Microalgae and Cyanobacteria Biomass Pretreatment Methods: A Comparative Analysis of Chemical and Thermochemical Pretreatment Methods Aimed at Methane Production
Abstract
:1. Introduction
2. Anaerobic Digestion
3. Anaerobic Digestion of Algal Biomass
Algae Species | Anaerobic Digestion Process Conditions | Methane Yield (mL CH4/g VS) | Reference |
---|---|---|---|
Algae biomass: Chlorella sp. and Scenedesmus sp. | Batch reactor, 35 °C, 105 days | 260 | [42] |
Algae biomass: Scenedesmus obliquus, Chlorella vulgaris | Batch reactor, 35 °C, 46 days | 117 | [64] |
Algae biomass: Stigeoclonium sp., Monoraphidium sp., Nitzschia sp., Amphora sp. | Continuous reactor, 37 °C, 20 days, OLR 1.05 kg COD/m3·d | 180 | [65] |
Arthrospira maxima | ADMFC, 35 °C, 4 days, OLR 0.5 kg DW/m3·d | 173 | [66] |
Arthrospira platensis Chlorella kessleri Chlamydomonas reinhardtii Dunaliella salina Euglena gracilis Scenedesmus obliquus | Batch reactor, 38 °C, 32 days | 293 218 387 323 325 178 | [40] |
Botryococcus braunni Chlamydomonas sp. Isochrysis sp. Scenedesmus dimorphus | Batch reactor, 35 °C, 34–50 days | 343–370 333 408 397 | [60] |
Chlamydomonas reinhardtii Chlorella vulgaris | Batch reactor, 35 °C, 22 days | 263 191 | [61] |
Chlorella | Batch reactor, 37 °C, 45 days | 123 | [67] |
Chorella minutissima Chlorella pyrenoidosa Chlorella vulgaris | Batch reactor, 36 °C, 30 days | 166 265 196 | [68] |
Chlorella sorokiniana | Batch reactor, 30 °C, 42 days | 220–280 | [69] |
Chlorella sorokiniana Chlorella vulgaris | Batch reactor, 40 °C, 71–108 days | 212 189 | [70] |
Chlorella vulgaris | Batch reactor, 35 °C, 28 days | 240 | [71] |
Chlorella vulgaris Chlorella vulgaris after lipid extraction Chlorella vulgaris after chlorophyll extraction Chlorella vulgaris after protein extraction | Batch reactor, 35 °C, 35 days | 237 219 210 207 | [43] |
Chlorella vulgaris Microcystis spp. Nannochloropsis salina Nannochloropsis sp. Nanofrustulum sp. Phaeodactylum tricornutum | Batch reactor, 35 °C, 30 days | 337 140 557 357 507 337 | [41] |
Chlorella vulgaris | Batch reactor, 35 °C, 29 days | 156 | [72] |
Chlorella vulgaris | Batch reactor, 35 °C, 25 days | 229 | [73] |
Chlorella vulgaris | Batch reactor, 35 °C, 30 days | 139 | [74] |
Hydrodictyon reticulatum (filamentous algae) | Batch reactor, 35 °C, 25 days | 170 | [75] |
Microcystis spp. | Batch reactor, 35 °C, 30 days | 140 | [76] |
Nannochloropsis salina | Batch reactor, 35 °C, 19 days | 430 | [77] |
Phaeodactylum tricornutum Scenedesmus obliquus | Batch reactor, 33 °C, 30 days | 270 130 | [58] |
Scenedesmus obliquus Scenedesmus sp. | Batch reactor, 35 °C, 33–34 days | 76 1 82 1 | [78] |
Scenedesmus obtusiusculus | Batch reactor, 37 °C, 15 days, pH 9 (previously adapted inoculum) | 155 | [44] |
Scenedesmus sp. and Chlorella spp. | Batch reactor, 35 °C, 10 days | 100–140 | [24] |
4. Algal Biomass Pretreatment Methods
4.1. Mechanical Pretreatment
4.2. Thermal Pretreatment
4.3. Biological Pretreatment
4.4. Chemical Pretreatment
4.4.1. Acid Pretreatment
4.4.2. Alkaline Pretreatment
Code | Species/Concentration | Pretreatment Conditions | Solubilization a | Methane Yield (NmL CH4/g VS) | References | |||
---|---|---|---|---|---|---|---|---|
Sf (%) | Variation (%) | Without PT | With PT | Variation b (%) | ||||
A1 A2 A3 | Scenedesmus sp., 6 g/L CODT | H2SO4 0.1% v/v, 150 °C, 1 h H2SO4 0.2% v/v, 150 °C, 1 h Bubbling CO2 up to pH 2, 150 °C, 1 h | 37.5 36.9 41.6 | 35.5 34.6 39.6 | 130.90 | 253.10 na na | 93.4 na na | [104] |
A4 A5 A6 A7 A8 A9 | Spirulina maxima, 55.7 g/L CODT | HCl, pH 1, 50 °C, 1 h HCl, pH 1, 100 °C, 1 h HCl, pH 1, 150 °C, 1 h HCl, pH 3, 50 °C, 1 h HCl, pH 3, 100 °C, 1 h HCl, pH 3, 150 °C, 1 h | 53.9 57.4 68.2 39.5 44.9 64.6 | 87.5 100.0 137.5 37.5 56.3 125.0 | 190.00 | 0.0 60.0 20.0 110.0 140.0 160.0 | −100.0 −68.4 −89.5 −42.1 −26.3 −15.8 | [105] |
A10 A11 A12 A13 A14 | Microalgae biomass after lipid extraction, 10 g/L CODT | HCl, pH 5, room temp. HCl, pH 4, room temp. HCl, pH 3, room temp. HCl, pH 2, room temp. HCl, pH 1, room temp. | 4.5 7.2 10.8 18.2 24.3 | 15.4 84.6 176.9 366.7 523.1 | 104.00 c | 123.0 c 107.0 c 124.0 c 174.0 c 217.0 c | 18.3 2.9 19.2 67.3 108.7 | [106] |
A15 A16 A17 | Mixed biomass of Chlorella sp. and Monoraphidium sp., 14.45 g/L TS | HCl 0.05% m/m, pH 1, 80 °C, 2 h HCl 1.25% m/m, pH 0.6, 80 °C, 2 h HCl 2.0% m/m, pH 0.4, 80 °C, 2 h | na na na | 964.0 d 1008.0 d 965.8 d | 78.13 | 142.50 94.59 89.05 | 82.4 21.1 14.0 | [99] |
A18 | Isochrysis galbana, 4.5 g/L CODT | H2SO4 0.2% v/v, 40 °C, 16 h | 8.4 | 27.1 | 9.27 | 15.90 | 71.5 | [107] |
A19 A20 A21 | Chlorella vulgaris, 26.2 g/L CODT | H2SO4 4M, pH 2, room temp. H2SO4 4M, pH 2, 120 °C, 20 min H2SO4 4M, pH 2, 120 °C, 40 min | na na na | na 500 e 700 e | 138.00 | 113.10 221.80 228.80 | −18.6 59.7 64.7 | [74] |
A22 | Microalgae biomass from stabilization pond, 2% VS | HCl, pH 2, room temp., 1 h | na | na | 14.00 | 46.00 | 228.6 | [108] |
A23 | Scenedesmus obtusiusculus, 32.2 g/L CODT | HCl 3% m/m, 105 °C, 1.7 h | 60.0 | 821.4 | 234.00 | 296.00 | 26.5 | [109] |
A24 | Oscillatoria tenuis | H2SO4 4M, pH 2; room temp. | 11.0 | 143.0 | 191.00 | 210.00 | 9.9 | [110] |
A25 A26 | Mixed biomass of Desmodesmus opoliensis (47%), Navicula reichardtiana (27%), Tetradesmus obliquus (12%), Scenedesmus sp. (9%), and Scenedesmus acuminatus (5%), 74.5% VS | HCl 0.5 M, pH 0.3, 121 °C, 1 h HCl 2.0 M, pH 0.3, 121 °C, 1 h | 40.0 19.0 | 135.3 217.6 | 216.00 208.00 | 205.20 250.00 | −5.0 20.0 | [111] |
B4 B5 B6 B7 B8 B9 | Spirulina maxima, 55.7 g/L CODT | NaOH, pH 11, 50 °C, 1 h NaOH, pH 11, 100 °C, 1 h NaOH, pH 11, 150 °C, 1 h NaOH, pH 13, 50 °C, 1 h NaOH, pH 13, 100 °C, 1 h NaOH, pH 13, 150 °C, 1 h | 50.0 60.0 60.0 55.0 70.0 78.0 | 75.0 106.3 112.5 100.0 137.5 162.5 | 190.00 | 210.00 220.00 240.00 90.00 140.00 80.00 | 10.5 15.8 26.3 −52.6 −26.3 −57.9 | [105] |
