Avian Respiratory Coinfection and Impact on Avian Influenza Pathogenicity in Domestic Poultry: Field and Experimental Findings
Abstract
:1. Introduction
2. Avian influenza and other viral co-infections
2.1. Co-Infection with LPAIV and HPAIV
2.2. Avian Influenza and Infectious Bronchitis Co-Infection
2.2.1. H9N2 with IB Vaccine
2.2.2. LP H9N2 and IB Field Strain
2.3. Avian Influenza and Newcastle Disease Virus Co-Infection
2.3.1. lNDV and LPAI in Chicken
2.3.2. vVNDV and HPAI in Chicken
2.3.3. vNDV with Either a LPAIV or a HPAIV in Duck
2.3.4. lNDV and LPAIV in Duck
3. Avian Influenza and Other Bacterial Co-Infections
3.1. Avian Influenza Coinfection with Staphylococcus sp.
3.2. Avian Influenza Coinfection with Ornithobacterium rhinotracheale
3.3. Avian Influenza Coinfection with Avian Mycoplasmosis
3.4. Avian Influenza Coinfection with Avian Collibacillosis
4. Perspectives and Future Directions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Thomas, J.K.; Noppenberger, J. Avian influenza: A review. Am. J. Health Syst. Pharm. 2007, 64, 149–165. [Google Scholar] [CrossRef] [PubMed]
- Kalthoff, D.; Globig, A.; Beer, M. (Highly pathogenic) avian influenza as a zoonotic agent. Vet. Microbiol. 2010, 140, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Imai, M.; Herfst, S.; Sorrell, E.M.; Schrauwen, E.J.; Linster, M.; De Graaf, M.; Fouchier, R.A.; Kawaoka, Y. Transmission of influenza a/h5n1 viruses in mammals. Virus Res. 2013, 178, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Swayne, D.E.; Suarez, D.L.; Sims, L.D. Influenza. In Diseases of Poultry, 13th ed.; Swayne, D.E., Glisson, J.R., McDougald, L.R., Eds.; Willey-Blackwell: Hoboken, NJ, USA, 2013; pp. 181–218. [Google Scholar]
- Kuiken, T. Is low pathogenic avian influenza virus virulent for wild waterbirds? Proc. Biol. Sci. 2013, 280, 20130990. [Google Scholar] [CrossRef] [PubMed]
- Halvorson, D.A. Control of low pathogenicity avian influenza. In Avian Influenza; Swayne, D.E., Ed.; Blackwell Publishing: Ames, IA, USA, 2008; pp. 513–536. [Google Scholar]
- Peiris, J.S.M.; de Jong, M.D.; Guan, Y. Avian influenza virus (H5N1): A threat to human health. Clin. Microbiol. Rev. 2007, 20, 243–267. [Google Scholar] [CrossRef] [PubMed]
- Guan, Y.; Smith, G.J.; Webby, R.; Webster, R.G. Molecular epidemiology of H5N1 avian influenza. Rev. Sci. Tech. 2009, 28, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.H.; Bahl, J.; Torchetti, M.K.; Killian, M.L.; Ip, H.S.; DeLiberto, T.J.; Swayne, D.E. Highly pathogenic avian influenza viruses and generation of novel reassortants, United States, 2014–2015. Emerg. Infect. Dis. 2016, 22, 1283–1285. [Google Scholar] [CrossRef] [PubMed]
- Guan, Y.; Shortridge, K.F.; Krauss, S.; Webster, R.G. Molecular characterization of H9N2 influenza viruses: Were they the donors of the “internal” genes of H5N1 viruses in Hong Kong? Proc. Natl. Acad. Sci. USA 1999, 96, 9363–9367. [Google Scholar] [CrossRef] [PubMed]
- Gerloff, N.A.; Khan, S.U.; Balish, A.; Shanta, I.S.; Simpson, N.; Berman, L.; Haider, N.; Poh, M.K.; Islam, A.; Gurley, E.; et al. Multiple reassortment events among highly pathogenic avian influenza A(H5N1) viruses detected in Bangladesh. Virology 2014, 450–451, 297–307. [Google Scholar] [CrossRef] [PubMed]
- El Zowalaty, M.E.; Chander, Y.; Redig, P.T.; Abd El Latif, H.K.; El Sayed, M.A.; Goyal, S.M. Selective isolation of avian influenza virus (AIV) from cloacal samples containing aiv and newcastle disease virus. J. Vet. Diagn. Investig. 2011, 23, 330–332. [Google Scholar] [CrossRef] [PubMed]
