic Review. Orthop. J. Sports Med. 2015, 3, 232596711558116. [Google Scholar] [CrossRef] [PubMed]
- Nichols, A.W. Complications Associated with the Use of Corticosteroids in the Treatment of Athletic Injuries. Clin. J. Sport Med. 2005, 15, E370. [Google Scholar] [CrossRef] [PubMed]
- Prodromidis, A.D.; Charalambous, C.P.; Moran, E.; Venkatesh, R.; Pandit, H. The Role of Platelet-Rich Plasma (PRP) Intraarticular Injections in Restoring Articular Cartilage of Osteoarthritic Knees. A Systematic Review and Meta-Analysis. Osteoarthr. Cartil. Open 2022, 4, 100318. [Google Scholar] [CrossRef] [PubMed]
- Dold, A.P.; Zywiel, M.G.; Taylor, D.W.; Dwyer, T.; Theodoropoulos, J. Platelet-Rich Plasma in the Management of Articular Cartilage Pathology: A Systematic Review. Clin. J. Sport Med. 2014, 24, 31–43. [Google Scholar] [CrossRef] [PubMed]
- Bennell, K.L.; Paterson, K.L.; Metcalf, B.R.; Duong, V.; Eyles, J.; Kasza, J.; Wang, Y.; Cicuttini, F.; Buchbinder, R.; Forbes, A.; et al. Effect of Intra-Articular Platelet-Rich Plasma vs. Placebo Injection on Pain and Medial Tibial Cartilage Volume in Patients with Knee Osteoarthritis: The RESTORE Randomized Clinical Trial. JAMA 2021, 326, 2021. [Google Scholar] [CrossRef]
- Lavagnolo, U.; Veronese, S.; Negri, S.; Magnan, B.; Sbarbati, A. Lipoaspirate Processing for the Treatment of Knee Osteoarthritis: A Review of Clinical Evidences. Biomed. Pharmacother. 2021, 142, 111997. [Google Scholar] [CrossRef]
- Xu, X.; Xu, L.; Xia, J.; Wen, C.; Liang, Y.; Zhang, Y. Harnessing Knee Joint Resident Mesenchymal Stem Cells in Cartilage Tissue Engineering. Acta Biomater. 2023, 168, 372–387. [Google Scholar] [CrossRef] [PubMed]
- Estakhri, F.; Panjehshahin, M.R.; Tanideh, N.; Gheisari, R.; Mahmoodzadeh, A.; Azarpira, N.; Gholijani, N. The Effect of Kaempferol and Apigenin on Allogenic Synovial Membrane-Derived Stem Cells Therapy in Knee Osteoarthritic Male Rats. Knee 2020, 27, 817–832. [Google Scholar] [CrossRef]
- Sekiya, I.; Muneta, T.; Horie, M.; Koga, H. Arthroscopic Transplantation of Synovial Stem Cells Improves Clinical Outcomes in Knees with Cartilage Defects. Clin. Orthop. Relat. Res. 2015, 473, 2316–2326. [Google Scholar] [CrossRef] [PubMed]
- Long, L.; Zou, G.; Cheng, Y.; Li, F.; Wu, H.; Shen, Y. MATN3 Delivered by Exosome from Synovial Mesenchymal Stem Cells Relieves Knee Osteoarthritis: Evidence from in Vitro and in Vivo Studies. J. Orthop. Transl. 2023, 41, 20–32. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Qu, S.; Ji, M.; Sun, Y.; Hu, B. BMP-7 Modified Exosomes Derived from Synovial Mesenchymal Stem Cells Attenuate Osteoarthritis by M2 Polarization of Macrophages. Heliyon 2023, 9, e19934. [Google Scholar] [CrossRef] [PubMed]
- Hohmann, E. Editorial Commentary: Stem Cells. They Are in the Fat Tissue, Bone Marrow, and Even in the Synovial Fluid of the Knee Joint. Arthrosc. J. Arthrosc. Relat. Surg. 2021, 37, 901–902. [Google Scholar] [CrossRef] [PubMed]
- Zare, R.; Tanideh, N.; Nikahval, B.; Mirtalebi, M.S.; Ahmadi, N.; Zarea, S.; Hosseinabadi, O.K.; Bhimani, R.; Ashkani-Esfahani, S. Are Stem Cells Derived from Synovium and Fat Pad Able to Treat Induced Knee Osteoarthritis in Rats? Int. J. Rheumatol. 2020, 2020, 9610261. [Google Scholar] [CrossRef]