B10 B11 B12 B13 | Mixed biomass, 56.2 g/L CODT | NaOH 5 g/L, pH 10, room temp. NaOH 20 g/L, pH 12, room temp. NaOH 5 g/L, pH 10, 140 °C, 30 min NaOH 20 g/L, pH 10, 140 °C, 30 min | 63.0 75.4 80.0 85.1 | 219.0 281.8 305.1 330.4 | 66.30 c | 195.00 c 19.50 c 226.20 c 12.48 c | 194.1 −70.6 241.2 −81.2 | [102] |
B14 B15 B16 B17 B18 B19 B20 B21 B22 B23 B24 | Chlorella sp., 45.6 g/L CODT Nannochloropsis sp., 51 g/L CODT Thalassiosira weissflogii, 46.1 g/L CODT Tetraselmis sp., 42.2 g/L CODT Tetraselmis sp., 42.2 g/L CODT Pavlova_cf sp., 56.1 g/L CODT Chlorella sp., 45.6 g/L CODT Nannochloropsis, 51 g/L CODT Thalassiosira weissflogii, 46 g/L CODT Tetraselmis sp., 42.2 g/L CODT Pavlova_cf sp., 56.1 g/L CODT | NaOH 13.7 g/L, pH 13, room temp. NaOH 10.8 g/L, pH 14, room temp. NaOH 20 g/L, pH 13, room temp. NaOH 7.8 g/L, pH 13, room temp. NaOH 20 g/L, pH 14, room temp. NaOH 13.7 g/L, pH 12.5, room temp. NaOH 20 g/L, pH 13, 120 °C, 30 min NaOH 20 g/L, pH 14, 120 °C, 30 min NaOH 20 g/L, pH 12, 120 °C, 30 min NaOH 6 g/L, pH 13, 120 °C, 30 min NaOH 20 g/L, pH 13, 120 °C, 30 min | 20.0 30.0 60.0 60.0 70.0 70.0 80.0 95.0 60.0 90.0 90.0 | 10.0 20.0 −1.2 38.2 80.9 10.0 488.4 285.7 −1.2 126.1 53.5 | na | na | −10.0 f −30.0 f 20.0 f 10.0 f 5.0 f −20.0 f 30.0 f 40.0 f 15.0 f 5.0 f 5.0 f | [7] |
B25 B26 B27 | Chlorella sp. (30%) and Scenedesmus sp. (70%), 12.3 g/L CODT | NaOH, pH 9, room temp. NaOH, pH 11, room temp. NaOH, pH 13, room temp. | 5.4 5.0 20.6 | 84.8 78.1 324.5 | 336.00 | 363.00 327.00 213.00 | 8.0 −2.7 −36.6 | [112] |
B28 | Nannochloropsis salina, 97% TS | NaOH, pH 11, room temp. | na | - | no CH4 in biogas | [113] | ||
B29 B30 B31 | Spirulina platensis, 60.4 g/L CODT | NaOH 0.8 g/L, room temp., 12 h NaOH 1.6 g/L, room temp., 12 h NaOH 4.0 g/L, room temp., 12 h | 55.0 57.0 20.0 | 55.5 56.7 20.4 | 278.80 | 289.90 297.50 294.90 | 4.0 6.7 5.8 | [114] |
B32 B33 B34 B35 B36 B37 | Mixed biomass of Chlorella and Scenedesmus, 23.5 g/L CODT | CaO 4% m/m, pH 12, room temp., 4 d CaO 4% m/m, pH 12; 55 °C, 24 h CaO 4% m/m, pH 12, 72 °C, 24 h CaO 10% m/m, pH 12, room temp., 4 d CaO 10% m/m, pH 12, 55 °C, 24 h CaO 10% m/m, pH 12, 72 °C, 24 h | 10.0 10.0 15.0 13.0 20.0 25.0 | 400.0 400.0 650.0 550.0 900.0 1150.0 | 260.00 | 282.00 255.00 287.00 259.00 292.00 325.00 | 8.5 −1.9 10.4 −0.4 12.3 25.0 | [42] |
B38 B39 B40 B41 B42 B43 | Chlorella sp. | NaOH 0.05%, 50 °C, 24 h NaOH 2.0%, 50 °C, 24 h NaOH 5.0%, 50 °C, 24 h NaOH 0.05%, 50 °C, 48 h NaOH 2.0%, 50 °C, 48 h NaOH 5.0%, 50 °C, 48 h | 15.8 16.2 18.2 15.8 17.6 19.8 | 139.4 145.5 175.8 139.4 166.7 200.0 | 137.17 | 110.00 c 125.00 c 155.00 c 130.00 c 160.00 c 135.00 c | −19.8 −8.9 13.0 −5.2 16.6 −1.6 | [61] |
B44 B45 B46 B47 B48 B49 | Scenedesmus sp. | NaOH 0.05%, 50 °C, 24 h NaOH 2.0%, 50 °C, 24 h NaOH 5.0%, 50 °C, 24 h NaOH 0.05%, 50 °C, 48 h NaOH 2.0%, 50 °C, 48 h NaOH 5.0%, 50 °C, 48 h | 4.1 5.1 16.8 4.7 7.8 17.7 | 115.8 168.4 784.2 147.4 310.5 669.6 | 135.00 c | 150.00 c 165.00 c 162.00 c 146.00 c 140.00 c 138.00 c | 11.1 22.2 20 f 8.2 3.7 2.2 | [61] |
B50 B51 B52 | Mixed biomass of Chlorella sp. and Monoraphidium sp., 14.45 g/L CODT | KOH 0.5%; pH 12.6, 80 °C, 2 h KOH 1.25%; pH 12.6, 80 °C, 2 h KOH 2.0%; pH 12.6, 80 °C, 2 h | na na na | 1943.5 d 2043.5 d 2184.7 d | 78.13 | 145.10 100.14 80.78 | 86.0 28.0 3.4 | [99] |
B53 | Scenedesmus obtusiusculus, 94.29 g TS/L | 2% w/w biomass/alkaline H2O2 solution (1.25% v/v), 50 °C, 1.5 h | 15.4 | 100.0 a | 155.00 | 208.40 | 34.5 | [44] |
B54 | NaOH 4.0 M, pH 10, 120 °C, 20 min | 27.0 | 251.0 a | 227.10 | 46.5 |
4.4.3. Factors Influencing Algal Biomass Solubilization in Chemical and Thermochemical Pretreatments
- Temperature
- Time reaction
- Chemicals concentration
- pH
- Cell wall composition
- Algal biomass concentration
4.4.4. Influence of Chemical and Thermochemical Pretreatments on Anaerobic Digestion of Algal Biomass
- Solubilization
- Ammonia accumulation
- Fatty acid accumulation
- Salt accumulation
5. Comparative Analysis of Chemical and Thermochemical Pretreatments Methods for Algal Biomass Aimed at Methane Production
6. Energy Assessment
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cavinato, C.; Ugurlu, A.; Godos, I.; Kendir, E.; Conzalez-Fernandez, C. Biogas production from microalgae. In Microalgae-Based Biofuels and Bioproducts; Gonzalez-Fernandez, C., Muñoz, R., Eds.; Woodhead Publishing: Kidlington, UK, 2017; pp. 155–182. [Google Scholar] [CrossRef]
- Wang, S.; Mukhambet, Y.; Esakkimuthu, S. Integrated microalgal biorefinery—Routes, energy, economic and environmental perspectives. J. Clean. Prod. 2022, 348, 131245. [Google Scholar] [CrossRef]
- Barry, A.; Wolfe, A.; English, C.; Ruddick, C.; Lambert, D. National Algal Biofuels Technology Review; US Department of Energy: Washington, DC, USA, 2016. [CrossRef]
- Adarme, O.F.H.; Bâeta, B.E.L.; Lima, D.R.S.; Gurgel, L.V.A.; de Aquino, S.F. Methane and hydrogen production from anaerobic digestion of soluble fraction obtained by sugarcane bagasse ozonation. Ind. Crops Prod. 2017, 109, 288–299. [Google Scholar] [CrossRef]
- Harun, R.; Davidson, M.; Doyle, M.; Gopiraj, R.; Danquah, M.; Forde, G. Technoeconomic analysis of an integrated microalgae photobioreactor, biodiesel and biogas production facility. Biomass. Bioenerg. 2011, 35, 741–747. [Google Scholar] [CrossRef]
- Park, K.C.; Whitney, C.; McNichol, J.C.; Dickinson, K.E.; MacQuarrie, S.; Skrupski, B.P.; Zou, J.; Wilson, K.E.; O’Leary, S.J.B.; McGinn, P.J. Mixotrophic and photoautotrophic cultivation of 14 microalgae isolates from Saskatchewan, Canada: Potential applications for wastewater remediation for biofuel production. J. Appl. Phycol. 2012, 24, 339–348. [Google Scholar] [CrossRef]