- Stipkovits, L.; Egyed, L.; Palfi, V.; Beres, A.; Pitlik, E.; Somogyi, M.; Szathmary, S.; Denes, B. Effect of low-pathogenicity influenza virus H3N8 infection on Mycoplasma gallisepticum infection of chickens. Avian Pathol. 2012, 41, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Haghighat-Jahromi, M.; Asasi, K.; Nili, H.; Dadras, H.; Shooshtari, A.H. Coinfection of avian influenza virus (H9N2 subtype) with infectious bronchitis live vaccine. Arch. Virol. 2008, 153, 651–655. [Google Scholar] [CrossRef] [PubMed]
- Roussan, D.A.; Haddad, R.; Khawaldeh, G. Molecular survey of avian respiratory pathogens in commercial broiler chicken flocks with respiratory diseases in Jordan. Poult. Sci. 2008, 87, 444–448. [Google Scholar] [CrossRef] [PubMed]
- Franca, M.; Howerth, E.W.; Carter, D.; Byas, A.; Poulson, R.; Afonso, C.L.; Stallknecht, D.E. Co-infection of mallards with low-virulence Newcastle disease virus and low-pathogenic avian influenza virus. Avian Pathol. 2014, 43, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Bakaletz, L.O. Viral potentiation of bacterial superinfection of the respiratory tract. Trends Microbiol. 1995, 3, 110–114. [Google Scholar] [CrossRef]
- Wilson, R.; Dowling, R.; Jackson, A. The biology of bacterial colonization and invasion of the respiratory mucosa. Eur. Respir. J. 1996, 9, 1523–1530. [Google Scholar] [CrossRef] [PubMed]
- El Ahmer, O.R.; Raza, M.W.; Ogilvie, M.M.; Weir, D.M.; Blackwell, C.C. Binding of bacteria to hep-2 cells infected with influenza a virus. FEMS Immunol. Med. Microbiol. 1999, 23, 331–341. [Google Scholar] [CrossRef] [PubMed]
- Debets-Ossenkopp, Y.; Mills, E.L.; Van Dijk, W.C.; Verbrugh, H.A.; Verhoef, J. Effect of influenza viras on phagocytic cells. Eur. J. Clin. Microbiol. 1982, 1, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Engelich, G.; White, M.; Hartshorn, K.L. Role of the respiratory burst in co-operative reduction in neutrophil survival by influenza A virus and Escherichia coli. J. Med. Microbiol. 2002, 51, 484–490. [Google Scholar] [CrossRef] [PubMed]
- Navarini, A.A.; Recher, M.; Lang, K.S.; Georgiev, P.; Meury, S.; Bergthaler, A.; Flatz, L.; Bille, J.; Landmann, R.; Odermatt, B.; et al. Increased susceptibility to bacterial superinfection as a consequence of innate antiviral responses. Proc. Natl. Acad. Sci. USA 2006, 103, 15535–15539. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.; Smith, R.P.; Srimani, J.K.; Riccione, K.A.; Prasada, S.; Kuehn, M.; You, L. The inoculum effect and band-pass bacterial response to periodic antibiotic treatment. Mol. Syst. Biol. 2012, 8, 617. [Google Scholar] [CrossRef] [PubMed]
- Tashiro, M.; Ciborowski, P.; Reinacher, M.; Pulverer, G.; Klenk, H.D.; Rott, R. Synergistic role of staphylococcal proteases in the induction of influenza virus pathogenicity. Virology 1987, 157, 421–430. [Google Scholar] [CrossRef]
- Kishida, N.; Sakoda, Y.; Eto, M.; Sunaga, Y.; Kida, H. Co-infection of staphylococcus aureus or haemophilus paragallinarum exacerbates H9N2 influenza A virus infection in chickens. Arch. Virol. 2004, 149, 2095–2104. [Google Scholar] [CrossRef] [PubMed]
- Sid, H.; Hartmann, S.; Petersen, H.; Ryll, M.; Rautenschlein, S. Mycoplasma gallisepticum modifies the pathogenesis of influenza a virus in the avian tracheal epithelium. Int. J. Med. Microbiol. 2016, 306, 174–186. [Google Scholar] [CrossRef] [PubMed]
