An Overview of Lignocellulose and Its Biotechnological Importance in High-Value Product Production
Abstract
:1. Introduction
2. Lignocellulosic Biomass Sources
Sources | Examples | References |
---|---|---|
Agricultural residues | Sugarcane bagasse, corn and rice straw, cotton stalk, corn cobs and leaves, wheat straw, barley straw, sweet sorghum straw, potato haulms, and cocoa pods. | [25,29,30,31,32,33,34,35,36,37,38] |
Forestry residues | Spruce chips, willow, cedars, poplar, and eucalyptus. | [12,39,40,41,42,43,44] |
Industrial wastes | Brewer’s spent grains, chemical pulps (e.g., waste sulfite liquor from pulp), and waste papers from paper mills. | [22,45,46,47,48] |
Food wastes | The kitchen remains, such as vegetable peels and fruit waste. | [49] |
Agro-wastes | Animal manure (e.g., solid cattle, cow, and pig manure). | [50,51] |
3. Conversion of Lignocellulosic Biomass into Value-Added Products
3.1. Pretreatment Methods of Lignocellulose
3.2. Hydrolysis of Lignocellulose
3.3. Fermentation of Sugars
3.4. Purification of Value-Added Product
4. Value-Added Products from Lignocellulosic Biomass
4.1. Biofuels
4.1.1. Alcohols
4.1.2. Biodiesel Production
4.1.3. Biohydrogen Production
4.1.4. Biogas Production
Substrate | Microorganism | Concentration | Productivity | Yield | Reference |
---|---|---|---|---|---|
Teak wood hydrolyzate | E. coli MSO4 | 32.90 BioEtOH(a) | 0.45 BioEtOH(b) | 0.96 BioEtOH(c) | [157] |
Oil palm empty fruit bunches hydrolyzate | Klyveromyces marxinus | 28.10 BioEtOH(a) | 0.58 BioEtOH(b) | 0.28 BioEtOH(c) | [182] |
Cellulose-rich corncob hydrolyzate | Saccharomyces cerevisiae TC-5 | 31.96 BioEtOH(a) | 0.22 BioEtOH(b) | 0.40 BioEtOH(c) | [183] |
Xylose-rich Paulownia hydrolyzate | Saccharomyces cerevisiae MEC1133 | 12.50 BioEtOH(a) | 0.51 BioEtOH(b) | 0.26 BioEtOH(c) | [184] |
Scheffersomyces stipitis CECT1922 | 14.20 BioEtOH(a) | 0.53 BioEtOH(b) | 0.31 BioEtOH(c) | ||
Shorea robusta hydrolyzate | Saccharomyces cerevisiae | 9.43 BioEtOH(a) | 0.39 BioEtOH(b) | 0.97 BioEtOH(c) | [122] |
Cornstalk hydrolyzate | Rhodobacter capsulator JL1601 (cheR2−) | - | - | 224.85 BioH(d) | [185] |
Corncob hydrolyzate | Clostridium acetobutylicum | - | - | 132.00 BioH(d) | [186] |
Agave hydrolyzate | Clostridium acetobutylicum | - | - | 150.00 BioH(d) | [187] |
Wheat straw | Anaerobic sludge | - | - | 250.50 BioMeth(e) | [188] |
Rice straw | Bovine rumen fluid | - | - | 165.00 BioMeth(e) | [189] |
Corn stover leaf blade | Co-culture of Pecoramyces sp. and Methanobrevibacter sp. | - | - | 42.4 ± 1.00 BioMeth(e) | [190] |
Corn stover stem pith | Co-culture of Pecoramyces sp. and Methanobrevibacter sp. | - | - | 40.9 ± 1.35 BioMeth(e) | |
Wood waste | Anaerobic activated sludge | - | - | 175.81 BioMeth(e) | [191] |
Pig manure | - | - | 245.09 BioMeth(e) | ||
Co-digestion of wood waste and pig manure | - | - | 234.88 BioMeth(e) |
4.2. Platform Chemicals
4.2.1. Fermentative Production of the Platform Chemicals from Lignocellulose
4.2.2. Global Production and Market Values of the Platform Chemicals
5. Challenges and Alleviation Strategies in Upcycling Lignocellulose
6. Prospects of Lignocellulose
7. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Brethauer, S.; Shahab, R.L.; Studer, M.H. Impacts of Biofilms on the Conversion of Cellulose. Appl. Microbiol. Biotechnol. 2020, 104, 5201–5212. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.; Le, P.; Mai, P.; Nguyen, Q. Ethanol Production from Lignocellulosic Biomass; IntechOpen: Rijeka, Croatia, 2019; pp. 1–13. [Google Scholar] [CrossRef]
- Kim, J.S.; Lee, Y.Y.; Kim, T.H. A Review on Alkaline Pretreatment Technology for Bioconversion of Lignocellulosic Biomass. Bioresour. Technol. 2016, 199, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Tsai, M.-L.; Sharma, V.; Sun, P.-P.; Nargotra, P.; Bajaj, B.K.; Chen, C.-W.; Dong, C.-D. Environment Friendly Pretreatment Approaches for the Bioconversion of Lignocellulosic Biomass into Biofuels and Value-Added Products. Environments 2022, 10, 6. [Google Scholar] [CrossRef]