- Bohutskyi, P.; Betenbaugh, M.J.; Bouwer, E.J. The effects of alternative pretreatment strategies on anaerobic digestion and methane production from different algal strains. Bioresour. Technol. 2014, 155, 366–372. [Google Scholar] [CrossRef] [PubMed]
- Zabed, H.M.; Akter, S.; Yun, J.; Zhang, G.; Zhang, Y.; Qi, X. Biogas from microalgae: Technologies, challenges and opportunities. Renew. Sustain. Energy Rev. 2020, 117, 109503. [Google Scholar] [CrossRef]
- Adeniyi, O.M.; Azimov, U.; Burluka, A. Algae biofuel: Current status and future applications. Renew. Sustain. Energy Rev. 2018, 90, 316–335. [Google Scholar] [CrossRef]
- Lage, S.; Gojkovic, Z.; Funk, C.; Gentili, F.G. Algal biomass from wastewater and flue gases as a source of bioenergy. Energies 2018, 11, 664. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Li, T.; Wang, Q. Ten years of algal biofuel and bioproducts: Gains and pains. Planta 2019, 249, 195–219. [Google Scholar] [CrossRef]
- Saad, M.G.; Dosoky, N.S.; Zoromba, M.S.; Shafik, H.M. Algal biofuels: Current status and key challenges. Energies 2019, 12, 1920. [Google Scholar] [CrossRef]
- Thompson, T.M.; Young, B.R.; Baroutian, S. Advances in the pretreatment of brown macroalgae for biogas production. Fuel Process. Technol. 2019, 195, 106151. [Google Scholar] [CrossRef]
- Choudhary, P.; Assemany, P.P.; Naaz, F.; Bhattacharya, A.; de Siqueira Castro, J.; do Couto Couto, E.D.A.; Calijuri, M.L.; Pant, K.K.; Malik, A. A review of biochemical and thermochemical energy conversion routes of wastewater grown algal biomass. Sci. Total Environ. 2020, 726, 137961. [Google Scholar] [CrossRef] [PubMed]
- De Carvalho, J.C.; Magalhães, A.I.; de Melo Pereira, G.V.; Medeiros, A.B.P.; Sydney, E.B.; Rodrigues, C.; Aulestia, D.T.M.; Vandenberghe, L.P.S.; Soccol, V.T.; Soccol, C.R. Microalgal biomass pretreatment for integrated processing into biofuels, food, and feed. Bioresour. Technol. 2020, 300, 122719. [Google Scholar] [CrossRef]
- Kannah, R.Y.; Kavitha, S.; Karthikeyan, O.P.; Rene, E.R.; Kumar, G.; Banu, J.R. A review on anaerobic digestion of energy and cost effective microalgae pretreatment for biogas production. Bioresour. Technol. 2021, 332, 125055. [Google Scholar] [CrossRef]
- Javed, M.U.; Mukhtar, H.; Hayat, M.T.; Rashid, U.; Mumtaz, M.W.; Ngamcharussrivichai, C. Sustainable processing of algal biomass for a comprehensive biorefinery. J. Biotechnol. 2022, 352, 47–58. [Google Scholar] [CrossRef]
- Bhatia, S.K.; Ahuja, V.; Chandel, N.; Gurav, R.; Bhatia, R.K.; Govarthanan, M.; Tyagi, V.K.; Kumar, V.; Pugazendhi, A.; Banu, R.; et al. Advances in algal biomass pretreatment and its valorisation into biochemical and bioenergy by the microbial processes. Bioresour. Technol. 2022, 358, 127437. [Google Scholar] [CrossRef] [PubMed]
- Siddiki, S.Y.A.; Mofijur, M.; Kumar, P.S.; Ahmed, S.F.; Inayat, A.; Kusumo, F.; Badruddin, I.A.; Khan, T.M.Y.; Nghiem, L.D.; Ong, H.C.; et al. Microalgae biomass as a sustainable source for biofuel, biochemical and biobased value-added products: An integrated biorefinery concept. Fuel 2022, 307, 121782. [Google Scholar] [CrossRef]
- Gerardi, M.H. The Microbiology of Anaerobic Digesters, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 2003; pp. 51–58. [Google Scholar]
- Kinnunen, V. Anaerobic Digestion of Microalgae and Pulp and Paper Biosludge; Publication v.1434; Tampere University of Technology: Tampere, Finland, 2016; p. 12. Available online: https://trepo.tuni.fi//handle/10024/114954 (accessed on 20 May 2022).
- Braun, R. Anaerobic digestion: A multi-faceted process for energy, environmental management and rural development. In Improvement of Crop Plants for Industrial End Uses, 1st ed.; Ranalli, P., Ed.; Springer: Dordrecht, The Netherlands, 2007; pp. 335–416. [Google Scholar]
- Al Seadi, T.; Rutz, D.; Prassl, H.; Köttner, M.; Finsterwalder, W.; Volk, S.; Janssen, R. Biogas Handbook, 1st ed.; University of Southern Denmark: Esbjerg, Denmark, 2008; p. 41. [Google Scholar]
- Yen, H.W.; Brune, D.E. Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresour. Technol. 2007, 98, 130–134. [Google Scholar] [CrossRef]
- Sialve, B.; Bernet, N.; Bernard, O. Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol. Adv. 2009, 27, 409–416. [Google Scholar] [CrossRef]
- Weiland, P. Biogas production: Current state and perspectives. Appl. Microbiol. Biotechnol. 2010, 85, 849–860. [Google Scholar] [CrossRef]
- Schnürer, A.; Jarvis, Å. Microbiology of the Biogas Process, 1st ed.; Swedish University of Agricultural Sciences: Uppsala, Sweden, 2018; pp. 41–46. [Google Scholar]
- Lee, R.A.; Lavoie, J.M. From first-to third-generation biofuels: Challenges of producing a commodity from a biomass of increasing complexity. Anim. Front. 2013, 3, 6–11. [Google Scholar] [CrossRef]
- Correa, D.F.; Beyer, H.L.; Possingham, H.P.; Thomas-Hall, S.R.; Schenk, P.M. Biodiversity impacts of bioenergy production: Microalgae vs. first generation biofuels. Renew. Sustain. Energy Rev. 2017, 74, 1131–1146. [Google Scholar] [CrossRef]
- Golueke, C.G.; Oswald, W.J.; Gotaas, H.B. Anaerobic digestion of algae. Appl. Microbiol. 1957, 5, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Golueke, C.G.; Oswald, W.J. Biological conversion of light energy to the chemical energy of methane. Appl. Microbiol. 1959, 7, 219–227. [Google Scholar] [CrossRef]
- Golueke, C.G.; Oswald, W.J. Power from solar energy via algae produced methane. Sol. Energy 1963, 7, 86–92. [Google Scholar] [CrossRef]
- Golueke, C.G.; Oswald, W.J. Harvesting and processing sewage-grown planktonic algae. J. Water Pollut. Control Fed. 1965, 37, 471–498. Available online: http://www.jstor.org/stable/25035278 (accessed on 25 May 2022).