- Stieneke-Gröber, A.; Vey, M.; Angliker, H.; Shaw, E.; Thomas, G.; Roberts, C.; Klenk, H.; Garten, W. Influenza virus hemagglutinin with multibasic cleavage site is activated by furin, a subtilisin-like endoprotease. EMBO J. 1992, 11, 2407–2414. [Google Scholar] [PubMed]
- Böttcher-Friebertshäuser, E.; Garten, W.; Matrosovich, M.; Klenk, H.D. The hemagglutinin: A determinant of pathogenicity. In Influenza Pathogenesis and Control-Volume I; Compans, R.W., Oldstone, M.B.A., Eds.; Springer: Cham, Switzerland, 2014; pp. 3–34. [Google Scholar]
- Akaike, T.; Molla, A.; Ando, M.; Araki, S.; Maeda, H. Molecular mechanism of complex infection by bacteria and virus analyzed by a model using serratial protease and influenza virus in mice. J. Virol. 1989, 63, 2252–2259. [Google Scholar] [PubMed]
- Scheiblauer, H.; Reinacher, M.; Tashiro, M.; Rott, R. Interactions between bacteria and influenza A virus in the development of influenza pneumonia. J. Infect. Dis. 1992, 166, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Callan, R.J.; Hartmann, F.A.; West, S.; Hinshaw, V.S. Cleavage of influenza a virus H1 hemagglutinin by swine respiratory bacterial proteases. J. Virol. 1997, 71, 7579–7585. [Google Scholar] [PubMed]
- Byrum, B.; Slemons, R.D. Detection of proteolytic bacteria in the upper respiratory tract flora of poultry. Avian Dis. 1995, 39, 622–626. [Google Scholar] [CrossRef] [PubMed]
- Dianzani, F. Viral interference and interferon. Ric. Clin. Lab. 1975, 5, 196–213. [Google Scholar] [PubMed]
- DaPalma, T.; Doonan, B.P.; Trager, N.M.; Kasman, L.M. A systematic approach to virus-virus interactions. Virus Res. 2010, 149, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Arafa, A.S.; Hagag, N.M.; Yehia, N.; Zanaty, A.M.; Naguib, M.M.; Nasef, S.A. Effect of cocirculation of highly pathogenic avian influenza H5N1 subtype with low pathogenic H9N2 subtype on the spread of infections. Avian Dis. 2012, 56, 849–857. [Google Scholar] [CrossRef] [PubMed]
- Seo, S.H.; Webster, R.G. Cross-reactive, cell-mediated immunity and protection of chickens from lethal H5N1 influenza virus infection in Hong Kong poultry markets. J. Virol. 2001, 75, 2516–2525. [Google Scholar] [CrossRef] [PubMed]
- Khalenkov, A.; Perk, S.; Panshin, A.; Golender, N.; Webster, R.G. Modulation of the severity of highly pathogenic H5N1 influenza in chickens previously inoculated with Israeli H9N2 influenza viruses. Virology 2009, 383, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Naguib, M.M.; Grund, C.; Arafa, A.S.; Abdelwhab, E.M.; Beer, M.; Harder, T.C. Heterologous post-infection immunity against Egyptian avian influenza virus (AIV) H9N2 modulates the course of subsequent infection by highly pathogenic AIV H5N1, but vaccination immunity does not. J. Gen. Virol. 2017, 98, 1169–1173. [Google Scholar] [CrossRef] [PubMed]
- Jackwood, M.W. Review of infectious bronchitis virus around the world. Avian Dis. 2012, 56, 634–641. [Google Scholar] [CrossRef] [PubMed]
- Cavanagh, D. Coronavirus avian infectious bronchitis virus. Vet. Res. 2007, 38, 281–297. [Google Scholar] [CrossRef] [PubMed]
- Valastro, V.; Holmes, E.C.; Britton, P.; Fusaro, A.; Jackwood, M.W.; Cattoli, G.; Monne, I. S1 gene-based phylogeny of infectious bronchitis virus: An attempt to harmonize virus classification. Infect. Genet. Evol. 2016, 39, 349–364. [Google Scholar] [CrossRef] [PubMed]