- Scillia, A.J.; Aune, K.T.; Andrachuk, J.S.; Cain, E.L.; Dugas, J.R.; Fleisig, G.S.; Andrews, J.R. Return to Play After Chondroplasty of the Knee in National Football League Athletes. Am. J. Sports Med. 2015, 43, 663–668. [Google Scholar] [CrossRef]
- Frank, R.M.; Cotter, E.J.; Hannon, C.P.; Harrast, J.J.; Cole, B.J. Cartilage Restoration Surgery: Incidence Rates, Complications, and Trends as Reported by the American Board of Orthopaedic Surgery Part II Candidates. Arthrosc. J. Arthrosc. Relat. Surg. 2019, 35, 171–178. [Google Scholar] [CrossRef]
- Hancock, K.; Westermann, R.; Shamrock, A.; Duchman, K.; Wolf, B.; Amendola, A. Trends in Knee Articular Cartilage Treatments: An American Board of Orthopaedic Surgery Database Study. J. Knee Surg. 2019, 32, 85–90. [Google Scholar] [CrossRef]
- Montgomery, S.R.; Foster, B.D.; Ngo, S.S.; Terrell, R.D.; Wang, J.C.; Petrigliano, F.A.; McAllister, D.R. Trends in the Surgical Treatment of Articular Cartilage Defects of the Knee in the United States. Knee Surg. Sports Traumatol. Arthrosc. 2014, 22, 2070–2075. [Google Scholar] [CrossRef]
- Frisbie, D.D.; Morisset, S.; Ho, C.P.; Rodkey, W.G.; Steadman, J.R.; Mcllwraith, C.W. Effects of Calcified Cartilage on Healing of Chondral Defects Treated with Microfracture in Horses. Am. J. Sports Med. 2006, 34, 1824–1831. [Google Scholar] [CrossRef]
- Goyal, D.; Keyhani, S.; Lee, E.H.; Hui, J.H.P. Evidence-Based Status of Microfracture Technique: A Systematic Review of Level I and II Studies. Arthrosc. J. Arthrosc. Relat. Surg. 2013, 29, 1579–1588. [Google Scholar] [CrossRef] [PubMed]
- Gudas, R.; Stankevičius, E.; Monastyreckienė, E.; Pranys, D.; Kalesinskas, R.J. Osteochondral Autologous Transplantation versus Microfracture for the Treatment of Articular Cartilage Defects in the Knee Joint in Athletes. Knee Surg. Sports Traumatol. Arthrosc. 2006, 14, 834–842. [Google Scholar] [CrossRef] [PubMed]
- Harris, J.D.; Brophy, R.H.; Siston, R.A.; Flanigan, D.C. Treatment of Chondral Defects in the Athlete’s Knee. Arthrosc. J. Arthrosc. Relat. Surg. 2010, 26, 841–852. [Google Scholar] [CrossRef] [PubMed]
- Adkisson, H.D.; Martin, J.A.; Amendola, R.L.; Milliman, C.; Mauch, K.A.; Katwal, A.B.; Seyedin, M.; Amendola, A.; Streeter, P.R.; Buckwalter, J.A. The Potential of Human Allogeneic Juvenile Chondrocytes for Restoration of Articular Cartilage. Am. J. Sports Med. 2010, 38, 1324–1333. [Google Scholar] [CrossRef] [PubMed]
- Farr, J.; Tabet, S.K.; Margerrison, E.; Cole, B.J. Clinical, Radiographic, and Histological Outcomes After Cartilage Repair with Particulated Juvenile Articular Cartilage: A 2-Year Prospective Study. Am. J. Sports Med. 2014, 42, 1417–1425. [Google Scholar] [CrossRef] [PubMed]