- Oswald, W.J. Gas Production from Microalgae. In Proceedings of the Symposium Clean Fuels from Biomass, Sewage, Urban Refuse, Agricultural Wastes, Orlando, FL, USA, 27–30 January 1976. [Google Scholar]
- Benemann, J.R.; Weissman, J.C.; Koopman, B.L.; Oswald, W.J. Energy production by microbial photosynthesis. Nature 1977, 268, 19–23. [Google Scholar] [CrossRef]
- Eisenberg, D.M.; Oswald, W.J.; Benemann, J.R.; Gobel, R.P.; Tiburzi, T.T. Methane Fermentation of Microalgae. In Proceedings of the First International Symposium on Anaerobic Digestion, Cardiff, UK, 17–21 September 1979; Stafford, D.A., Wheatley, B.I., Hughes, D.E., Eds.; Applied Science Publishers: London, UK, 1980; Volume 1, pp. 99–111. [Google Scholar]
- Oswald, W.J.; Green, F.B.; Lundquist, T.J. Performance of methane fermentation pits in advanced integrated wastewater pond systems. Water Sci. Technol. 1994, 30, 287–295. [Google Scholar] [CrossRef]
- Green, F.B.; Lundquist, T.J.; Oswald, W.J. Energetics of advanced integrated wastewater pond systems. Water Sci. Technol. 1995, 31, 9–20. [Google Scholar] [CrossRef]
- Chen, P.H.; Oswald, W.J. Thermochemical treatment for algal fermentation. Environ. Int. 1998, 24, 889–897. [Google Scholar] [CrossRef]
- Mussgnug, J.H.; Klassen, V.; Schlüter, A.; Kruse, O. Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. J. Biotechnol. 2010, 150, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Ma, J.; Zhao, Q.; Laurens, L.; Jarvis, E.; Chen, S.; Frear, C. Efficient anaerobic digestion of whole microalgae and lipid-extracted microalgae residues for methane energy production. Bioresour. Technol. 2014, 161, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Solé-Bundó, M.; Carrère, H.; Garfí, M.; Ferrer, I. Enhancement of microalgae anaerobic digestion by thermo-alkaline pretreatment with lime (CaO). Algal. Res. 2017, 24, 199–206. [Google Scholar] [CrossRef]
- Markou, G.; Ilkiv, B.; Brulé, M.; Antonopoulos, D.; Chakalis, L.; Arapoglou, D.; Chatzipavlidis, I. Methane production through anaerobic digestion of residual microalgal biomass after the extraction of valuable compounds. Biomass. Conv. Bioref. 2022, 12, 419–426. [Google Scholar] [CrossRef]
- Candia-Lomeli, M.; Tapia-Rodríguez, A.; Morales-Ibarría, M.; Razo-Flores, E.; Celis, L.B. Anaerobic digestion under alkaline conditions from thermochemical pretreated microalgal biomass. BioEnergy Res. 2022, 15, 346–356. [Google Scholar] [CrossRef]
- Kröger, M.; Müller-Langer, F. Review on possible algal-biofuel production processes. Biofuels 2012, 3, 333–349. [Google Scholar] [CrossRef]
- De Godos, I.; González, C.; Becares, E.; Garcia-Encina, P.A.; Muñoz, R. Simultaneous nutrients and carbon removal during pretreated swine slurry degradation in a tubular biofilm photobioreactor. Appl. Microbiol. Biotechnol. 2009, 82, 187–194. [Google Scholar] [CrossRef]
- Park, K.Y.; Lim, B.R.; Lee, K. Growth of microalgae in diluted process water of the animal wastewater treatment plant. Water Sci. Technol. 2009, 59, 2111–2116. [Google Scholar] [CrossRef]
- Molinuevo-Salces, B.; Garcia-González, M.C.; González-Fernández, C. Performance comparison of two photobioreactors configurations (open and closed to the atmosphere) treating anaerobically degraded swine slurry. Bioresour. Technol. 2010, 101, 5144–5149. [Google Scholar] [CrossRef]
- Anjos, M.; Fernandes, B.D.; Vicente, A.A.; Teixeira, J.A.; Dragone, G. Optimization of CO2 bio-mitigation by Chlorella vulgaris. Bioresour. Technol. 2013, 139, 149–154. [Google Scholar] [CrossRef]
- Rusten, B.; Sahu, A.K. Microalgae growth for nutrient recovery from sludge liquor and production of renewable bioenergy. Water Sci. Technol. 2011, 64, 1195–1201. [Google Scholar] [CrossRef] [PubMed]
- Salama, E.S.; Kurade, M.B.; Abou-Shanab, R.A.; El-Dalatony, M.M.; Yang, I.S.; Min, B.; Jeon, B.H. Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation. Renew. Sustain. Energy Rev. 2017, 79, 1189–1211. [Google Scholar] [CrossRef]
- D’Hondt, E.; Martin-Juarez, J.; Bolado, S.; Kasperoviciene, J.; Koreiviene, J.; Sulcius, S.; Elst, K.; Bastiaens, L. Cell disruption technologies. In Microalgae-Based Biofuels and Bioproducts, 1st ed.; Gonzalez-Fernandez, C., Muñoz, R., Eds.; Woodhead Publishing: Kidlington, UK, 2017; pp. 133–154. [Google Scholar] [CrossRef]
- Wang, J.; Yin, Y. Fermentative hydrogen production using pretreated microalgal biomass as feedstock. Microb. Cell Fact. 2018, 17, 1–16. [Google Scholar] [CrossRef] [PubMed]
- González-González, L.M.; Correa, D.F.; Ryan, S.; Jensen, P.D.; Pratt, S.; Schenk, P.M. Integrated biodiesel and biogas production from microalgae: Towards a sustainable closed loop through nutrient recycling. Renew. Sustain. Energy Rev. 2018, 82, 1137–1148. [Google Scholar] [CrossRef]
- Saratale, R.G.; Kumar, G.; Banu, R.; Xia, A.; Periyasamy, S.; Saratale, G.D. A critical review on anaerobic digestion of microalgae and macroalgae and co-digestion of biomass for enhanced methane generation. Bioresour. Technol. 2018, 262, 319–332. [Google Scholar] [CrossRef]
- Passos, F.; Gutiérrez, R.; Brockmann, D.; Steyer, J.-P.; García, J.; Ferrer, I. Microalgae production in wastewater treatment systems, anaerobic digestion and modelling using ADM1. Algal. Res. 2015, 10, 55–63. [Google Scholar] [CrossRef]
- Lu, Y.; Liaquat, R.; Astals, S.; Jensen, P.D.; Batstone, D.J.; Tait, S. Relationship between microbial community, operational factors and ammonia inhibition resilience in anaerobic digesters at low and moderate ammonia background concentrations. N. Biotechnol. 2018, 44, 23–30. [Google Scholar] [CrossRef]
- Zamalloa, C.; Boon, N.; Verstraete, W. Anaerobic digestibility of Scenedesmus obliquus and Phaeodactylum tricornutum under mesophilic and thermophilic conditions. Appl. Energy 2012, 92, 733–738. [Google Scholar] [CrossRef]
- Song, M.; Pham, H.D.; Seon, J.; Woo, H.C. Overview of anaerobic digestion process for biofuels production from marine macroalgae: A developmental perspective on brown algae. Korean J. Chem. Eng. 2015, 32, 567–575. [Google Scholar] [CrossRef]
- Frigon, J.-C.; Matteau-Lebrun, F.; Abdou, R.H.; McGinn, P.J.; O’Leary, S.J.B.; Guiot, S.R. Screening microalgae strains for their productivity in methane following anaerobic digestion. Appl. Energy 2013, 108, 100–107. [Google Scholar] [CrossRef]