- Cook, J.K.; Jackwood, M.; Jones, R.C. The long view: 40 Years of infectious bronchitis research. Avian Pathol. 2012, 41, 239–250. [Google Scholar] [CrossRef] [PubMed]
- Hassan, K.E.; Shany, S.A.; Ali, A.; Dahshan, A.H.; El-Sawah, A.A.; El-Kady, M.F. Prevalence of avian respiratory viruses in broiler flocks in Egypt. Poult. Sci. 2016, 95, 1271–1280. [Google Scholar] [CrossRef] [PubMed]
- Wickramasinghe, I.N.; de Vries, R.P.; Grone, A.; de Haan, C.A.; Verheije, M.H. Binding of avian coronavirus spike proteins to host factors reflects virus tropism and pathogenicity. J. Virol. 2011, 85, 8903–8912. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.X.; Brierley, I.; Brown, T.D. Identification of a trypsin-like serine proteinase domain encoded by ORF 1a of the coronavirus IBV. Adv. Exp. Med. Biol. 1995, 380, 405–411. [Google Scholar] [PubMed]
- Naguib, M.M.; El-Kady, M.F.; Lüschow, D.; Hassan, K.E.; Arafa, A.-S.; El-Zanaty, A.; Hassan, M.K.; Hafez, H.M.; Grund, C.; Harder, T.C. New real time and conventional RT-PCRs for updated molecular diagnosis of infectious bronchitis virus infection (IBV) in chickens in Egypt associated with frequent co-infections with avian influenza and Newcastle disease viruses. J. Virol. Meth. 2017, 245, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Seifi, S.; Asasi, K.; Mohammadi, A. An experimental study on broiler chicken co-infected with the specimens containing avian influenza (H9 subtype) and infectious bronchitis (4/91 strain) viruses. Iran. J. Vet. Res. 2012, 13, 138–142. [Google Scholar]
- Miller, P.J.; Koch, G. Newcastle disease, other avian paramyxoviruses and avian metapneumovirus infections. In Diseases of Poultry, 13th ed.; Swayne, D.E., Ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2013; pp. 89–138. [Google Scholar]
- Heiden, S.; Grund, C.; Röder, A.; Granzow, H.; Kühnel, D.; Mettenleiter, T.C.; Römer-Oberdörfer, A. Different regions of the Newcastle disease virus fusion protein modulate pathogenicity. PLoS ONE 2014, 9, e113344. [Google Scholar] [CrossRef] [PubMed]
- Alexander, D.J. The epidemiology and control of avian influenza and Newcastle disease. J. Comp. Pathol. 1995, 112, 105–126. [Google Scholar] [CrossRef]
- Shortridge, K.F.; King, A.P. Cocultivation of avian orthomyxoviruses and paramyxoviruses in embryonated eggs: Implications for surveillance studies. Appl. Environ. Microbiol. 1983, 45, 463–467. [Google Scholar] [PubMed]
- Suzuki, Y. Receptor and molecular mechanism of the host range variation of influenza viruses. Uirusu 2001, 51, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Dortmans, J.C.; Koch, G.; Rottier, P.J.; Peeters, B.P. Virulence of Newcastle disease virus: What is known so far? Vet. Res. 2011, 42, 122. [Google Scholar] [CrossRef] [PubMed]
- Umar, S.; Azeem, T.; Abid, A.S.; Mushtaq, A.; Kiran, A.; Qayyum, M.R.; Rehman, A. Effect of lentogenic Newcastle disease virus (Lasota) on low pathogenic avian influenza virus (H9N2) infection in fayoumi chicken. J. Avian Res. 2015, 1, 1–4. [Google Scholar]
- Costa-Hurtado, M.; Afonso, C.L.; Miller, P.J.; Spackman, E.; Kapczynski, D.R.; Swayne, D.E.; Shepherd, E.; Smith, D.; Zsak, A.; Pantin-Jackwood, M. Virus interference between H7N2 low pathogenic avian influenza virus and lentogenic Newcastle disease virus in experimental co-infections in chickens and turkeys. Vet. Res. 2014, 45, 1. [Google Scholar] [CrossRef] [PubMed]