- Nigam, P.S.; Singh, A. Production of Liquid Biofuels from Renewable Resources. Prog. Energy Combust. Sci. 2011, 37, 52–68. [Google Scholar] [CrossRef]
- Dahman, Y.; Syed, K.; Begum, S.; Roy, P.; Mohtasebi, B. Biofuels: Their Characteristics and Analysis. In Biomass, Biopolymer-Based Materials, and Bioenergy: Construction, Biomedical, and Other Industrial Applications; Elsevier: Amsterdam, The Netherlands, 2019; pp. 277–325. [Google Scholar] [CrossRef]
- Zhao, Y.; Wu, B.; Yan, B.; Gao, P. Mechanism of Cellobiose Inhibition in Cellulose Hydrolysis by Cellobiohydrolase. Sci. China Ser. C Life Sci. 2004, 47, 18–24. [Google Scholar] [CrossRef]
- Abo, B.O.; Gao, M.; Wang, Y.; Wu, C.; Ma, H.; Wang, Q. Lignocellulosic Biomass for Bioethanol: An Overview on Pretreatment, Hydrolysis and Fermentation Processes. Rev. Environ. Health 2019, 34, 1–12. [Google Scholar] [CrossRef]
- Zhang, W.; Qin, W.; Li, H.; Wu, A.M. Biosynthesis and Transport of Nucleotide Sugars for Plant Hemicellulose. Front. Plant Sci. 2021, 12, 1–13. [Google Scholar] [CrossRef]
- Doherty, W.O.S.; Mousavioun, P.; Fellows, C.M. Value-Adding to Cellulosic Ethanol: Lignin Polymers. Ind. Crops Prod. 2011, 13, 259–276. [Google Scholar] [CrossRef]
- Zoghlami, A.; Paës, G. Lignocellulosic Biomass: Understanding Recalcitrance and Predicting Hydrolysis. Front. Chem. 2019, 7, 1–11. [Google Scholar] [CrossRef]
- Cai, J.; He, Y.; Yu, X.; Banks, S.W.; Yang, Y.; Zhang, X.; Yu, Y.; Liu, R.; Bridgwater, A.V. Review of Physicochemical Properties and Analytical Characterization of Lignocellulosic Biomass. Renew. Sustain. Energy Rev. 2017, 76, 309–322. [Google Scholar] [CrossRef]
- Dutta, S. Top 10 Agricultural Producing Countries in the World. 2020. Available online: https://www.insidermonkey.com/blog/top-10-agricultural-producing-countries-in-the-world-885643/6/NEWS (accessed on 19 September 2023).
- Koul, B.; Yakoob, M.; Shah, M.P. Agricultural Waste Management Strategies for Environmental Sustainability. Environ. Res. 2022, 206, 112285. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.; Korstad, J.; Guldhe, A.; Kothari, R. Editorial: Emerging Feedstocks and Clean Technologies for Lignocellulosic Biofuel. Front. Energy Res. 2022, 10, 1–2. [Google Scholar] [CrossRef]
- Bhuvaneshwari, S.; Hettiarachchi, H.; Meegoda, J.N. Crop Residue Burning in India: Policy Challenges and Potential Solutions. Int. J. Environ. Res. Public Health 2019, 16, 832. [Google Scholar] [CrossRef] [PubMed]
- Porichha, G.K.; Hu, Y.; Rao, K.T.V.; Xu, C.C. Crop Residue Management in India: Stubble Burning vs. Other Utilizations Including Bioenergy. Energies 2021, 14, 4281. [Google Scholar] [CrossRef]
- COP26. Together for Our Planet. 2021. Available online: https://www.un.org/en/climatechange/cop26 (accessed on 21 September 2023).
- Ruensodsai, T.; Sriariyanun, M. Sustainable Development and Progress of Lignocellulose Conversion to Platform Chemicals. J. King Mongkut’s Univ. Technol. North Bangk. 2022, 32, 1–4. [Google Scholar] [CrossRef]
- Singhvi, M.; Zinjarde, S.; Kim, B.S. Sustainable Strategies for the Conversion of Lignocellulosic Materials into Biohydrogen: Challenges and Solutions toward Carbon Neutrality. Energies 2022, 15, 8987. [Google Scholar] [CrossRef]
- Ojo, A.O.; de Smidt, O. Lactic Acid: A Comprehensive Review of Production to Purification. Processes 2023, 11, 688. [Google Scholar] [CrossRef]
- Saini, J.K.; Saini, R.; Tewari, L. Lignocellulosic Agriculture Wastes as Biomass Feedstocks for Second-Generation Bioethanol Production: Concepts and Recent Developments. 3 Biotech 2015, 5, 337–353. [Google Scholar] [CrossRef] [PubMed]
- Shahbandeh, M. Rice—Statistics and Facts. 2023. Available online: https://www.statista.com/topics/1443/rice/#topicOverview (accessed on 29 August 2023).