- Mahdy, A.; Mendez, L.; Ballesteros, M.; González-Fernández, C. Enhanced methane production of Chlorella vulgaris and Chlamydomonas reinhardtii by hydrolytic enzymes addition. Energy Convers. Manag. 2014, 85, 551–557. [Google Scholar] [CrossRef]
- Scholz, M.J.; Weiss, T.L.; Jinkerson, R.E.; Jing, J.; Roth, R.; Goodenough, U.; Posewitz, M.C.; Gerken, H.G. Ultrastructure and composition of the Nannochloropsis gaditana cell wall. Eukaryot. Cell 2014, 13, 1450–1464. [Google Scholar] [CrossRef] [PubMed]
- Arnold, A.A.; Genard, B.; Zito, F.; Tremblay, R.; Warschawski, D.E.; Marcotte, I. Identification of lipid and saccharide constituents of whole microalgal cells by 13C solid-state NMR. Biochim. Biophys. Acta Biomembr. 2015, 1848, 369–377. [Google Scholar] [CrossRef]
- Passos, F.; Solé, M.; Garcia, J.; Ferrer, I. Biogas production from microalgae grown in wastewater: Effect of microwave pretreatment. Appl. Energy 2013, 108, 168–175. [Google Scholar] [CrossRef]
- Passos, F.; Ferrer, I. Microalgae conversion to biogas: Thermal pretreatment contribution on net energy production. Environ. Sci. Technol. 2014, 48, 7171–7178. [Google Scholar] [CrossRef] [PubMed]
- Inglesby, A.E.; Fisher, A.C. Enhanced methane yields from anaerobic digestion of Arthrospira maxima biomass in an advanced flow-through reactor with an integrated recirculation loop microbial fuel cell. Energy Environ. Sci. 2012, 5, 7996–8006. [Google Scholar] [CrossRef]
- Wang, M.; Sahu, A.K.; Rusten, B.; Park, C. Anaerobic co-digestion of microalgae Chlorella sp. and waste activated sludge. Bioresour. Technol. 2013, 142, 585–590. [Google Scholar] [CrossRef]
- Prajapati, S.K.; Malik, A.; Vijay, V.K. Comparative evaluation of biomass production and bioenergy generation potential of Chlorella spp. through anaerobic digestion. Appl. Energy 2014, 114, 790–797. [Google Scholar] [CrossRef]
- Ayala-Parra, P.; Liu, Y.; Field, J.A.; Sierra-Alvarez, R. Nutrient recovery and biogas generation from the anaerobic digestion of waste biomass from algal biofuel production. Renew. Energy 2017, 108, 410–416. [Google Scholar] [CrossRef]
- Polakovičová, G.; Kušnír, P.; Nagyová, S.; Mikulec, J. Process integration of algae production and anaerobic digestion. Chem. Eng. Trans. 2012, 29, 1129–1134. [Google Scholar] [CrossRef]
- Ras, M.; Lardon, L.; Bruno, S.; Bernet, N.; Steyer, J.P. Experimental study on a coupled process of production and anaerobic digestion of Chlorella vulgaris. Bioresour. Technol. 2011, 102, 200–206. [Google Scholar] [CrossRef] [PubMed]
- Mendez, L.; Mahdy, A.; Demuez, M.; Ballesteros, M.; González-Fernández, C. Effect of high thermal pretreatment on Chlorella vulgaris biomass: Organic matter solubilisation and biochemical methane potential. Fuel 2014, 117, 674–679. [Google Scholar] [CrossRef]
- Park, K.Y.; Kweon, J.; Chantrasakdakul, P.; Lee, K.; Cha, H.Y. Anaerobic digestion of microalgal biomass with ultrasonic disintegration. Int. Biodeter. Biodegrad. 2013, 85, 598–602. [Google Scholar] [CrossRef]
- Mendez, L.; Mahdy, A.; Timmers, R.A.; Ballesteros, M.; González-Fernández, C. Enhancing methane production of Chlorella vulgaris via thermochemical pretreatments. Bioresour. Technol. 2013, 149, 136–141. [Google Scholar] [CrossRef]
- Lee, K.; Chantrasakdakul, P.; Kim, D.; Kong, M.; Park, K.Y. Ultrasound pretreatment of filamentous algal biomass for enhanced biogas production. Waste Manag. 2014, 34, 1035–1040. [Google Scholar] [CrossRef]
- Zeng, S.; Yuan, X.; Shi, X.; Qiu, Y. Effect of inoculum/substrate ratio on methane yield and orthophosphate release from anaerobic digestion of Microcystis spp. J. Hazard. Mater. 2010, 178, 89–93. [Google Scholar] [CrossRef]
- Quinn, J.C.; Hanif, A.; Sharvelle, S.; Bradley, T.H. Microalgae to biofuels: Life cycle impacts of methane production of anaerobically digested lipid extracted algae. Bioresour. Technol. 2014, 171, 31–43. [Google Scholar] [CrossRef]
- González-Fernández, C.; Sialve, B.; Bernet, N.; Steyer, J.P. Thermal pretreatment to improve methane production of Scenedesmus biomass. Biomass. Bioenerg. 2012, 40, 105–111. [Google Scholar] [CrossRef]
- González-Fernández, C.; Sialve, B.; Bernet, N.; Steyer, J.P. Impact of microalgae characteristics on their conversion to biofuel. Part II: Focus on biomethane production. Biofuel. Bioprod. Biorefin. 2012, 6, 205–218. [Google Scholar] [CrossRef]
- Córdova, O.; Passos, F.; Chamy, R. Physical pretreatment methods for improving microalgae anaerobic biodegradability. Appl. Biochem. Biotechnol. 2018, 185, 114–126. [Google Scholar] [CrossRef]
- Jankowska, E.; Sahu, A.K.; Oleskowicz-Popiel, P. Biogas from microalgae: Review on microalgae’s cultivation, harvesting and pretreatment for anaerobic digestion. Renew. Sustain. Energy Rev. 2017, 75, 692–709. [Google Scholar] [CrossRef]
- Rodriguez, C.; Alaswad, A.; Mooney, J.; Prescott, T.; Olabi, A.G. Pre-treatment techniques used for anaerobic digestion of algae. Fuel Process. Technol. 2015, 138, 765–779. [Google Scholar] [CrossRef]
- Passos, F.; Astals, S.; Ferrer, I. Anaerobic digestion of microalgal biomass after ultrasound pretreatment. Waste Manag. 2014, 34, 2098–2103. [Google Scholar] [CrossRef] [PubMed]
- González-Fernández, C.; Sialve, B.; Bernet, N.; Steyer, J.P. Comparison of ultrasound and thermal pretreatment of Scenedesmus biomass on methane production. Bioresour. Technol. 2012, 110, 610–616. [Google Scholar] [CrossRef] [PubMed]
- Passos, F.; García, J.; Ferrer, I. Impact of low temperature pretreatment on the anaerobic digestion of microalgal biomass. Bioresour. Technol. 2013, 138, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Scarcelli, P.G.; Serejo, M.L.; Paulo, P.L.; Bóncz, M.A. Evaluation of biomethanization during co-digestion of thermally pretreated microalgae and waste activated sludge, and estimation of its kinetic parameters. Sci. Total Environ. 2020, 706, 135745. [Google Scholar] [CrossRef]
- Passos, F.; Ferrer, I. Influence of hydrothermal pretreatment on microalgal biomass anaerobic digestion and bioenergy production. Water Res. 2014, 68, 364–373. [Google Scholar] [CrossRef]