- Costa-Hurtado, M.; Afonso, C.L.; Miller, P.J.; Shepherd, E.; Cha, R.M.; Smith, D.; Spackman, E.; Kapczynski, D.R.; Suarez, D.L.; Swayne, D.E.; et al. Previous infection with virulent strains of Newcastle disease virus reduces highly pathogenic avian influenza virus replication, disease, and mortality in chickens. Vet. Res. 2015, 46, 97. [Google Scholar] [CrossRef] [PubMed]
- Pantin-Jackwood, M.J.; Costa-Hurtado, M.; Miller, P.J.; Afonso, C.L.; Spackman, E.; Kapczynski, D.R.; Shepherd, E.; Smith, D.; Swayne, D.E. Experimental co-infections of domestic ducks with a virulent Newcastle disease virus and low or highly pathogenic avian influenza viruses. Vet. Microbiol. 2015, 177, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Tashiro, M.; Ciborowski, P.; Klenk, H.; Pulverer, G.; Rott, R. Role of staphylococcus protease in the development of influenza pneumonia. Nature 1987, 325, 536–537. [Google Scholar] [CrossRef] [PubMed]
- Longping, V.T.; Whittaker, G.R. Modification of the hemagglutinin cleavage site allows indirect activation of avian influenza virus H9N2 by bacterial staphylokinase. Virology 2015, 482, 1–8. [Google Scholar]
- Türkyilmaz, S. Isolation and serotyping of ornithobacterium rhinotracheale from poultry. Turk. J. Vet. Anim. Sci. 2006, 29, 1299–1304. [Google Scholar]
- Popy, N.; Asaduzzaman, M.; Miah, M.; Siddika, A.; Sufian, M.; Hossain, M. Pathological study on the upper respiratory tract infection of chickens and isolation, identification of causal bacteria. Bangladesh Vet. 2012, 28, 60–69. [Google Scholar] [CrossRef]
- Van Empel, P.; Hafez, H. Ornithobacterium rhinotracheale: A review. Avian Pathol. 1999, 28, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Amonsin, A.; Wellehan, J.; Li, L.L.; Vandamme, P.; Lindeman, C.; Edman, M.; Robinson, R.A.; Kapur, V. Molecular epidemiology of Ornithobacterium rhinotracheale. J. Clin. Microbiol. 1997, 35, 2894–2898. [Google Scholar] [PubMed]
- Charlton, B.R.; Channing-Santiago, S.E.; Bickford, A.A.; Cardona, C.J.; Chin, R.P.; Cooper, G.L.; Droual, R.; Jeffrey, J.S.; Meteyer, C.U.; Shivaprasad, H. Preliminary characterization of a pleomorphic gram-negative rod associated with avian respiratory disease. J. Vet. Diagn. Investig. 1993, 5, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Devriese, L.; Hommez, J.; Vandamme, P.; Kersters, K.; Haesebrouck, F. In vitro antibiotic sensitivity of Ornithobacterium rhinotracheale strains from poultry and wild birds. Vet. Rec. 1995, 137, 435–436. [Google Scholar] [CrossRef] [PubMed]
- Hafez, H.M.; Lierz, M. Ornithobacterium rhinotracheale in nestling falcons. Avian Dis. 2010, 54, 161–163. [Google Scholar] [CrossRef] [PubMed]
- Moreno, B.; Chacón, G.; Villa, A.; Fernández, A.; Vela, A.; Fernández-Garayzábal, J.; Ferré, S.; Gracia, E. Nervous signs associated with otitis and cranial osteomyelitis and with Ornithobacterium rhinotracheale infection in red-legged partridges (Alectoris rufa). Avian Pathol. 2009, 38, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Tsai, H.-J.; Huang, C.-W. Phenotypic and molecular characterization of isolates of Ornithobacterium rhinotracheale from chickens and pigeons in Taiwan. Avian Dis. 2006, 50, 502–507. [Google Scholar] [CrossRef] [PubMed]
- Chin, R.P.; van Empel, P.C.M.; Hafez, H.M. Ornithobacterium rhinotracheale infection. In Diseases of Poultry, 11th ed.; Saif, Y.M., Barnes, H.J., Glisson, J.R., Eds.; Iowa State University Press: Ames, IA, USA, 2003; pp. 683–690. [Google Scholar]