- World Population Review. Wheat Production by Country. 2023. Available online: https://worldpopulationreview.com/country (accessed on 29 August 2023).
- Goodman, B.A. Utilization of Waste Straw and Husks from Rice Production: A Review. J. Bioresour. Bioprod. 2020, 5, 143–162. [Google Scholar] [CrossRef]
- Singh, R.B.; Sana, R.C.; Singh, M.; Chandra, D.; Shukla, S.G.; Walli, T.K.; Pradhan, P.K.; Kessels, H.P.P. Rice Straw—Its Production and Utilization in India. In Handbook for Straw Feeding Systems; Indian Council of Agricultural Research: New Delhi, Indian, 1995; pp. 325–337. [Google Scholar]
- Ajala, E.O.; Ighalo, J.O.; Ajala, M.A.; Adeniyi, A.G.; Ayanshola, A.M. Sugarcane Bagasse: A Biomass Sufficiently Applied for Improving Global Energy, Environment and Economic Sustainability. Bioresour. Bioprocess. 2021, 8, 87. [Google Scholar] [CrossRef]
- Pennington, D. Corn Stover: What Is Its Worth? 2013. Available online: https://www.canr.msu.edu/news/corn_stover_what_is_its_worth (accessed on 27 August 2023).
- Yang, J.; Ching, Y.C.; Chuah, C.H. Applications of Lignocellulosic Fibers and Lignin in Bioplastics: A Review. Polymers 2019, 11, 751. [Google Scholar] [CrossRef] [PubMed]
- Yetri, Y.; Hoang, A.T.; Mursida; Dahlan, D.; Muldarisnur; Taer, E.; Chau, M.Q. Synthesis of Activated Carbon Monolith Derived from Cocoa Pods for Supercapacitor Electrodes Application. Energy Sources Part A Recover. Util. Environ. Eff. 2020, 1–15. [Google Scholar] [CrossRef]
- Yadav, N.; Nain, L.; Khare, S.K. One-Pot Production of Lactic Acid from Rice Straw Pretreated with Ionic Liquid. Bioresour. Technol. 2021, 323, 124563. [Google Scholar] [CrossRef] [PubMed]
- Luque, L.; Oudenhoven, S.; Westerhof, R.; Van Rossum, G.; Berruti, F.; Kersten, S.; Rehmann, L. Comparison of Ethanol Production from Corn Cobs and Switchgrass Following a Pyrolysis-Based Biorefinery Approach. Biotechnol. Biofuels 2016, 9, 242. [Google Scholar] [CrossRef] [PubMed]
- Adewuyi, A. Underutilized Lignocellulosic Waste as Sources of Feedstock for Biofuel Production in Developing Countries. Front. Energy Res. 2022, 10, 1–21. [Google Scholar] [CrossRef]
- Borrega, M.; Hinkka, V.; Hörhammer, H.; Kataja, K.; Kenttä, E.; Ketoja, J.A.; Palmgren, R.; Salo, M.; Sundqvist-Andberg, H.; Tanaka, A. Utilizing and Valorizing Oat and Barley Straw as an Alternative Source of Lignocellulosic Fibers. Materials 2022, 15, 7826. [Google Scholar] [CrossRef] [PubMed]
- Keshav, P.K.; Banoth, C.; Kethavath, S.N.; Bhukya, B. Lignocellulosic Ethanol Production from Cotton Stalk: An Overview on Pretreatment, Saccharification and Fermentation Methods for Improved Bioconversion Process. Biomass Convers. Biorefinery 2021, 13, 4477–4493. [Google Scholar] [CrossRef]
- Dong, M.; Wang, S.; Xu, F.; Wang, J.; Yang, N.; Li, Q.; Chen, J.; Li, W. Pretreatment of Sweet Sorghum Straw and Its Enzymatic Digestion: Insight into the Structural Changes and Visualization of Hydrolysis Process. Biotechnol. Biofuels 2019, 12, 276. [Google Scholar] [CrossRef]
- Kucharska, K.; Rybarczyk, P.; Hołowacz, I.; Łukajtis, R.; Glinka, M.; Kamiński, M. Pretreatment of Lignocellulosic Materials as Substrates for Fermentation Processes. Molecules 2018, 23, 2937. [Google Scholar] [CrossRef]
- Díaz-González, A.; Luna, M.Y.P.; Morales, E.R.; Saldaña-Trinidad, S.; Blanco, L.R.; de la Cruz-Arreola, S.; Pérez-Sariñana, B.Y.; Robles-Ocampo, J.B. Assessment of the Pretreatments and Bioconversion of Lignocellulosic Biomass Recovered from the Husk of the Cocoa Pod. Energies 2022, 15, 3544. [Google Scholar] [CrossRef]
- Azhar, S.; Wang, Y.; Lawoko, M.; Henriksson, G.; Lindström, M.E. Extraction of Polymers from Enzyme-Treated Softwood. BioResources 2011, 6, 4606–4614. [Google Scholar] [CrossRef]