- Tompkins, M.; Hamann, J.C.; Diduch, D.R.; Bonner, K.F.; Hart, J.M.; Gwathmey, F.W.; Milewski, M.D.; Gaskin, C.M. Preliminary Results of a Novel Single-Stage Cartilage Restoration Technique: Particulated Juvenile Articular Cartilage Allograft for Chondral Defects of the Patella. Arthrosc. J. Arthrosc. Relat. Surg. 2013, 29, 1661–1670. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Belkin, N.S.; Burge, A.J.; Chang, B.; Pais, M.; Mahony, G.; Williams, R.J. Patellofemoral Cartilage Lesions Treated with Particulated Juvenile Allograft Cartilage: A Prospective Study with Minimum 2-Year Clinical and Magnetic Resonance Imaging Outcomes. Arthrosc. J. Arthrosc. Relat. Surg. 2018, 34, 1498–1505. [Google Scholar] [CrossRef]
- Abrams, G.D.; Mall, N.A.; Fortier, L.A.; Roller, B.L.; Cole, B.J. BioCartilage: Background and Operative Technique. Oper. Tech. Sports Med. 2013, 21, 116–124. [Google Scholar] [CrossRef]
- Commins, J.; Irwin, R.; Matuska, A.; Goodale, M.; Delco, M.; Fortier, L. Biological Mechanisms for Cartilage Repair Using a BioCartilage Scaffold: Cellular Adhesion/Migration and Bioactive Proteins. Cartilage 2021, 13, 984S–992S. [Google Scholar] [CrossRef]
- Fortier, L.A.; Chapman, H.S.; Pownder, S.L.; Roller, B.L.; Cross, J.A.; Cook, J.L.; Cole, B.J. BioCartilage Improves Cartilage Repair Compared with Microfracture Alone in an Equine Model of Full-Thickness Cartilage Loss. Am. J. Sports Med. 2016, 44, 2366–2374. [Google Scholar] [CrossRef] [PubMed]
- Brusalis, C.M.; Greditzer, H.G.; Fabricant, P.D.; Stannard, J.P.; Cook, J.L. BioCartilage Augmentation of Marrow Stimulation Procedures for Cartilage Defects of the Knee: Two-Year Clinical Outcomes. Knee 2020, 27, 1418–1425. [Google Scholar] [CrossRef] [PubMed]
- Carter, A.H.; Guttierez, N.; Subhawong, T.K.; Temple, H.T.; Lesniak, B.P.; Baraga, M.G.; Jose, J. MR Imaging of BioCartilage Augmented Microfracture Surgery Utilizing 2D MOCART and KOOS Scores. J. Clin. Orthop. Trauma 2018, 9, 146–152. [Google Scholar] [CrossRef]
- Migliorini, F.; Eschweiler, J.; Götze, C.; Driessen, A.; Tingart, M.; Maffulli, N. Matrix-Induced Autologous Chondrocyte Implantation (mACI) versus Autologous Matrix-Induced Chondrogenesis (AMIC) for Chondral Defects of the Knee: A Systematic Review. Br. Med. Bull. 2022, 141, 47–59. [Google Scholar] [CrossRef]
- Krill, M.; Early, N.; Everhart, J.S.; Flanigan, D.C. Autologous Chondrocyte Implantation (ACI) for Knee Cartilage Defects: A Review of Indications, Technique, and Outcomes. JBJS Rev. 2018, 6, e5. [Google Scholar] [CrossRef]
- Ebert, J.R.; Robertson, W.B.; Woodhouse, J.; Fallon, M.; Zheng, M.H.; Ackland, T.; Wood, D.J. Clinical and Magnetic Resonance Imaging–Based Outcomes to 5 Years After Matrix-Induced Autologous Chondrocyte Implantation to Address Articular Cartilage Defects in the Knee. Am. J. Sports Med. 2011, 39, 753–763. [Google Scholar] [CrossRef]
- Ebert, J.R.; Fallon, M.; Ackland, T.R.; Janes, G.C.; Wood, D.J. Minimum 10-Year Clinical and Radiological Outcomes of a Randomized Controlled Trial Evaluating 2 Different Approaches to Full Weightbearing After Matrix-Induced Autologous Chondrocyte Implantation. Am. J. Sports Med. 2020, 48, 133–142. [Google Scholar] [CrossRef]
- Marlovits, S.; Aldrian, S.; Wondrasch, B.; Zak, L.; Albrecht, C.; Welsch, G.; Trattnig, S. Clinical and Radiological Outcomes 5 Years After Matrix-Induced Autologous Chondrocyte Implantation in Patients with Symptomatic, Traumatic Chondral Defects. Am. J. Sports Med. 2012, 40, 2273–2280. [Google Scholar] [CrossRef]
