Advances in Wine Fermentation
Abstract
:1. Wine Fermentation: New Approaches for a Traditional Process
1.1. Saccharomyces Cerevisiae Is Not the Unique Microorganism in Wine Fermentation
1.2. Genetic Modification of Yeasts and Vines
1.3. Micro-Oxygenation
1.4. Low-Alcohol Wine Production
1.5. Other Types of Fermentation in Winemaking
1.5.1. Malolactic Fermentation
1.5.2. Bottle Fermentation
1.5.3. Carbonic Maceration
1.6. Vessels
1.7. Turning Wine Waste into Fuel
Funding
Conflicts of Interest
References
- Muñoz-Redondo, J.M.; Puertas, B.; Pereira-Caro, G.; Ordoñez-Díaz, J.L.; Ruiz-Moreno, M.J.; Cantos-Villar, E.; Moreno-Rojas, J.M. A statistical workflow to evaluate the modulation of wine metabolome and its contribution to the sensory attributes. Fermentation 2021, 7, 72. [Google Scholar] [CrossRef]
- Benito, S.; Hofmann, T.; Laier, M.; Lochühler, B.; Schüttler, A.; Ebert, K.; Fritsch, S.; Röcker, J.; Rauhut, D. Effect on quality and composition of Riesling wines fermented by sequential inoculation with non-Saccharomyces and Saccharomyces cerevisiae. Eur. Food Res. Technol. 2015, 241, 707–717. [Google Scholar] [CrossRef]
- Belda, I.; Navascués, E.; Marquina, D.; Santos, A.; Calderon, F.; Benito, S. Dynamic analysis of physiological properties of Torulaspora delbrueckii in wine fermentations and its incidence on wine quality. Appl. Microbiol. Biotechnol. 2015, 99, 1911–1922. [Google Scholar] [CrossRef] [PubMed]
- Benito, A.; Calderón, F.; Palomero, F.; Benito, S. Quality and composition of airén wines fermented by sequential inoculation of Lachancea thermotolerans and Saccharomyces cerevisiae. Food Technol. Biotechnol. 2016, 54, 135–144. [Google Scholar] [CrossRef]
- Rojas, V.; Gil, J.; Piñaga, F.; Manzanares, P. Studies on acetate ester production by non-Saccharomyces wine yeasts. Int. J. Food Microbiol. 2001, 70, 283–289. [Google Scholar] [CrossRef]
- Ciani, M.; Comitini, F.; Mannazzu, I.; Domizio, P. Controlled mixed culture fermentation: A new perspective on the use of non-Saccharomyces yeasts in winemaking. FEMS Yeast Res. 2010, 10, 123–133. [Google Scholar] [CrossRef] [Green Version]
- Comitini, F.; Gobbi, M.; Domizio, P.; Romani, C.; Lencioni, L.; Mannazzu, I.; Ciani, M. Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae. Food Microbiol. 2011, 28, 873–882. [Google Scholar] [CrossRef]
- Jolly, N.; Varela, C.; Pretorius, I. Not your ordinary yeast: Non-Saccharomyces yeasts in wine production uncovered. FEMS Yeast Res. 2014, 14, 215–237. [Google Scholar] [CrossRef] [Green Version]
- Benito, S.; Palomero, F.; Morata, A.; Calderón, F.; Palmero, D.; Suárez-Lepe, J. Physiological features of Schizosaccharomyces pombe of interest in making of white wines. Eur. Food Res. Technol. 2013, 236, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Maconi, E.; Manachini, P.; Aragozzini, F.; Gennari, C.; Ricca, G. A study of the maloalcoholic fermentation pathway in Schizosaccharomyces pombe. Biochem. J. 1984, 217, 585–588. [Google Scholar] [CrossRef] [Green Version]
- Taillandier, P.; Strehaiano, P. The role of malic acid in the metabolism of Schizosaccharomyces pombe: Substrate consumption and cell growth. Appl. Microbiol. Biotechnol. 1991, 35, 541–543. [Google Scholar] [CrossRef] [Green Version]
- Lubbers, M.; Rodriguez, S.; Honey, N.; Thornton, R. Purification and characterization of urease from Schizosaccharomyces pombe. Can. J. Microbiol. 1996, 42, 132–140. [Google Scholar] [CrossRef]
- Bacanamwo, M.; Witte, C.P.; Lubbers, M.; Polacco, J. Activation of the urease of Schizosaccharomyces pombe by the UreF accessory protein from soybean. Mol. Genet. Genom. 2002, 268, 525–534. [Google Scholar] [CrossRef]