- Dou, J.; Chandgude, V.; Vuorinen, T.; Bankar, S.; Hietala, S.; Lê, H.Q. Enhancing Biobutanol Production from Biomass Willow by Pre-Removal of Water Extracts or Bark. J. Clean. Prod. 2021, 327, 129432. [Google Scholar] [CrossRef]
- Lempiäinen, H.; Lappalainen, K.; Haverinen, J.; Tuuttila, T.; Hu, T.; Jaakkola, M.; Lassi, U. The Effect of Mechanocatalytic Pretreatment on the Structure and Depolymerization of Willow. Catalysts 2020, 10, 255. [Google Scholar] [CrossRef]
- Fellak, S.; Rafik, M.; Haidara, H.; Boukir, A.; Lhassani, A. Study of Natural Degradation Effect on Lignocellulose Fibers of Archaeological Cedar Wood: Monitoring by Fourier Transform Infrared (FTIR) Spectroscopy. MATEC Web Conf. 2022, 360, 6. [Google Scholar] [CrossRef]
- Rego, F.; Soares Dias, A.P.; Casquilho, M.; Rosa, F.C.; Rodrigues, A. Fast Determination of Lignocellulosic Composition of Poplar Biomass by Thermogravimetry. Biomass Bioenergy 2019, 122, 375–380. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, K.; Xiao, L.P.; Sun, R.C.; Song, G. Total Utilization of Lignin and Carbohydrates in Eucalyptus Grandis: An Integrated Biorefinery Strategy towards Phenolics, Levulinic Acid, and Furfural. Biotechnol. Biofuels 2020, 13, 2. [Google Scholar] [CrossRef]
- Pejin, J.; Radosavljević, M.; Kocić-Tanackov, S.; Djukić-Vuković, A.; Mojović, L. Lactic Acid Fermentation of Brewer’s Spent Grain Hydrolysate by Lactobacillus Rhamnosus with Yeast Extract Addition and pH Control. J. Inst. Brew. 2017, 123, 98–104. [Google Scholar] [CrossRef]
- Mathews, S.L.; Pawlak, J.; Grunden, A.M. Bacterial Biodegradation and Bioconversion of Industrial Lignocellulosic Streams. Appl. Microbiol. Biotechnol. 2015, 99, 2939–2954. [Google Scholar] [CrossRef] [PubMed]
- Rueda, C.; Calvo, P.A.; Moncalián, G.; Ruiz, G.; Coz, A. Biorefinery Options to Valorize the Spent Liquor from Sulfite Pulping. J. Chem. Technol. Biotechnol. 2015, 90, 2218–2226. [Google Scholar] [CrossRef]
- Ojewumi, M.E.; Emetere, M.E.; Obanla, O.R.; Babatunde, D.E.; Adimekwe, E.G. Bio-Conversion of Waste Paper Into Fermentable Sugars—A Review. Front. Chem. Eng. 2022, 4, 926400. [Google Scholar] [CrossRef]
- Verma, M.; Mishra, V. Utilization of Fruit-Vegetable Waste as Lignocellulosic Feedstocks for Bioethanol Fermentation. In Food Waste to Green Fuel: Trend & Development. Clean Energy Production Technologies; Srivastava, N., Malik, M., Eds.; Springer: Singapore, 2022; pp. 189–211. [Google Scholar]
- Yan, Q.; Liu, X.; Wang, Y.; Li, H.; Li, Z.; Zhou, L.; Qu, Y.; Li, Z.; Bao, X. Cow Manure as a Lignocellulosic Substrate for Fungal Cellulase Expression and Bioethanol Production. AMB Express 2018, 8, 190. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Awasthi, M.K.; Zhao, J.; Ren, X.; Li, R.; Wang, Z.; Wang, M.; Zhang, Z. Improvement of Pig Manure Compost Lignocellulose Degradation, Organic Matter Humification and Compost Quality with Medical Stone. Bioresour. Technol. 2017, 243, 771–777. [Google Scholar] [CrossRef]
- Inyang, V.; Laseinde, O.T.; Kanakana, G.M. Techniques and Applications of Lignocellulose Biomass Sources as Transport Fuels and Other Bioproducts. Int. J. Low-Carbon Technol. 2022, 17, 900–909. [Google Scholar] [CrossRef]
- Jönsson, L.J.; Alriksson, B.; Nilvebrant, N.O. Bioconversion of Lignocellulose: Inhibitors and Detoxification. Biotechnol. Biofuels 2013, 6, 16. [Google Scholar] [CrossRef] [PubMed]
- Nauman Aftab, M.; Iqbal, I.; Riaz, F.; Karadag, A.; Tabatabaei, M. Different Pretreatment Methods of Lignocellulosic Biomass for Use in Biofuel Production. In Biomass for Bioenergy—Recent Trends and Future Challenges; IntechOpen: Rijeka, Croatia, 2019; pp. 1–208. [Google Scholar] [CrossRef]