- Pan, Q.; Liu, A.; Zhang, F.; Ling, Y.; Ou, C.; Hou, N.; He, C. Co-infection of broilers with Ornithobacterium rhinotracheale and H9N2 avian influenza virus. BMC Vet. Res. 2012, 8, 104. [Google Scholar] [CrossRef] [PubMed]
- Azizpour, A.; Goudarzi, H.; Charkhkar, S.; Momayez, R.; Hablolvarid, M. Experimental study on tissue tropism and dissemination of H9N2 avian influenza virus and Ornithobacterium rhinotracheale co-infection in SPF chickens. J. Anim. Plant Sci. 2014, 24, 1655–1662. [Google Scholar]
- Ferguson-Noel, N. Introduction: Mycoplasmosis. In Diseases of Poultry, 13th ed.; Swayne, D.E., Glisson, J.R., McDougald, L.R., Eds.; Wiley-Blackwell: Ames, IA, USA, 2013; pp. 875–876. [Google Scholar]
- Oie, A. Manual of Diagnostic Tests and Vaccines for Terrestrial Animals; Office International des Epizooties: Paris, France, 2008; pp. 525–541. [Google Scholar]
- Bradbury, J.M. Avian mycoplasma infections: Prototype of mixed infections with mycoplasmas, bacteria and viruses. In Annales de l’Institut Pasteur/Microbiologie; Elsevier Masson: Paris, France, 1984; pp. 83–89. [Google Scholar]
- Stipkovits, L.; Glavits, R.; Palfi, V.; Beres, A.; Egyed, L.; Denes, B.; Somogyi, M.; Szathmary, S. Pathologic lesions caused by coinfection of Mycoplasma gallisepticum and H3N8 low pathogenic avian influenza virus in chickens. Vet. Pathol. 2012, 49, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Roussan, D.A.; Khawaldeh, G.; Shaheen, I.A. A survey of Mycoplasma gallisepticum and Mycoplasma synovaie with avian influenza H9 subtype in meat-type chicken in Jordan between 2011–2015. Poult. Sci. 2015, 94, 1499–1503. [Google Scholar] [CrossRef] [PubMed]
- Sid, H.; Benachour, K.; Rautenschlein, S. Co-infection with multiple respiratory pathogens contributes to increased mortality rates in Algerian poultry flocks. Avian Dis. 2015, 59, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Nili, H.; Asasi, K. Natural cases and an experimental study of H9N2 avian influenza in commercial broiler chickens of Iran. Avian Pathol. 2002, 31, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Nolan, L.K.; Barnes, H.J.; Vaillancourt, J.-P.; Abdul-Aziz, T.; Logue, C.M. Colibacillosis. In Diseases of Poultry, 13th ed.; Swayne, D.E., Glisson, J.R., McDougald, L.R., Eds.; Wiley-Blackwell Press: Ames, IA, USA, 2013; pp. 751–805. [Google Scholar]
- Bano, S.; Naeem, K.; Malik, S. Evaluation of pathogenic potential of avian influenza virus serotype H9N2 in chickens. Avian Dis. 2003, 47, 817–822. [Google Scholar] [CrossRef] [PubMed]
- Barbour, E.K.; Mastori, F.A.; Nour, A.M.A.; Shaib, H.A.; Jaber, L.S.; Yaghi, R.H.; Sabra, A.; Sleiman, F.T.; Sawaya, R.K.; Niedzwieck, A. Standardisation of a new model of H9N2/Escherichia coli challenge in broilers in the Lebanon. Vet. Ital. 2009, 45, 317–322. [Google Scholar] [PubMed]
Pathogen | Strain Name | Impact | Reference |
---|---|---|---|
LPAI (H9N2) | A/Chicken/HK/G9/97 | Had a role in protecting chickens from lethal challenge of HPAIV H5N1 infection with mild clinical sign include sneezing, nasal discharge, and ruffled feather with higher shedding in fecal material comparied to tracheal. | [36] |
Israeli LPAIV H9N2 genotype G1 | Some Israeli strains showed up to 100% survival after inoculation with lethal H5N1 virus while others not. | [37] | |
Egyptian LPAIV H9N2 | The Egyptian LPAI H9N2 virus infection can modulate the course of subsequent infection with HPAIV H5N1. | [38] | |