- Ometto, F.; Quiroga, G.; Pšenička, P.; Whitton, R.; Jefferson, B.; Villa, R. Impacts of microalgae pre-treatments for improved anaerobic digestion: Thermal treatment, thermal hydrolysis, ultrasound and enzymatic hydrolysis. Water Res. 2014, 65, 350–361. [Google Scholar] [CrossRef] [Green Version]
- Xiao, C.; Liao, Q.; Fu, Q.; Huang, Y.; Chen, H.; Zhang, H.; Xia, A.; Zhu, X.; Reungsang, A.; Liu, Z. A solar-driven continuous hydrothermal pretreatment system for biomethane production from microalgae biomass. Appl. Energy 2019, 236, 1011–1018. [Google Scholar] [CrossRef]
- Çakmak, E.K.; Ugurlu, A. Enhanced biogas production of red microalgae via enzymatic pretreatment and preliminary economic assessment. Algal. Res. 2020, 50, 101979. [Google Scholar] [CrossRef]
- Córdova, O.; Passos, F.; Chamy, R. Enzymatic pretreatment of microalgae: Cell wall disruption, biomass solubilisation and methane yield increase. Appl. Biochem. Biotechnol. 2019, 189, 787–797. [Google Scholar] [CrossRef] [PubMed]
- Hom-Diaz, A.; Passos, F.; Ferrer, I.; Vicent, T.; Blánquez, P. Enzymatic pretreatment of microalgae using fungal broth from Trametes versicolor and commercial laccase for improved biogas production. Algal. Res. 2016, 19, 184–188. [Google Scholar] [CrossRef]
- Giménez, J.B.; Aguado, D.; Bouzas, A.; Ferrer, J.; Seco, A. Use of rumen microorganisms to boost the anaerobic biodegradability of microalgae. Algal. Res. 2017, 24, 309–316. [Google Scholar] [CrossRef]
- Wilson, C.A.; Novak, J.T. Hydrolysis of macromolecular components of primary and secondary wastewater sludge by thermal hydrolytic pretreatment. Water Res. 2009, 43, 4489–4498. [Google Scholar] [CrossRef] [PubMed]
- Kendir, E.; Ugurlu, A. A comprehensive review on pretreatment of microalgae for biogas production. Int. J. Energy Res. 2018, 42, 3711–3731. [Google Scholar] [CrossRef]
- Bohutskyi, P.; Bouwer, E. Biogas production from algae and cyanobacteria through anaerobic digestion: A review, analysis, and research needs. In Advanced Biofuels and Bioproducts, 1st ed.; Lee, J., Ed.; Springer: New York, NY, USA, 2013; pp. 873–975. [Google Scholar] [CrossRef]
- Ariunbaatar, J.; Panico, A.; Esposito, G.; Pirozzi, F.; Lens, P.N. Pretreatment methods to enhance anaerobic digestion of organic solid waste. Appl. Energy 2014, 123, 143–156. [Google Scholar] [CrossRef]
- Torres, M.L.; Lloréns, M.D.C.E. Effect of alkaline pretreatment on anaerobic digestion of solid wastes. Waste Manag. 2008, 28, 2229–2234. [Google Scholar] [CrossRef]
- Passos, F.; Felix, L.; Rocha, H.; de Oliveira Pereira, J.; de Aquino, S. Reuse of microalgae grown in full-scale wastewater treatment ponds: Thermochemical pretreatment and biogas production. Bioresour. Technol. 2016, 209, 305–312. [Google Scholar] [CrossRef]
- Amin, F.R.; Khalid, H.; Zhang, H.; Zhang, R.; Liu, G.; Chen, C. Pretreatment methods of lignocellulosic biomass for anaerobic digestion. AMB Express 2017, 7, 1–12. [Google Scholar] [CrossRef]
- Ghasimi, D.S.; Aboudi, K.; de Kreuk, M.; Zandvoort, M.H.; van Lier, J.B. Impact of lignocellulosic-waste intermediates on hydrolysis and methanogenesis under thermophilic and mesophilic conditions. Chem. Eng. J. 2016, 295, 181–191. [Google Scholar] [CrossRef]
- Penaud, V.; Delgenès, J.P.; Moletta, R. Thermo-chemical pretreatment of a microbial biomass: Influence of sodium hydroxide addition on solubilization and anaerobic biodegradability. Enzyme Microb. Technol. 1999, 25, 258–263. [Google Scholar] [CrossRef]
- Atelge, M.R.; Atabani, A.E.; Banu, J.R.; Krisa, D.; Kaya, M.; Eskicioglu, C.; Kumar, G.; Lee, C.; Yildiz, Y.S.; Unalan, S.; et al. A critical review of pretreatment technologies to enhance anaerobic digestion and energy recovery. Fuel 2020, 270, 117494. [Google Scholar] [CrossRef]
- Marques, A.D.L.; Pinto, F.P.; Araújo, O.Q.D.F.; Cammarota, M.C. Assessment of methods to pretreat microalgal biomass for enhanced biogas production. J. Sustain. Dev. Energy Water Environ. Syst. 2018, 6, 394–404. [Google Scholar] [CrossRef]
- Samson, R.; Leduy, A. Influence of mechanical and thermochemical pretreatments on anaerobic digestion of Spirulina maxima algal biomass. Biotechnol. Lett. 1983, 5, 671–676. [Google Scholar] [CrossRef]
- Sposob, M.; Kim, D.H.; Yun, G.S.; Yun, Y.M. Assessment of the relationship between solubilization and biogas production on anaerobic digestion of pretreated lipid-extracted microalgae waste. Biomass Bioenerg. 2020, 141, 105702. [Google Scholar] [CrossRef]
- Santos, N.O.; Oliveira, S.M.; Alves, L.C.; Cammarota, M.C. Methane production from marine microalgae Isochrysis galbana. Bioresour. Technol. 2014, 157, 60–67. [Google Scholar] [CrossRef]
- Sukias, J.; Craggs, R. Enhanced Methane Yields from Microalgal Digestion with Various Pre-Treatments. In Proceedings of the 7th IWA Specialist Group Conference on Waste Stabilization Ponds, Bangkok, Thailand, 25–27 September 2006. [Google Scholar]
- Rincón-Pérez, J.; Razo-Flores, E.; Morales, M.; Alatriste-Mondragón, F.; Celis, L.B. Improving the biodegradability of Scenedesmus obtusiusculus by thermochemical pretreatment to produce hydrogen and methane. BioEnergy Res. 2020, 13, 477–486. [Google Scholar] [CrossRef]
- Cheng, Q.; Deng, F.; Li, H.; Qin, Z.; Wang, M.; Li, J. Nutrients removal from the secondary effluents of municipal domestic wastewater by Oscillatoria tenuis and subsequent co-digestion with pig manure. Environ. Technol. 2018, 39, 3127–3134. [Google Scholar] [CrossRef]
- Juárez, J.M.; Pastor, E.R.; Sevilla, J.M.F.; Torre, R.M.; García-Encina, P.A.; Rodríguez, S.B. Effect of pretreatments on biogas production from microalgae biomass grown in pig manure treatment plants. Bioresour. Technol. 2018, 257, 30–38. [Google Scholar] [CrossRef]
- Cho, S.; Park, S.; Seon, J.; Yu, J.; Lee, T. Evaluation of thermal, ultrasonic and alkali pretreatments on mixed-microalgal biomass to enhance anaerobic methane production. Bioresour. Technol. 2013, 143, 330–336. [Google Scholar] [CrossRef]
- Qiu, Y.; Frear, C.; Chen, S.; Ndegwa, P.; Harrison, J.; Yao, Y.; Ma, J. Accumulation of long-chain fatty acids from Nannochloropsis salina enhanced by breaking microalgae cell wall under alkaline digestion. Renew. Energy 2020, 149, 691–700. [Google Scholar] [CrossRef]
- Du, X.; Tao, Y.; Liu, Y.; Li, H. Stimulating methane production from microalgae by alkaline pretreatment and co-digestion with sludge. Environ. Technol. 2020, 41, 1546–1553. [Google Scholar] [CrossRef] [PubMed]