- Chandel, H.; Kumar, P.; Chandel, A.K.; Verma, M.L. Biotechnological Advances in Biomass Pretreatment for Bio-Renewable Production through Nanotechnological Intervention. Biomass Convers. Biorefinery 2022, 4, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Barrett, D.M.; Delwiche, M.J.; Stroeve, P. Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production. Ind. Eng. Chem. Res. 2009, 48, 3713–3729. [Google Scholar] [CrossRef]
- Sun, Y.; Cheng, J. Hydrolysis of Lignocellulosic Materials for Ethanol Production: A Review. Bioresour. Technol. 2002, 83, 1–11. [Google Scholar] [CrossRef]
- Yogalakshmi, K.; Poornima, D.T.; Sivashanmugam, P.; Kavitha, S.; Yukesh, K.R.; Varjani, S.; AdishKumar, S.; Kumar, G.; Rajesh, B.J. Lignocellulosic Biomass-Based Pyrolysis: A Comprehensive Review. Chemosphere 2022, 286, 131824. [Google Scholar] [CrossRef]
- Arora, A.; Nandal, P.; Singh, J.; Verma, M.L. Nanobiotechnological Advancements in Lignocellulosic Biomass Pretreatment. Mater. Sci. Energy Technol. 2020, 3, 308–318. [Google Scholar] [CrossRef]
- Baruah, J.; Nath, B.K.; Sharma, R.; Kumar, S.; Deka, R.C.; Baruah, D.C.; Kalita, E. Recent Trends in the Pretreatment of Lignocellulosic Biomass for Value-Added Products. Front. Energy Res. 2018, 6, 1–19. [Google Scholar] [CrossRef]
- Sarip, H.; Sohrab Hossain, M.; Mohd Azemi, M.N.; Allaf, K. A Review of the Thermal Pretreatment of Lignocellulosic Biomass towards Glucose Production: Autohydrolysis with DIC Technology. BioResources 2016, 11, 10625–10653. [Google Scholar] [CrossRef]
- Rasri, W.; Thu, V.T.; Corpuz, A.; Nguyen, L.T. Preparation and Characterization of Cellulose Nanocrystals from Corncob via Ionic Liquid [Bmim][HSO4] Hydrolysis: Effects of Major Process Conditions on Dimensions of the Product. RSC Adv. 2023, 13, 19020–19029. [Google Scholar] [CrossRef] [PubMed]
- Sahay, S. Impact of Pretreatment Technologies for Biomass to Biofuel Production. In Clean Energy Production Technologies: Substrate Analysis for Effective Biofuels Production; Springer Nature: New York, NY, USA, 2020; pp. 173–216. [Google Scholar]
- Morais, A.R.C.; Da Costa Lopes, A.M.; Bogel-Łukasik, R. Carbon Dioxide in Biomass Processing: Contributions to the Green Biorefinery Concept. Chem. Rev. 2014, 115, 3–27. [Google Scholar] [CrossRef]
- Niu, D.; Zuo, S.; Jiang, D.; Tian, P.; Zheng, M.; Xu, C. Treatment Using White Rot Fungi Changed the Chemical Composition of Wheat Straw and Enhanced Digestion by Rumen Microbiota in Vitro. Anim. Feed Sci. Technol. 2018, 237, 46–54. [Google Scholar] [CrossRef]
- Wan, C.; Li, Y. Fungal Pretreatment of Lignocellulosic Biomass. Biotechnol. Adv. 2012, 30, 1447–1457. [Google Scholar] [CrossRef] [PubMed]
- van Kuijk, S.J.A.; Sonnenberg, A.S.M.; Baars, J.J.P.; Hendriks, W.H.; del Río, J.C.; Rencoret, J.; Gutiérrez, A.; de Ruijter, N.C.A.; Cone, J.W. Chemical Changes and Increased Degradability of Wheat Straw and Oak Wood Chips Treated with the White Rot Fungi Ceriporiopsis Subvermispora and Lentinula Edodes. Biomass Bioenergy 2017, 105, 381–391. [Google Scholar] [CrossRef]
- Fan, L.T.; Gharpuray, M.M.; Lee, Y.-H. Cellulose Hydrolysis; Aiba, S., Fan, L.T., Fiechter, A., Schiigerl, K.K., Eds.; Springer: Berlin, Germany, 1987. [Google Scholar]
- Zabel, R.A.; Morrell, J.J. Chemical Changes in Wood Caused by Decay Fungi. In Wood Microbiology; Academic Press: Cambridge, MA, USA, 2020; pp. 215–244. [Google Scholar] [CrossRef]
- Abdel-Hamid, A.M.; Solbiati, J.O.; Cann, I.K.O. Insights into Lignin Degradation and Its Potential Industrial Applications. Adv. Appl. Microbiol. 2013, 82, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, K.-E.; Blanchette, R.; Ander, P. Biodegradation of Hemicelluloses. In Microbial and Enzymatic Degradation of Wood and Wood Components; Springer: Berlin, Germany, 1990; pp. 252–333. [Google Scholar]
- Suryadi, H.; Judono, J.J.; Putri, M.R.; Eclessia, A.D.; Ulhaq, J.M.; Agustina, D.N.; Sumiati, T. Biodelignification of Lignocellulose Using Ligninolytic Enzymes from White-Rot Fungi. Heliyon 2022, 8, e08865. [Google Scholar] [CrossRef] [PubMed]