- Niemeyer, P.; Hanus, M.; Belickas, J.; László, T.; Gudas, R.; Fiodorovas, M.; Cebatorius, A.; Pastucha, M.; Hoza, P.; Magos, K.; et al. Treatment of Large Cartilage Defects in the Knee by Hydrogel-Based Autologous Chondrocyte Implantation: Two-Year Results of a Prospective, Multicenter, Single-Arm Phase III Trial. Cartilage 2022, 13, 194760352210851. [Google Scholar] [CrossRef] [PubMed]
- Niethammer, T.R.; Pietschmann, M.F.; Horng, A.; Roßbach, B.P.; Ficklscherer, A.; Jansson, V.; Müller, P.E. Graft Hypertrophy of Matrix-Based Autologous Chondrocyte Implantation: A Two-Year Follow-up Study of NOVOCART 3D Implantation in the Knee. Knee Surg. Sports Traumatol. Arthrosc. 2014, 22, 1329–1336. [Google Scholar] [CrossRef]
- Zak, L.; Albrecht, C.; Wondrasch, B.; Widhalm, H.; Vekszler, G.; Trattnig, S.; Marlovits, S.; Aldrian, S. Results 2 Years After Matrix-Associated Autologous Chondrocyte Transplantation Using the Novocart 3D Scaffold: An Analysis of Clinical and Radiological Data. Am. J. Sports Med. 2014, 42, 1618–1627. [Google Scholar] [CrossRef]
- Niemeyer, P.; Angele, P. Autologous Chondrocyte Implantation (ACI) for Cartilage Defects of the Knee Using Novocart 3D and Novocart Inject. Oper. Tech. Sports Med. 2022, 30, 150959. [Google Scholar] [CrossRef]
- Pareek, A.; Reardon, P.J.; Maak, T.G.; Levy, B.A.; Stuart, M.J.; Krych, A.J. Long-Term Outcomes After Osteochondral Autograft Transfer: A Systematic Review at Mean Follow-up of 10.2 Years. Arthrosc. J. Arthrosc. Relat. Surg. 2016, 32, 1174–1184. [Google Scholar] [CrossRef] [PubMed]
- Gudas, R.; Simonaitytė, R.; Čekanauskas, E.; Tamošiūnas, R. A Prospective, Randomized Clinical Study of Osteochondral Autologous Transplantation Versus Microfracture for the Treatment of Osteochondritis Dissecans in the Knee Joint in Children. J. Pediatr. Orthop. 2009, 29, 741–748. [Google Scholar] [CrossRef] [PubMed]
- Gross, A.E.; Kim, W.; Las Heras, F.; Backstein, D.; Safir, O.; Pritzker, K.P.H. Fresh Osteochondral Allografts for Posttraumatic Knee Defects: Long-Term Followup. Clin. Orthop. Relat. Res. 2008, 466, 1863–1870. [Google Scholar] [CrossRef] [PubMed]
- Stoker, A.M.; Stannard, J.P.; Kuroki, K.; Bozynski, C.C.; Pfeiffer, F.M.; Cook, J.L. Validation of the Missouri Osteochondral Allograft Preservation System for the Maintenance of Osteochondral Allograft Quality During Prolonged Storage. Am. J. Sports Med. 2018, 46, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Buyuk, A.F.; Stannard, J.P.; Rucinski, K.; Crecelius, C.R.; Cook, J.L. The Missouri Osteochondral Preservation System Is Associated with Better Short-Term Outcomes Than Standard Preservation Methods When Performing Osteochondral Allograft Transplantation Using Shell Grafts for Patellofemoral Lesions. Arthrosc. J. Arthrosc. Relat. Surg. 2023, 39, 650–659. [Google Scholar] [CrossRef]
- Sherman, S.L.; Garrity, J.; Bauer, K.; Cook, J.; Stannard, J.; Bugbee, W. Fresh Osteochondral Allograft Transplantation for the Knee: Current Concepts. J. Am. Acad. Orthop. Surg. 2014, 22, 199. [Google Scholar] [CrossRef]
