A New Integrated High-Latitude Thermal Laboratory for the Characterization of Land Surface Processes in Alaska’s Arctic and Boreal Regions
Abstract
:1. Introduction
2. High-Latitude Thermal and Hyperspectral Laboratory: HyLab
Field Instrumentation for CAL/VAL Activities
3. LST Arctic Dataset Data Description
3.1. Image Data
3.2. Image Metadata
4. Methods
4.1. Land Surface Temperature Retrieval
4.2. Land Surface Temperature Evaluation
5. Plans for Expanding the LST Arctic Dataset
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
AVHRR | Advanced Very High Resolution Radiometer |
CPCRW | Caribou-Poker Creeks Research Watersheds |
EPSCoR | Experimental Program to Stimulate Competitive Research |
ETM | Enhanced Thematic Mapper |
FLIR | Forward Looking Infrared Radiometer |
HyLab | Hyperspectral Imaging Laboratory |
LSE | Land surface emissivity |
LST | Land Surface Temperature |
MODIS | Moderate Resolution Imaging Spectroradiometer |
NASA | National Aeronautics and Space Administration |
NDVI | Normalized Difference Vegetation Index |
NSF | National Science Foundation |
RMSE | Root Mean Square Error |
TM | Thematic Mapper |
UAF | University of Alaska Fairbanks |
References
- The Arctic Monitoring and Assessment Programme (AMAP). Arctic Climate Issues 2011: Changes in Arctic Snow, Water, Ice and Permafrost, SWIPA 2011 overview report; AMAP: Oslo, Norway, 2012; 96.
- Bates, B.C.; Kundzewicz, Z.W.; Wu, S.; Palutikof, J.P. Climate Change and Water; IPCC: Geneva, Switzerland, 2008. [Google Scholar]
- Bintanja, R.; Selten, F.M. Future increases in arctic precipitation linked to local evaporation and sea-ice retreat. Nature 2014, 509, 479–482. [Google Scholar] [CrossRef] [PubMed]
- Duffy, P.A.; Epting, J.; Graham, J.M.; Rupp, T.S.; McGuire, A.D. Analysis of Alaskan burn severity patterns using remotely sensed data. Int. J. Wildland Fire 2007, 16, 277–284. [Google Scholar] [CrossRef]
- Jorgenson, M.T.; Shur, Y.L.; Pullman, E.R. Abrupt increase in permafrost degradation in arctic Alaska. Geophys. Res. Lett. 2006, 33, L02503. [Google Scholar] [CrossRef]
- McGuire, A.D.; Wirth, C.; Apps, M.; Beringer, J.; Clein, J.; Epstein, H.; Kicklighter, D.W.; Bhatti, J.; Chapin, F.S.; de Groot, B.; et al. Environmental variation, vegetation distribution, carbon dynamics and water/energy exchange at high latitudes. J. Veg. Sci. 2002, 13, 301–314. [Google Scholar] [CrossRef]
- Osterkamp, T.E.; Jorgenson, M.T.; Schuur, E.A.G.; Shur, Y.L.; Kanevskiy, M.Z.; Vogel, J.G.; Tumskoy, V.E. Physical and ecological changes associated with warming permafrost and thermokarst in interior Alaska. Permafr. Periglac. Process. 2009, 20, 235–256. [Google Scholar] [CrossRef]
- Serreze, M.C.; Barry, R.G. Processes and impacts of arctic amplification: A research synthesis. Glob. Planet. Chang. 2011, 77, 85–96. [Google Scholar] [CrossRef]
- Verbyla, D. The greening and browning of Alaska based on 1982–2003 satellite data. Glob. Ecol. Biogeogr. 2008, 17, 547–555. [Google Scholar] [CrossRef]