- Canam, T.; Town, J.; Iroba, K.; Tabil, L.; Dumonceaux, T. Pretreatment of Lignocellulosic Biomass Using Microorganisms: Approaches, Advantages, and Limitations. In New Microbial Technologies for Advanced Biofuels: Toward More Sustainable Production Methods; Apple Academic Press: Florida, FL, USA, 2015; pp. 145–175. [Google Scholar] [CrossRef]
- Peralta, R.M.; da Silva, B.P.; Gomes Côrrea, R.C.; Kato, C.G.; Vicente Seixas, F.A.; Bracht, A. Enzymes from Basidiomycetes-Peculiar and Efficient Tools for Biotechnology. In Biotechnology of Microbial Enzymes: Production, Biocatalysis and Industrial Applications; Academic Press: Cambridge, MA, USA, 2017; pp. 119–149. [Google Scholar] [CrossRef]
- Wu, Z.; Peng, K.; Zhang, Y.; Wang, M.; Yong, C.; Chen, L.; Qu, P.; Huang, H.; Sun, E.; Pan, M. Lignocellulose Dissociation with Biological Pretreatment towards the Biochemical Platform: A Review. Mater. Today Bio 2022, 16, 100445. [Google Scholar] [CrossRef]
- Nayan, N.; Sonnenberg, A.S.M.; Hendriks, W.H.; Cone, J.W. Differences between Two Strains of Ceriporiopsis Subvermispora on Improving the Nutritive Value of Wheat Straw for Ruminants. J. Appl. Microbiol. 2017, 123, 352–361. [Google Scholar] [CrossRef] [PubMed]
- Niu, D.; Zuo, S.; Ren, J.; Li, C.; Zheng, M.; Jiang, D.; Xu, C. Effect of Wheat Straw Types on Biological Delignification and in Vitro Rumen Degradability of Wheat Straws during Treatment with Irpex Lacteus. Anim. Feed Sci. Technol. 2020, 267, 114558. [Google Scholar] [CrossRef]
- Nayan, N.; Sonnenberg, A.S.M.; Hendriks, W.H.; Cone, J.W. Variation in the Solubilization of Crude Protein in Wheat Straw by Different White-Rot Fungi. Anim. Feed Sci. Technol. 2018, 242, 135–143. [Google Scholar] [CrossRef]
- Sowmya Dhanalakshmi, C.; Madhu, P. Biofuel Production of Neem Wood Bark (Azadirachta Indica) through Flash Pyrolysis in a Fluidized Bed Reactor and Its Chromatographic Characterization. In Energy Sources, Part A: Recovery, Utilization and Environmental Effects; Bellwether Publishing, Ltd.: Columbia, MD, USA, 2021; Volume 43, pp. 428–443. [Google Scholar] [CrossRef]
- Kim, M.; Singhvi, M.S.; Kim, B.S. Eco-Friendly and Rapid One-Step Fermentable Sugar Production from Raw Lignocellulosic Biomass Using Enzyme Mimicking Nanomaterials: A Novel Cost-Effective Approach to Biofuel Production. Chem. Eng. J. 2023, 465, 142879. [Google Scholar] [CrossRef]
- Ingle, A.P.; Philippini, R.R.; Silvério da Silva, S. Pretreatment of Sugarcane Bagasse Using Two Different Acid-Functionalized Magnetic Nanoparticles: A Novel Approach for High Sugar Recovery. Renew. Energy 2020, 150, 957–964. [Google Scholar] [CrossRef]
- Aslanzadeh, S.; Ishola, M.M.; Richards, T.; Taherzadeh, M.J. An Overview of Existing Individual Unit Operations. In Biorefineries: Integrated Biochemical Processes for Liquid Biofuels; Elsevier: Amsterdam, The Netherlands, 2014; pp. 3–36. [Google Scholar] [CrossRef]
- Brodeur, G.; Yau, E.; Badal, K.; Collier, J.; Ramachandran, K.B.; Ramakrishnan, S. Chemical and Physicochemical Pretreatment of Lignocellulosic Biomass: A Review. Enzym. Res. 2011, 2011, 787532. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, R.S.; Silva, A.S.; Moutta, R.O.; Ferreira-Leitão, V.S.; Barros, R.R.; Ferrara, M.A.; Bon, E.P. Biomass Pretreatment: A Critical Choice for Biomass Utilization via Biotechnological Routes. BMC Proc. 2014, 8, 34. [Google Scholar] [CrossRef]
- Akhtar, N.; Gupta, K.; Goyal, D.; Goyal, A. Recent Advances in Pretreatment Technologies for Efficient Hydrolysis of Lignocellulosic Biomass. Environ. Prog. Sustain. Energy 2016, 35, 489–511. [Google Scholar] [CrossRef]