- Familiari, F.; Cinque, M.E.; Chahla, J.; Godin, J.A.; Olesen, M.L.; Moatshe, G.; LaPrade, R.F. Clinical Outcomes and Failure Rates of Osteochondral Allograft Transplantation in the Knee: A Systematic Review. Am. J. Sports Med. 2018, 46, 3541–3549. [Google Scholar] [CrossRef]
- Baumann, C.; Baumann, J.; Bozynski, C.; Stoker, A.; Stannard, J.; Cook, J. Comparison of Techniques for Preimplantation Treatment of Osteochondral Allograft Bone. J. Knee Surg. 2019, 32, 97–104. [Google Scholar] [CrossRef]
- Oladeji, L.O.; Stannard, J.P.; Cook, C.R.; Kfuri, M.; Crist, B.D.; Smith, M.J.; Cook, J.L. Effects of Autogenous Bone Marrow Aspirate Concentrate on Radiographic Integration of Femoral Condylar Osteochondral Allografts. Am. J. Sports Med. 2017, 45, 2797–2803. [Google Scholar] [CrossRef]
- Wang, D.; Lin, K.M.; Burge, A.J.; Balazs, G.C.; Williams, R.J. Bone Marrow Aspirate Concentrate Does Not Improve Osseous Integration of Osteochondral Allografts for the Treatment of Chondral Defects in the Knee at 6 and 12 Months: A Comparative Magnetic Resonance Imaging Analysis. Am. J. Sports Med. 2019, 47, 339–346. [Google Scholar] [CrossRef]
- Ackermann, J.; Mestriner, A.B.; Shah, N.; Gomoll, A.H. Effect of Autogenous Bone Marrow Aspirate Treatment on Magnetic Resonance Imaging Integration of Osteochondral Allografts in the Knee: A Matched Comparative Imaging Analysis. Arthrosc. J. Arthrosc. Relat. Surg. 2019, 35, 2436–2444. [Google Scholar] [CrossRef] [PubMed]
- Ambra, L.F.; De Girolamo, L.; Gomoll, A.H. Pulse Lavage Fails to Significantly Reduce Bone Marrow Content in Osteochondral Allografts: A Histological and DNA Quantification Study. Am. J. Sports Med. 2019, 47, 2723–2728. [Google Scholar] [CrossRef]
- Sun, Y.; Jiang, W.; Cory, E.; Caffrey, J.P.; Hsu, F.H.; Chen, A.C.; Wang, J.; Sah, R.L.; Bugbee, W.D. Pulsed Lavage Cleansing of Osteochondral Grafts Depends on Lavage Duration, Flow Intensity, and Graft Storage Condition. PLoS ONE 2017, 12, e0176934. [Google Scholar] [CrossRef]
- Meyer, M.A.; McCarthy, M.A.; Gitelis, M.E.; Poland, S.G.; Urita, A.; Chubinskaya, S.; Yanke, A.B.; Cole, B.J. Effectiveness of Lavage Techniques in Removing Immunogenic Elements from Osteochondral Allografts. Cartilage 2017, 8, 369–373. [Google Scholar] [CrossRef]
- Crawford, Z.T.; Schumaier, A.P.; Glogovac, G.; Grawe, B.M. Return to Sport and Sports-Specific Outcomes After Osteochondral Allograft Transplantation in the Knee: A Systematic Review of Studies with at Least 2 Years’ Mean Follow-Up. Arthrosc. J. Arthrosc. Relat. Surg. 2019, 35, 1880–1889. [Google Scholar] [CrossRef]
- Shaha, J.S.; Cook, J.B.; Rowles, D.J.; Bottoni, C.R.; Shaha, S.H.; Tokish, J.M. Return to an Athletic Lifestyle After Osteochondral Allograft Transplantation of the Knee. Am. J. Sports Med. 2013, 41, 2083–2089. [Google Scholar] [CrossRef] [PubMed]
- Cotter, E.J.; Hannon, C.P.; Christian, D.R.; Wang, K.C.; Lansdown, D.A.; Waterman, B.R.; Frank, R.M.; Cole, B.J. Clinical Outcomes of Multifocal Osteochondral Allograft Transplantation of the Knee: An Analysis of Overlapping Grafts and Multifocal Lesions. Am. J. Sports Med. 2018, 46, 2884–2893. [Google Scholar] [CrossRef] [PubMed]