- Roselet, F.; Vandamme, D.; Muylaert, K.; Abreu, P.C. Harvesting of microalgae for biomass production. In Microalgae Biotechnology for Development of Biofuel and Wastewater Treatment, 1st ed.; Alam, M., Wang, Z., Eds.; Springer: Singapore, 2019; pp. 211–243. [Google Scholar] [CrossRef]
- Ward, A.J.; Lewis, D.M.; Green, F.B. Anaerobic digestion of algae biomass: A review. Algal. Res. 2014, 5, 204–214. [Google Scholar] [CrossRef]
- Alzate, M.E.; Muñoz, R.; Rogalla, F.; Fdz-Polanco, F.; Pérez-Elvira, S.I. Biochemical methane potential of microalgae: Influence of substrate to inoculum ratio, biomass concentration and pretreatment. Bioresour. Technol. 2012, 123, 488–494. [Google Scholar] [CrossRef]
- Magdalena, J.A.; Ballesteros, M.; González-Fernandez, C. Efficient anaerobic digestion of microalgae biomass: Proteins as a key macromolecule. Molecules 2018, 23, 1098. [Google Scholar] [CrossRef]
- Torres, Á.; Fermoso, F.G.; Rincón, B.; Bartacek, J.; Borja, R.; Jeison, D. Challenges for cost-effective microalgae anaerobic digestion. In Biodegradation—Engineering and Technology, 1st ed.; Chamy, R., Rosenkranz, F., Eds.; InTechOpen: London, UK, 2013. [Google Scholar] [CrossRef] [Green Version]
- McCarty, P.L. Anaerobic waste treatment fundamentals. Public Work. 1964, 95, 107–112. [Google Scholar]
- Jiang, Y.; McAdam, E.; Zhang, Y.; Heaven, S.; Banks, C.; Longhurst, P. Ammonia inhibition and toxicity in anaerobic digestion: A critical review. J. Water Process Eng. 2019, 32, 100899. [Google Scholar] [CrossRef]
- Yenigün, O.; Demirel, B. Ammonia inhibition in anaerobic digestion: A review. Process Biochem. 2013, 48, 901–911. [Google Scholar] [CrossRef]
- Kwietniewska, E.; Tys, J. Process characteristics, inhibition factors and methane yields of anaerobic digestion process, with particular focus on microalgal biomass fermentation. Renew. Sustain. Energy Rev. 2014, 34, 491–500. [Google Scholar] [CrossRef]
- Hanaki, K.; Matsuo, T.; Nagase, M. Mechanism of inhibition caused by long--chain fatty acids in anaerobic digestion process. Biotechnol. Bioeng. 1981, 23, 1591–1610. [Google Scholar] [CrossRef]
- Kim, J.; Yu, Y.; Lee, C. Thermo-alkaline pretreatment of waste activated sludge at low-temperatures: Effects on sludge disintegration, methane production, and methanogen community structure. Bioresour. Technol. 2013, 144, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Overend, R.P.; Chornet, E. Fractionation of lignocellulosics by steam-aqueous pretreatments. Philos. Trans. Royal Soc. A Math. Phys. Eng. Sci. 1987, 321, 523–536. [Google Scholar] [CrossRef]
- Chum, H.L.; Johnson, D.K.; Black, S.K.; Overend, R.P. Pretreatment-catalyst effects and the combined severity parameter. Appl. Biochem. Biotechnol. 1990, 24, 1–14. [Google Scholar] [CrossRef]
- Ferreira, L.C.; Donoso-Bravo, A.; Nilsen, P.J.; Fdz-Polanco, F.; Pérez-Elvira, S.I. Influence of thermal pretreatment on the biochemical methane potential of wheat straw. Bioresour. Technol. 2013, 143, 251–257. [Google Scholar] [CrossRef]
- Passos, F.; Uggetti, E.; Carrère, H.; Ferrer, I. Pretreatment of microalgae to improve biogas production: A review. Bioresour. Technol. 2014, 172, 403–412. [Google Scholar] [CrossRef]
- Tchobanoglous, G.; Burton, F.L.; Stensel, H.D. Wastewater Engineering, Treatment and Reuse, 4th ed.; McGraw Hill Higher Education: New York, NY, USA, 2003. [Google Scholar]
- Marques, A.D.L.; Araújo, O.D.Q.F.; Cammarota, M.C. Biogas from microalgae: An overview emphasizing pretreatment methods and their energy return on investment (EROI). Biotechnol. Lett. 2019, 41, 193–201. [Google Scholar] [CrossRef]
- Electricity Prices Around the World. Available online: https://www.globalpetrolprices.com/electricity_prices/?s=09 (accessed on 6 August 2022).
- Lewandowski, D.A. Design of Thermal Oxidation Systems for Volatile Organic Compounds, 1st ed.; CRC Press: Washington, DC, USA, 1999. [Google Scholar] [CrossRef]
- Vassalle, L.; Passos, F.; Rosa-Machado, A.T.; Moreira, C.; Reis, M.; Freitas, M.P.; Ferrer, I.; Mota, C.R. The use of solar pre-treatment as a strategy to improve the anaerobic biodegradability of microalgal biomass in co-digestion with sewage. Chemosphere 2022, 286, 131929. [Google Scholar] [CrossRef]
- Ometto, F.; Whitton, R.; Coulon, F.; Jefferson, B.; Villa, R. Improving the energy balance of an integrated microalgal wastewater treatment process. Waste Biomass Valorization 2014, 5, 245–253. [Google Scholar] [CrossRef]
- Passos, F.; Gutiérrez, R.; Uggetti, E.; Garfi, M.; García, J.; Ferrer, I. Towards energy neutral microalgae-based wastewater treatment plants. Algal. Res. 2017, 28, 235–243. [Google Scholar] [CrossRef]
- Phanduang, O.; Lunprom, S.; Salakkam, A.; Liao, Q.; Reungsang, A. Improvement in energy recovery from Chlorella sp. biomass by integrated dark-photo biohydrogen production and dark fermentation-anaerobic digestion processes. Int. J. Hydrog. Energy 2019, 44, 23899–23911. [Google Scholar] [CrossRef]
- Policastro, G.; Cesaro, A.; Fabbricino, M. Photo-fermentative hydrogen production from cheese whey: Engineering of a mixed culture process in a semi-continuous, tubular photo-bioreactor. Int. J. Hydrog. Energy, 2022; in press. [Google Scholar]
Species | Chemical Composition (%) | Cell Wall Components 1 | ||
---|---|---|---|---|
Carbohydrates | Proteins | Lipids | ||
Spirulina | 16 | 71 | 7 | Polysaccharides sheath; lipid double-layer; peptide-glycan layer surrounded by a fibrillar layer made of cellulose and hemicellulose; cell membrane. |
Scenedesmus | 17 | 56 | 14 | Peptide-glycan layer; algaenan layer; fibrillar layer made of cellulose and hemicellulose; cell membrane. |
Nannochloropsis | 32 | 27 | 15 | Algaenan layer; cellulose layer; struts; cell membrane. |
Chlorella | 17 | 58 | 22 | Algaenan layer; fibrillar layer made of cellulose and hemicellulose; cell membrane. |
Code | Method | Species/Concentration | Pretreatment Conditions | Solubilization Increase (%) | Methane Yield (NmL CH4/g VS) | Reference | ||
---|---|---|---|---|---|---|---|---|
Without PT | With PT | Variation (%) | ||||||