- Saritha, M.; Arora, A. Lata Biological Pretreatment of Lignocellulosic Substrates for Enhanced Delignification and Enzymatic Digestibility. Indian J. Microbiol. 2012, 52, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Antunes, F.A.F.; Chandel, A.K.; Terán-Hilares, R.; Ingle, A.P.; Rai, M.; dos Santos Milessi, T.S.; da Silva, S.S.; dos Santos, J.C. Overcoming Challenges in Lignocellulosic Biomass Pretreatment for Second-Generation (2G) Sugar Production: Emerging Role of Nano, Biotechnological and Promising Approaches. 3 Biotech 2019, 9, 230. [Google Scholar] [CrossRef]
- Niu, D.; An, W.; Yu, C.; Zhu, P.; Li, C.; Yin, D.; Zhi, J.; Jiang, X.; Ren, J. Pre-Pasteurization Enhances the Fermentation of Wheat Straw by Irpex Lacteus: Chemical Composition, Enzymatic Hydrolysis, and Microbial Community. Ind. Crops Prod. 2023, 202, 116962. [Google Scholar] [CrossRef]
- González-Bautista, E.; Alarcón-Gutiérrez, E.; Dupuy, N.; Gaime-Perraud, I.; Ziarelli, F.; Foli, L.; Farnet-Da-Silva, A.M. Preparation of a Sugarcane Bagasse-Based Substrate for Second-Generation Ethanol: Effect of Pasteurisation Conditions on Dephenolisation. Renew. Energy 2020, 157, 859–866. [Google Scholar] [CrossRef]
- Sasaki, C.; Yamanaka, S. Novel Sterilization Method Combining Food Preservative Use and Low Temperature Steaming for Treatment of Lignocellulosic Biomass with White Rot Fungi. Ind. Crops Prod. 2020, 155, 112765. [Google Scholar] [CrossRef]
- Sánchez-Ramírez, J.; Martínez-Hernández, J.L.; Segura-Ceniceros, P.; López, G.; Saade, H.; Medina-Morales, M.A.; Ramos-González, R.; Aguilar, C.N.; Ilyina, A. Cellulases Immobilization on Chitosan-Coated Magnetic Nanoparticles: Application for Agave Atrovirens Lignocellulosic Biomass Hydrolysis. Bioprocess Biosyst. Eng. 2017, 40, 9–22. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, N.; Singh, R.; Srivastava, M.; Mohammad, A.; Harakeh, S.; Pratap Singh, R.; Pal, D.B.; Haque, S.; Tayeb, H.H.; Moulay, M.; et al. Impact of Nanomaterials on Sustainable Pretreatment of Lignocellulosic Biomass for Biofuels Production: An Advanced Approach. Bioresour. Technol. 2023, 369, 128471. [Google Scholar] [CrossRef] [PubMed]
- Khoo, K.S.; Chia, W.Y.; Tang, D.Y.Y.; Show, P.L.; Chew, K.W.; Chen, W.H. Nanomaterials Utilization in Biomass for Biofuel and Bioenergy Production. Energies 2020, 13, 892. [Google Scholar] [CrossRef]
- Tan, W.Y.; Gopinath, S.C.B.; Anbu, P.; Yaakub, A.R.W.; Subramaniam, S.; Chen, Y.; Sasidharan, S. Bio-Enzyme Hybrid with Nanomaterials: A Potential Cargo as Sustainable Biocatalyst. Sustainability 2023, 15, 7511. [Google Scholar] [CrossRef]
- Xiros, C.; Topakas, E.; Christakopoulos, P. Hydrolysis and Fermentation for Cellulosic Ethanol Production. Wiley Interdiscip. Rev. Energy Environ. 2013, 2, 633–654. [Google Scholar] [CrossRef]
- Stickel, J.J.; Elander, R.T.; Mcmillan, J.D.; Brunecky, R. Enzymatic Hydrolysis of Lignocellulosic Biomass. In Bioprocessing of Renewable Resources to Commodity Bioproducts; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2014; pp. 77–103. [Google Scholar]
- Sherrard, E.C.; Blanco, G.W. Some of the Products Obtained in the Hydrolysis of White Spruce Wood with Dilute Sulfuric Acid under Steam Pressure. Ind. Eng. Chem. 1923, 15, 611–616. [Google Scholar] [CrossRef]
- Lin, Q.; Li, H.; Ren, J.; Deng, A.; Li, W.; Liu, C.; Sun, R. Production of Xylooligosaccharides by Microwave-Induced, Organic Acid-Catalyzed Hydrolysis of Different Xylan-Type Hemicelluloses: Optimization by Response Surface Methodology. Carbohydr. Polym. 2017, 157, 214–225. [Google Scholar] [CrossRef]
- Erickel, R.; Franz, R.; Woernle, R.; Riehm, T. Process for Hydrolyzing Cellulose-Material with Gaseous Hydrogen Fluoride. 1985. Available online: https://patentimages.storage.googleapis.com/7c/c3/7c/06812146dfef03/US4556431.pdf (accessed on 19 July 2023).