- Bichara, D.A.; Bodugoz-Sentruk, H.; Ling, D.; Malchau, E.; Bragdon, C.R.; Muratoglu, O.K. Osteochondral Defect Repair Using a Polyvinyl Alcohol-Polyacrylic Acid (PVA-PAAc) Hydrogel. Biomed. Mater. 2014, 9, 045012. [Google Scholar] [CrossRef] [PubMed]
- Baker, M.I.; Walsh, S.P.; Schwartz, Z.; Boyan, B.D. A Review of Polyvinyl Alcohol and Its Uses in Cartilage and Orthopedic Applications. J. Biomed. Mater. Res. 2012, 100, 1451–1457. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, K.; Kitamura, N.; Gong, J.P.; Arakaki, K.; Kwon, H.J.; Onodera, S.; Chen, Y.M.; Kurokawa, T.; Kanaya, F.; Ohmiya, Y.; et al. A Novel Double-Network Hydrogel Induces Spontaneous Articular Cartilage Regeneration in Vivo in a Large Osteochondral Defect. Macromol. Biosci. 2009, 9, 307–316. [Google Scholar] [CrossRef]
- Lange, J.; Follak, N.; Nowotny, T.; Merk, H. Ergebnisse der SaluCartilage-Implantation bei viertgradigen Knorpelschäden im Bereich des Kniegelenks. Unfallchirurg 2006, 109, 193–199. [Google Scholar] [CrossRef]
- Sciarretta, F.V. 5 to 8 Years Follow-up of Knee Chondral Defects Treated by PVA-H Hydrogel Implants. Eur. Rev. Med. Pharmacol. Sci. 2013, 17, 3031–3038. [Google Scholar]
- Sismondo, R.A.; Werner, F.W.; Ordway, N.R.; Osaheni, A.O.; Blum, M.M.; Scuderi, M.G. The Use of a Hydrogel Implant in the Repair of Osteochondral Defects of the Knee: A Biomechanical Evaluation of Restoration of Native Contact Pressures in Cadaver Knees. Clin. Biomech. 2019, 67, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Brial, C.; McCarthy, M.; Warren, R.F.; Maher, S.A. Synthetic PVA Osteochondral Implants for the Knee Joint: Mechanical Characteristics During Simulated Gait. Am. J. Sports Med. 2021, 49, 2933–2941. [Google Scholar] [CrossRef]
- Lesage, C.; Lafont, M.; Guihard, P.; Weiss, P.; Guicheux, J.; Delplace, V. Material-Assisted Strategies for Osteochondral Defect Repair. Adv. Sci. 2022, 9, 2200050. [Google Scholar] [CrossRef]
- Ebert, J.R.; Edwards, P.K.; Fallon, M.; Ackland, T.R.; Janes, G.C.; Wood, D.J. Two-Year Outcomes of a Randomized Trial Investigating a 6-Week Return to Full Weightbearing After Matrix-Induced Autologous Chondrocyte Implantation. Am. J. Sports Med. 2017, 45, 838–848. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cognetti, D.J.; Defoor, M.T.; Yuan, T.T.; Sheean, A.J. Knee Joint Preservation in Tactical Athletes: A Comprehensive Approach Based upon Lesion Location and Restoration of the Osteochondral Unit. Bioengineering 2024, 11, 246. https://doi.org/10.3390/bioengineering11030246
Cognetti DJ, Defoor MT, Yuan TT, Sheean AJ. Knee Joint Preservation in Tactical Athletes: A Comprehensive Approach Based upon Lesion Location and Restoration of the Osteochondral Unit. Bioengineering. 2024; 11(3):246. https://doi.org/10.3390/bioengineering11030246
Chicago/Turabian StyleCognetti, Daniel J., Mikalyn T. Defoor, Tony T. Yuan, and Andrew J. Sheean. 2024. "Knee Joint Preservation in Tactical Athletes: A Comprehensive Approach Based upon Lesion Location and Restoration of the Osteochondral Unit" Bioengineering 11, no. 3: 246. https://doi.org/10.3390/bioengineering11030246