IB | H120 | Increase the severity of LPAIV H9N2 (A/chicken/Iran/SH-110/99) clinical signs that include depression, ruffled feathers, respiratory distress, swelling of the periorbital tissues and sinuses, and conjunctivitis, and nasal and ocular discharge), as well as gross lesions (as tracheal congestion, lung hyperemia and exudation of the trachea with tubular cast formation in the tracheal bifurcation). In addition, this led to a prolonged shedding period of LPAIV H9N2. It even can cause death of the infected birds. | [14] |
IBV/4/91 | Chickens, co-infected simultaneously with LPAIV H9N2 (A/Chicken/Iran/SH110/99) showed severe clinical signs (respiratory distress, facial edema, conjunctivitis, depression, lacrimation, ruffled feathers, whitish watery diarrhea, and nasal discharge), gross lesions (tracheal congestion, air saculitis, lung hyperemia, tubular cast formation in the tracheal bifurcation which extended to the lower bronchi, swollen kidney, and hemorrhagic pancreas and intestine), and mortality rate (5%) with significant higher HI titer. | [47] | |
NDV | lNDV (LaSota) | Co-infection with LPAIV-H9N2 (A/Chicken/Pakistan/UDL/08) in chickens showed a significant reduction in virus replication and virus shedding compared to singly inoculated chickens. Further significantly higher titer for LPAIV and lower for lNDV was detected in oropharangeal and cloacal swabs, and no clinical signs were observed. | [54] |
lNDV (LaSota) | Co-infection with LPAIV H7N2 (A/turkey/VA/SEP/67/2002) induced no clinical signs, and significantly higher titer for LPAIV and lower for lNDV was detected in oropharangeal and cloacal swabs, and no clinical signs were observed. | [55] | |
virulent NDV (velogenic CA/2002) | Co-infection with HPAIV (A/chicken/Queretaro/14588-19/95(H5N2) lead to reduction in the number of birds shedding HPAI. However, the death of all birds was recorded within 1.9 to 5.2 day with no difference in the clinical signs between the single infected or co-infected group in high dose of vNDV; a low dose of vNDV increased the survival of the co-infected chickens. Meanwhile, chickens infected with the less virulent mesogenic NDV prior to HPAIV (with a lower dose) revealed reduced HPAIV replication and increased survival rates. | [56] | |
vNDV (APMV-1/duck/Vietnam (Long Bien)/78/2002) | Co-infection with LPAIV (A/Mallard/OH/421/1987 (H7N8)) caused no clinical signs in ducks. However, co-infection decreased the number of birds shedding vNDV, and it did not affect the number of ducks shedding LPAIV (except at 2 dpi low virus shedding was observed in the co-infected group than the group infected only with LPAI). HPAI (A/duck/VN/NCVD-672/2011 (H5N1)) survived fewer days compared to those that received the vNDV two days prior the HPAIV. Moreover, reduced transmission of vNDV to naı¨ve contact ducks was reported. | [57] | |
lNDV Mallard/US(MN)/AI06-978/2006 | Co-infection with LPAIV (A/Mallard/MN/199106/99 (H3N8)) revealed less productive lNDV shedding and higher LPAIV shedding and in the cloaca swabs minimal effects were observed with lNDV and LPAIV co-infections. | [16] | |
Staphylococcus sp. | S. aureus | Experimentally, pre-infection of chickens with S. aureus, 3 days before infection with LPAIV H9N2 (A/chicken/aq-Y-55/01 and A/chicken/Beijing/2/97 ), lead to severe clinical signs. Viruses recovered from blood of all co-infected chickens with extensive replication in the respiratory tissue. | [25] |