- Maicas, S.; Mateo, J. Microbial glycosidases for wine production. Beverages 2016, 2, 20. [Google Scholar] [CrossRef] [Green Version]
- López, S.; Mateo, J.; Maicas, S. Screening of Hanseniaspora strains for the production of enzymes with potential interest for winemaking. Fermentation 2016, 2, 1. [Google Scholar] [CrossRef] [Green Version]
- Bisson, L.; Karpel, J. Genetics of yeast impacting wine quality. Annu. Rev. Food Sci. Technol. 2010, 1, 139–162. [Google Scholar] [CrossRef]
- Bleve, G.; Tufariello, M.; Vetrano, C.; Mita, G.; Grieco, F. Simultaneous alcoholic and malolactic fermentations by Saccharomyces cerevisiae and Oenococcus oeni cells co-immobilized in alginate beads. Front. Microbiol. 2016, 7, 943. [Google Scholar] [CrossRef]
- Cano-López, M.; Pardo-Minguez, F.; López-Roca, J.; Gómez-Plaza, E. Chromatic characteristics and anthocyanin profile of a micro-oxygenated red wine after oak or bottle maturation. Eur. Food Res. Technol. 2007, 225, 127–132. [Google Scholar] [CrossRef]
- Anli, R.E.; Cavuldak, O.A. A review of microoxygenation application in wine. J. Inst. Brew. 2012, 118, 368–385. [Google Scholar] [CrossRef]
- Varela, J.; Varela, C. Microbiological strategies to produce beer and wine with reduced ethanol concentration. Curr. Opin. Biotechnol. 2019, 56, 88–96. [Google Scholar] [CrossRef]
- Schmidtke, L.M.; Blackman, J.W.; Agboola, S.O. Production technologies for reduced alcoholic wines. J. Food Sci. 2012, 77, R25–R41. [Google Scholar] [CrossRef]
- Maicas, S. The use of alternative technologies to develop malolactic fermentation in wine. Appl. Microbiol. Biotechnol. 2001, 56, 35–39. [Google Scholar] [CrossRef]
- Vigentini, I.; Cardenas, S.; Valdetara, F.; Faccincani, M.; Panont, C.; Picozzi, C.; Foschino, R. Use of native yeast strains for in-bottle fermentation to face the uniformity in sparkling wine production. Front. Microbiol. 2017, 8, 1225. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, P.; Pueyo, E.; Pozo-Bayón, M.; Martínez-Rodríguez, A.; Martín-Álvarez, P.; Polo, M. Sensory and analytical study of ros© sparkling wines manufactured by second fermentation in the bottle. J. Agric. Food Chem. 2004, 52, 6640–6645. [Google Scholar] [CrossRef]
- González-Arenzana, L.; Santamaría, R.; Escribano-Viana, R.; Portu, J.; Garijo, P.; López-Alfaro, I.; López, R.; Santamaría, P.; Gutiérrez, A. Influence of the carbonic maceration winemaking method on the physicochemical, colour, aromatic and microbiological features of tempranillo red wines. Food Chem. 2020, 319, 126569. [Google Scholar] [CrossRef]
- Fang, F.; Li, J.M.; Zhang, P.; Tang, K.; Wang, W.; Pan, Q.H.; Huang, W.D. Effects of grape variety, harvest date, fermentation vessel and wine ageing on flavonoid concentration in red wines. Food Res. Int. 2008, 41, 53–60. [Google Scholar] [CrossRef]
- Eroglu, E.; Eroglu, I.; Gunduz, U.; Turker, L.; Yucel, M. Biological hydrogen production from olive mill wastewater with two-stage processes. Int. J. Hydrogen Energy 2006, 31, 1527–1535. [Google Scholar] [CrossRef]
- Maicas, S.; Mateo, J. Sustainability of wine production. Sustainability 2020, 12, 559. [Google Scholar] [CrossRef] [Green Version]
- Mateo, J.; Maicas, S. Valorization of winery and oil mill wastes by microbial technologies. Food Res. Int. 2015, 73, 13–25. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maicas, S. Advances in Wine Fermentation. Fermentation 2021, 7, 187. https://doi.org/10.3390/fermentation7030187
Maicas S. Advances in Wine Fermentation. Fermentation. 2021; 7(3):187. https://doi.org/10.3390/fermentation7030187
Chicago/Turabian StyleMaicas, Sergi. 2021. "Advances in Wine Fermentation" Fermentation 7, no. 3: 187. https://doi.org/10.3390/fermentation7030187