- Brown, D.; Jorgenson, M.; Kielland, K.; Verbyla, D.; Prakash, A.; Koch, J. Landscape effects of wildfire on permafrost distribution in interior alaska derived from remote sensing. Remote Sens. 2016, 8, 654. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; Hinzman, L.D.; Peterson, B.J.; Bromwich, D.H.; Hamilton, L.C.; Morison, J.; Romanovsky, V.E.; Sturm, M.; Webb, R.S. The Hydrologic Cycle and Its Role in Arctic and Global Environmental Change: A Rationale and Strategy for Synthesis Study; ARCUS: Fairbanks, AK, USA, 2001. [Google Scholar]
- Wesche, S.D.; Chan, H.M. Adapting to the impacts of climate change on food security among Inuit in the western Canadian arctic. Ecohealth 2010, 7, 361–373. [Google Scholar] [CrossRef] [PubMed]
- Kustas, W.; Anderson, M. Advances in thermal infrared remote sensing for land surface modeling. Agric. For. Meteorol. 2009, 149, 2071–2081. [Google Scholar] [CrossRef]
- Cristóbal, J.; Poyatos, R.; Ninyerola, M.; Llorens, P.; Pons, X. Combining remote sensing and GIS climate modelling to estimate daily forest evapotranspiration in a Mediterranean mountain area. Hydrol. Earth Syst. Sci. 2011, 15, 1563–1575. [Google Scholar] [CrossRef]
- Pons, X.; Cristóbal, J.; González, O.; Riverola, A.; Serra, P.; Cea, C.; Domingo, C.; Díaz, P.; Monterde, M.; Velasco, E. Ten years of local water resource management: Integrating satellite remote sensing and geographical information systems. Eur. J. Remote Sens. 2012, 45, 317–332. [Google Scholar] [CrossRef]
- Li, Z.L.; Tang, B.H.; Wu, H.; Ren, H.Z.; Yan, G.J.; Wan, Z.M.; Trigo, I.F.; Sobrino, J.A. Satellite-derived land surface temperature: Current status and perspectives. Remote Sens. Environ. 2013, 131, 14–37. [Google Scholar] [CrossRef]
- Hachem, S.; Allard, M.; Duguay, C. Using the MODIS land surface temperature product for mapping permafrost: An application to northern Quebec and Labrador, Canada. Permafr. Periglac. Process. 2009, 20, 407–416. [Google Scholar] [CrossRef]
- Smikrud, K.M.; Prakash, A.; Nichols, J.V. Decision-based fusion for improved fluvial landscape classification using digital aerial photographs and forward looking infrared images. Photogramm. Eng. Remote Sens. 2008, 74, 903–911. [Google Scholar] [CrossRef]
- Woll, C.; Prakash, A.; Sutton, T. A case-study of in-stream juvenile salmon habitat classification using decision-based fusion of multispectral aerial images. Appl. Remote Sens. J. 2011, 2, 37–46. [Google Scholar]
- Wirth, L.; Rosenberger, A.; Prakash, A.; Gens, R.; Margraf, F.J.; Hamazaki, T. A remote-sensing, GIS-based approach to identify, characterize, and model spawning habitat for fall-run chum salmon in a sub-arctic, glacially fed river. Trans. Am. Fish. Soc. 2012, 141, 1349–1363. [Google Scholar] [CrossRef]
- Cristóbal, J.; Prakash, A.; Starkenburg, D.P.; Fochesatto, G.J.; Anderson, M.A.; Kustas, W.P.; Alfieri, J.G.; Gens, R.; Kane, D.L. Energy fluxes retrieval on an alaskan arctic and sub-arctic vegetation by means modis imagery and the dtd method. In American Geophysical Union Fall meeting; American Geophysical Union: San Francisco, USA, 2012. [Google Scholar]
- Cristóbal, J.; Prakash, A.; Starkenburg, D.P.; Fochesatto, G.J.; Anderson, M.A.; Kustas, W.P.; Alfieri, J.G.; Gens, R.; Kane, D.L. Energy fluxes retrieval on an Alaskan Arctic and Sub-Arctic vegetation by means MODIS imagery and the DTD method. In Proceedings of the American Geophysical Union Fall Meeting, San Francisco, CA, USA, 3–7 December 2012.