Ornithobacteriumrhinotracheale (ORT) | ORT/chicken/ Shandong/2011 | Experimental preinfection with ORT and 3 days later secondary infection with LPAIV H9N2 (H9N2/chicken/Shandong/2011) induced the highest mortality rate with development of severe pneumonia and airsacculitis with unique histopathological lesions represented by severe pulmonary fibrosis. On the other hand, a lower mortality rate induced by coinfection and pre-infection with LPAIV H9N2 then secondary infection with ORT. | [70] |
Avian mycoplasmosis | Strain 122610 | Chickens pre-infected with MG aerosol one week before challenge with LPAIV H3N8 (A/mallard/Hungary/19616/07) exhibit clinical signs, pathological lesions along the entire respiratory system (tracheitis, bronchitis, airsacculitis and pneumonia) as well as reduction in body weight gain significantly comparing to single infection with decrease in the anti-MG antibodies level comparing to group infected with MG only. | [13,75] |
MG S6 lab. strain | MG modifies the pathogenesis of LPAIV H9N2 (A/chicken/Saudi Arabia/CP7/1998) using tracheal organ cultures (TOC) model depending on the interval between the two infections.The longer time incubation with MG before LPAIV H9N2 challenge the more enhancement of ciliostasis and significant down regulation of antiviral innate immune response that subsequently enhances the effect of H9N2. While longer incubation promote only bacterial growth while viral replication significantly decreased. | [26] | |
Escherichia coli | Pre-infection of chickens with LPAIV H9N2 (A/chicken/Pakistan/31/01) and 4 days later secondary inoculated with E. coli induce higher AIV antibodies at 2 wpi comparing to secondary infection with IB or ORT. Furthermore, In the pre-infected group, a prolonged virus shedding up to 14 dpi compared to only 7 dpi in the group inoculated with H9N2 alone was recorded. | [80] | |
Bekaa Valley of the Lebanon (BVL-strain) | Chickens pre-infected with LPAIV H9N2 then 3 days later inoculated with 1.6 × 109 cfu/ birds of E. Coli intrathoracic showed significant early mortality with more predominant clinical signs (conjunctivitis, diarrhea, ocular exudates and rales) and gross lesion (abdominal airsacculitis, left thoracic airsacculitis, pericarditis, right thoracic airsacculitis and tracheitis) comparing to groups that received lower E. coli count used in the challenge | [81] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samy, A.; Naguib, M.M. Avian Respiratory Coinfection and Impact on Avian Influenza Pathogenicity in Domestic Poultry: Field and Experimental Findings. Vet. Sci. 2018, 5, 23. https://doi.org/10.3390/vetsci5010023
Samy A, Naguib MM. Avian Respiratory Coinfection and Impact on Avian Influenza Pathogenicity in Domestic Poultry: Field and Experimental Findings. Veterinary Sciences. 2018; 5(1):23. https://doi.org/10.3390/vetsci5010023
Chicago/Turabian StyleSamy, Ahmed, and Mahmoud M. Naguib. 2018. "Avian Respiratory Coinfection and Impact on Avian Influenza Pathogenicity in Domestic Poultry: Field and Experimental Findings" Veterinary Sciences 5, no. 1: 23. https://doi.org/10.3390/vetsci5010023
APA StyleSamy, A., & Naguib, M. M. (2018). Avian Respiratory Coinfection and Impact on Avian Influenza Pathogenicity in Domestic Poultry: Field and Experimental Findings. Veterinary Sciences, 5(1), 23. https://doi.org/10.3390/vetsci5010023