U1 U2 U3 U4 | Ultrasound | Chlorella sorokiniana, 13.8 g/L CODT | 220 W, 30 min 400 W, 20 min 400 W, 30 min 400 W, 40 min | 28.5 b 33.3 b 43.2 b 56.8 b | 317.66 | 458.43 414.12 424.68 421.87 | 44.3 30.4 33.7 32.8 | [80] |
U5 U6 | Ultrasound | Mixed biomass (Monoraphidium sp., Stigeoclonium sp., Nitzschia sp., Amphora sp.) | 60 W, 30 min 70 W, 30 min | 84.0 c 91.0 c | 147.70 | 177.20 196.40 | 20.0 33.0 | [83] |
U7 | Ultrasound | Scenedesmus sp., 4.48 g/L TS | 80 W, 30 min, 128.9 MJ/kg TS | 8.0 a | 81.80 j | 153.50 j | 87.7 | [84] |
U8 M1 | Ultrasound Microwave | Mixed biomass (Nitzschia sp., Stigeoclonium sp., Navicula sp., Monoraphidium sp.), 31.49 g/L TS | 70 W, 30 min, 20 kHz, 27 MJ/kg TS 900 W, 3 min, 34.3 MJ/kg TS | 9.5 c 9.8 c | 105.6 | 113.7 127.70 | 8.0 21.0 | [56] |
M2 M3 M4 | Microwave | Microalgae mixed biomass from high-rate ponds, 16.7 g/L CODT | 300 W, 9 min, 64,400 kJ/kg TS 600 W, 4.5 min, 64,400 kJ/kg TS 900 W, 3 min, 64,400 kJ/kg TS | 7.5 d 7.4 d 8.1 d | 117.63 | 167.24 188.34 210.06 | 60.1 71.6 78.6 | [64] |
M5 | Microwave | Microalgae mixed biomass from high-rate ponds, 22.0 g/L CODT | 900 W, 3 min, 70,000 kJ/kg VS | 140.0 a | 170.00 | 270.00 | 58.8 | [83] |
T1 | Thermal | Chlorella sorokiniana, 13.8 g/L CODT | 80 °C, 20 min | 6.6 b | 317.66 | 374.81 | 18.0 | [80] |
T2 T3 T4 | Thermal | Microalgae mixed biomass from high-rate ponds, 17.9 g/L CODT | 55 °C, 10 h 75 °C, 10 h 95 °C, 10 h | 402.0 e 1058.0 e 1184 e | 111.00 | 124.59 154.57 169.88 | 13.0 40.0 53.0 | [85] |
T5 T6 | Thermal | Scenedesmus sp., 4.48 g/L TS | 70 °C, 25 min 80 °C, 25 min | 90.0 a 130.0 a | 81.80 j | 89.3 j 128.7 j | 9.0 57.0 | [84] |
T7 T8 | Thermal | Scenedesmus sp., 14.0 g/L COD | 70 °C, 180 min 90 °C, 180 min | na na | 76.00 j | 85.00 j 170.00 j | 11.8 123.7 | [62] |
T9 | Thermal | Chlorella sp., 27.9 g/L COD | 65 °C, 4 h | 41.0 | 211.00 | 297.00 | 41.0 | [86] |
T10 T11 T12 T13 | Hydrothermal | Microalgae mixed biomass from high-rate ponds, 2.5% TS | 110 °C, 1.2 bar, 15 min 110 °C, 1.2 bar, 30 min 130 °C, 1.7 bar, 15 min 130 °C, 1.7 bar, 30 min | 8.0 c 8.8 c 15.0 c 13.3 c | 120.00 | 150.0 140.00 170.00 160.00 | 25.0 17.0 42.0 33.0 | [87] |
T14 T15 T16 | Hydrothermal | Chlorella vulgaris, 32.1 g/L CODT | 140 °C, 3 bar, 10 min, 350 rpm 160 °C, 6 bar, 10 min, 350 rpm 180 °C, 10 bar, 10 min, 350 rpm | 42.0 f 54.0 f 69.0 f | 156.40 j | 219.80 j 256.30 j 226.50 j | 40.0 64.0 45.0 | [72] |
T17 | Hydrothermal | Scenedesmus obliquus, 20 g/L TS | 165 °C, 7 bar, 30 min | 40.0 g | 159.00 | 383.60 | 141.3 | [88] |
T18 | Hydrothermal (solar powered) | Chlorella pyrenoidosa, 0.961 g TS/g DW | 155 °C, 30 min, flow rate 40 L/h (semi-continuous) | na | 221.70 | 348.00 | 57.0 | [89] |
E1 | Enzymatic | Scenedesmus obliquus, 25 mg sCOD/g TS | Cellulase + endogalactouronase mix, 17.5 U/g TS, 50 °C, 24 h | organic matter solubilization between 35.0 and 45.0% g | 159.00 | 897.75 | 464.6 | [88] |
E2 | Scenedesmus obliquus, 25 mg sCOD/g TS | Estearase + protease mix, 12.5 U/g TS, 50 °C, 24 h | 159.00 | 617.70 | 288.5 | |||
E3 | Chlorella sorokiniana, 95 mg sCOD/g TS | Cellulase + endogalactouronase mix, 17.5 U/g TS, 50 °C, 24 h | 169.30 | 532.68 | 214.6 | |||
E4 | Chlorella sorokiniana, 95 mg sCOD/g TS | Estearase + protease mix, 7.5 U/g TS, 50 °C, 24 h | 169.30 | 486.08 | 187.1 | |||
E5 | Arthrospira maxima, 300 mg sCOD/g TS | Cellulase + endogalactouronase mix, 12.5 U/g TS, 50 °C, 24 h | 111.00 | 879.60 | 689.7 | |||
E6 | Arthrospira maxima, 300 mg sCOD/g TS | Estearase + protease mix, 7.5 U/g TS, 50 °C, 24 h | 111.00 | 927.00 | 735.1 | |||
E7 | Enzymatic | Porphyridium cruentum, 3.4 g CODT/L | Protease 0.5 mL/g dry biomass, pH 8.0–8.5, 55 °C, 9 h | 32.2 h | 130.00 | 230.00 | 77.0 | [90] |
E8 | Enzymatic | Chlorella sorokiniana | Enzyme commercial cocktail, 1% E/S, pH 4.8, 24 h | 42.0 i | 317.66 | 430.80 | 35.6 | [91] |
E9 | Enzyme commercial cocktail 1% E/S, pH 4.8, 24 h | 48.0 i | 440.70 | 38.7 | ||||
E10 | Commercial cellulase, 1% E/S, pH 4.8, 24 h | 36.0 i | 552.66 | 74.0 | ||||
E11 | Commercial cellulase, 1% E/S, pH 7.0, 24 h | 34.0 i | 545.68 | 71.0 | ||||
E12 | Enzyme commercial cocktail, 1% E/S, pH 7.0, 24 h | 50.0 i | 570.84 | 70.0 | ||||
E13 | Biological | Mixed culture of bacteria and microalgae, composed mainly by Oocystis sp., 31.3 g/L CODT | 100 U/L laccase-rich broth from Trametes versicolor, 100 rpm/20 min | na | 83.0 | 144.00 | 20.0 | [92] |
E14 | 100 U/L commercial laccase, 20 min, 100 rpm, 25 °C | 100.00 | 74.0 | |||||
E15 | Biological | Scenedesmus sp., 60.9 g/L CODT | TSAD, rumen m-orgs as pretreatment in the 1st stage, fermentation reactor: 40 d, SRT = 7 d, HRT = 7 d. | na | na | 214.00 | na | [93] |
Pretreatment | Temperature (°C) | Time (min) | pH | R0 | Log R0 | Log CS |
---|---|---|---|---|---|---|
A1 | 150 | 60 | 2 | 1779.66 | 3.25 | 1.25 |
A15 | 80 | 2 | 1 | 30.92 | 1.49 | 0.49 |
A16 | 80 | 2 | 0.6 | 30.92 | 1.49 | 0.89 |
A17 | 80 | 2 | 0.4 | 30.92 | 1.49 | 1.09 |
A18 | 40 | 960 | 1.1 | 16.43 | 1.22 | 0.12 |
A23 | 105 | 102 | 1.1 | 143.16 | 2.16 | 1.06 |
A27 | 121 | 60 | 0.3 | 249.15 | 2.4 | 2.1 |
B4 | 50 | 60 | 3 | 2.02 | 0.31 | −2.69 |
B5 | 100 | 60 | 3 | 60 | 1.78 | −1.22 |
B6 | 150 | 60 | 3 | 1779.66 | 3.25 | 0.25 |
B12 | 140 | 30 | 4 | 451.72 | 2.65 | −1.35 |
B20 | 120 | 30 | 1 | 116.41 | 2.07 | 1.07 |
B21 | 120 | 30 | 0 | 116.41 | 2.07 | 2.07 |
B24 | 120 | 30 | 1 | 116.41 | 2.07 | 1.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Oliveira, M.C.; Bassin, I.D.; Cammarota, M.C. Microalgae and Cyanobacteria Biomass Pretreatment Methods: A Comparative Analysis of Chemical and Thermochemical Pretreatment Methods Aimed at Methane Production. Fermentation 2022, 8, 497. https://doi.org/10.3390/fermentation8100497
de Oliveira MC, Bassin ID, Cammarota MC. Microalgae and Cyanobacteria Biomass Pretreatment Methods: A Comparative Analysis of Chemical and Thermochemical Pretreatment Methods Aimed at Methane Production. Fermentation. 2022; 8(10):497. https://doi.org/10.3390/fermentation8100497
Chicago/Turabian Stylede Oliveira, Maria C., Isabelli D. Bassin, and Magali C. Cammarota. 2022. "Microalgae and Cyanobacteria Biomass Pretreatment Methods: A Comparative Analysis of Chemical and Thermochemical Pretreatment Methods Aimed at Methane Production" Fermentation 8, no. 10: 497. https://doi.org/10.3390/fermentation8100497