- Bastiaanssen, W.G.M.; Menenti, M.; Feddes, R.A.; Holtslag, A.A.M. A remote sensing surface energy balance algorithm for land (SEBAL)—1. Formulation. J. Hydrol. 1998, 212, 198–212. [Google Scholar] [CrossRef]
- Anderson, M.C.; Norman, J.M.; Mecikalski, J.R.; Torn, R.D.; Kustas, W.P.; Basara, J.B. A multiscale remote sensing model for disaggregating regional fluxes to micrometeorological scales. J. Hydrometeorol. 2004, 5, 343–363. [Google Scholar] [CrossRef]
- Kalma, J.D.; McVicar, T.R.; McCabe, M.F. Estimating land surface evaporation: A review of methods using remotely sensed surface temperature data. Surv. Geophys. 2008, 29, 421–469. [Google Scholar] [CrossRef]
- Kustas, W.P.; Norman, J.M. A two-source energy balance approach using directional radiometric temperature observations for sparse canopy covered surfaces. Agron. J. 2000, 92, 847–854. [Google Scholar] [CrossRef]
- Roerink, G.J.; Su, Z.; Menenti, M. S-SEBI: A simple remote sensing algorithm to estimate the surface energy balance. Phys. Chem. Earth Part B Hydrol. Oceans Atmos. 2000, 25, 147–157. [Google Scholar] [CrossRef]
- Schmugge, T.J.; Kustas, W.P.; Ritchie, J.C.; Jackson, T.J.; Rango, A. Remote sensing in hydrology. Adv. Water. Resour. 2002, 25, 1367–1385. [Google Scholar] [CrossRef]
- MiraMon, version 8. Geographical Information System and Remote Sensing Software. Center for Ecological Research and Forestry Applications (CREAF): Bellaterra, Spain, 2004.
- Zabala, A.; Pons, X. Image Metadata: Compiled Proposal and Implementation. In Geoinformation for European-Wide Integration; Benes, T., Ed.; Millpress: Rotterdam, The Netherlands, 2003; pp. 647–652. [Google Scholar]
- Yang, X.; Blower, J.D.; Bastin, L.; Lush, V.; Zabala, A.; Maso, J.; Cornford, D.; Diaz, P.; Lumsden, J. An integrated view of data quality in earth observation. Philos. Trans. A Math. Phys. Eng. Sci. 2013, 371, 20120072. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Munoz, J.C.; Cristobal, J.; Sobrino, J.A.; Soria, G.; Ninyerola, M.; Pons, X. Revision of the single-channel algorithm for land surface temperature retrieval from Landsat thermal-infrared data. IEEE Trans. Geosci. Remote Sens. 2009, 47, 339–349. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Raissouni, N.; Simarro, J.; Nerry, F.; Petitcolin, F. Atmospheric water vapor content over land surfaces derived from the AVHRR data: Application to the Iberian Peninsula. IEEE Trans. Geosci. Remote Sens. 1999, 37, 1425–1434. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Raissouni, N.; Li, Z.L. A comparative study of land surface emissivity retrieval from NOAA data. Remote Sens. Environ. 2001, 75, 256–266. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Jimenez-Munoz, J.C.; Soria, G.; Romaguera, M.; Guanter, L.; Moreno, J.; Plaza, A.; Martincz, P. Land surface emissivity retrieval from different VNIR and TIR sensors. IEEE Trans. Geosci. Remote Sens. 2008, 46, 316–327. [Google Scholar] [CrossRef]
- Pons, X.; Pesquer, L.; Cristóbal, J.; González-Guerrero, O. Automatic and improved radiometric correction of Landsat imagery using reference values from MODIS surface reflectance images. Int. J. Appl. Earth Obs. Geoinform. 2014, 33, 243–254. [Google Scholar] [CrossRef]
- Wang, K.C.; Liang, S.L. Evaluation of ASTER and MODIS land surface temperature and emissivity products using long-term surface longwave radiation observations at SURFRAD sites. Remote Sens. Environ. 2009, 113, 1556–1565. [Google Scholar] [CrossRef]
- Schott, J.R.; Hook, S.J.; Barsi, J.A.; Markham, B.L.; Miller, J.; Padula, F.P.; Raqueno, N.G. Thermal infrared radiometric calibration of the entire Landsat 4, 5, and 7 archive (1982–2010). Remote Sens. Environ. 2012, 122, 41–49. [Google Scholar] [CrossRef]
Instrument | Description | UAF | CPCRW | ||
---|---|---|---|---|---|
Units | Height/Depth (m) | Units | Height/Depth (m) | ||
Campbell Sci. CSAT3 | Three-Dimensional Sonic Anemometer | 1 | 15 | 1 | 23 |
Campbell EC-150 | Open Path Infrared Gas Analyzer (CO2 and H2O) | 1 | 15 | 1 | 23 |
Vaisalla HMP45C | Temperature and Relative Humidity Probe | 3 | 2.5–7–14 | 2 | 2.5–23.5 |
Hukseflux HFP0SC | Soil Heat Flux Plate | 4 | 0.1 | 4 | 0.1 |
Campbell Sci. TCAV | Type E Thermocouple Soil Temperature Probe | 2 | 0.02–0.06 | 2 | 0.02–0.06 |
Campbell Sci. CS616 | Water Content Reflectometer | 2 | 0.04 | 2 | 0.04 |
Licor LI190SB | PAR Sensor (incoming) | 1 | 14 | 1 | 23 |
Licor LI190SB | PAR Sensor (outgoing) | 1 | 14 | 1 | 23 |
Kipp & Zonen CNR4 | Four-component net radiometer | 1 | 14 | - | - |
Hukseflux NR-01 | Four-component net radiometer | - | - | 1 | 23 |
Campbell SR50A | Snow depth sonic ranging sensor | 1 | 2.5 | 1 | 2.5 |
Texas Electronics TE525MM | Rainfall gauge | 1 | 1.5 | - | - |
Apogee IRR-P | InfraRed Radiometer Sensor | 2 | 1.5–3 | - | - |
Characteristic | Description |
---|---|
Data format | GeoTiff/MiraMon |
Epoch | 2009–2013 |
Coordinate system | UTM-6N WGS84 |
Image dimensions | ~8531, ~9211 (rows, columns) |
Spatial resolution | 30 m |
Size | 55 Mb per image |
Data type | Unsigned Short Integer |
No Data value | −9999 |
Number of layers | 10 |
Unit | K |
Value divider | 100 |
Tag | Fields |
---|---|
General data | Summary, Coordinator, Promotor, Editor, Distributor, Layer creation date, Layer update date |
Technical aspects | File type, Layer size, User size, User size description, Data model, Object type, Number of objects, Disk Location, Alternative location, Alphanumeric database, Alternative alphanumeric database, Comments, Columns, Rows, Platform and instrument information |
Spatial reference system | Description, Units, Resolution , Resolution units, Equivalent scale, Cell size , Horizontal reference system quality |
Extent | Minimum X, Maximum X , Minimum Y, Maximum Y |
Thematic information | Content maintenance, Content date |
Quality | Parameter, Indicator, Measure, Type of values, Measurement value, Measurement units |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cristóbal, J.; Graham, P.; Buchhorn, M.; Prakash, A. A New Integrated High-Latitude Thermal Laboratory for the Characterization of Land Surface Processes in Alaska’s Arctic and Boreal Regions. Data 2016, 1, 13. https://doi.org/10.3390/data1020013
Cristóbal J, Graham P, Buchhorn M, Prakash A. A New Integrated High-Latitude Thermal Laboratory for the Characterization of Land Surface Processes in Alaska’s Arctic and Boreal Regions. Data. 2016; 1(2):13. https://doi.org/10.3390/data1020013
Chicago/Turabian StyleCristóbal, Jordi, Patrick Graham, Marcel Buchhorn, and Anupma Prakash. 2016. "A New Integrated High-Latitude Thermal Laboratory for the Characterization of Land Surface Processes in Alaska’s Arctic and Boreal Regions" Data 1, no. 2: 13. https://doi.org/10.3390/data1020013
APA StyleCristóbal, J., Graham, P., Buchhorn, M., & Prakash, A. (2016). A New Integrated High-Latitude Thermal Laboratory for the Characterization of Land Surface Processes in Alaska’s Arctic and Boreal Regions. Data, 1(2), 13. https://doi.org/10.3390/data1020013