- Bergius, F. Conversion of Wood to Carbohydrates and Problems in the Industrial Use of Concentrated Hydrochloric Acid. Ind. Eng. Chem. 1937, 29, 247–253. [Google Scholar] [CrossRef]
- Ragg, P.L.; Fields, P.R. The Development of a Process for the Hydrolysis of Lignocellulosic Waste. Math. Phys. Sci. 1987, 321, 537–547. [Google Scholar]
- Bon, E.P.S.; Ferrara, M.A. Bioethanol Production via Enzymatic Hydrolysis of Cellulosic Biomass. In The Role of Agricultural Biotechnologies for Production of Bioenergy in Developing Countries; FAO: Rome, Italy, 2007. [Google Scholar]
- Aymé, L.; Hébert, A.; Henrissat, B.; Lombard, V.; Franche, N.; Perret, S.; Jourdier, E.; Heiss-Blanquet, S. Characterization of Three Bacterial Glycoside Hydrolase Family 9 Endoglucanases with Different Modular Architectures Isolated from a Compost Metagenome. Biochim. Biophys. Acta Gen. Subj. 2021, 1865, 129848. [Google Scholar] [CrossRef]
- Laca, A.; Laca, A.; Díaz, M. Hydrolysis: From Cellulose and Hemicellulose to Simple Sugars. In Second and Third Generation of Feedstocks: The Evolution of Biofuels; Elsevier: Amsterdam, The Netherlands, 2019; pp. 213–240. [Google Scholar] [CrossRef]
- Van Den Brink, J.; De Vries, R.P. Fungal Enzyme Sets for Plant Polysaccharide Degradation. Appl. Microbiol. Biotechnol. 2011, 91, 1477–1492. [Google Scholar] [CrossRef]
- Gavande, P.V.; Goyal, A. Endo-β-1,4-Glucanase. In Foundations and Frontiers in Enzymology, Glycoside Hydrolases: Biochemistry, Biophysics, and Biotechnology; Elsevier: Amsterdam, The Netherlands, 2023; pp. 55–76. [Google Scholar] [CrossRef]
- Weignerová, L.; Simerská, P.; Křen, V. α-Galactosidases and Their Applications in Biotransformations. Biocatal. Biotransform. 2009, 27, 79–89. [Google Scholar] [CrossRef]
- Wang, J.; Cao, X.; Chen, W.; Xu, J.; Wu, B. Identification and Characterization of a Thermostable Gh36 α-Galactosidase from Anoxybacillus Vitaminiphilus Wmf1 and Its Application in Synthesizing Isofloridoside by Reverse Hydrolysis. Int. J. Mol. Sci. 2021, 22, 10778. [Google Scholar] [CrossRef] [PubMed]
- Komiya, D.; Hori, A.; Ishida, T.; Igarashi, K.; Samejima, M.; Koseki, T.; Fushinobu, S. Crystal Structure and Substrate Specificity Modification of Acetyl Xylan Esterase from Aspergillus Luchuensis. Appl. Environ. Microbiol. 2017, 83, e01251. [Google Scholar] [CrossRef] [PubMed]
- Taveira, I.C.; Nogueira, K.M.V.; De Oliveira, D.L.G.; Silva, R.D.N. Preservation and Fermentation: Past, Present and Future. Front. Young Minds 2021, 79, 3–16. [Google Scholar] [CrossRef]
- Dai, Z.; Guo, F.; Zhang, S.; Zhang, W.; Yang, Q.; Dong, W.; Jiang, M.; Ma, J.; Xin, F. Bio-Based Succinic Acid: An Overview of Strain Development, Substrate Utilization, and Downstream Purification. Biofuels Bioprod. Biorefining 2019, 14, 965–985. [Google Scholar] [CrossRef]
- Cheng, K.K.; Wang, G.Y.; Zeng, J.; Zhang, J.A. Improved Succinate Production by Metabolic Engineering. Biomed Res. Int. 2013, 2013, 538790. [Google Scholar] [CrossRef] [PubMed]
- Wee, Y.J.; Yun, J.S.; Kim, D.; Ryu, H.W. Batch and Repeated Batch Production of L(+)-Lactic Acid by Enterococcus Faecalis RKY1 Using Wood Hydrolyzate and Corn Steep Liquor. J. Ind. Microbiol. Biotechnol. 2006, 33, 431–435. [Google Scholar] [CrossRef] [PubMed]
- Takano, M.; Hoshino, K. Lactic Acid Production from Paper Sludge by SSF with Thermotolerant Rhizopus Sp. Bioresour. Bioprocess. 2016, 3, 29. [Google Scholar] [CrossRef]
- Li, Z.; Lu, J.K.; Yang, Z.X.; Han, L.; Tan, T. Utilization of White Rice Bran for Production of L-Lactic Acid. Biomass Bioenergy 2012, 39, 53–58. [Google Scholar] [CrossRef]
- Kim, H.M.; Choi, I.S.; Lee, S.; Yang, J.E.; Jeong, S.G.; Park, J.H.; Ko, S.H.; Hwang, I.M.; Chun, H.H.; Wi, S.G.; et al. Biorefining Process of Carbohydrate Feedstock (Agricultural Onion Waste) to Acetic Acid. ACS Omega 2019, 4, 22438–22444. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Rahman, M.A.; Tashiro, Y.; Sonomoto, K. Lactic Acid Production from Lignocellulose-Derived Sugars Using Lactic Acid Bacteria: Overview and Limits. J. Biotechnol. 2011, 156, 286–301. [Google Scholar] [CrossRef]
- Paulova, L.; Chmelik, J.; Branska, B.; Patakova, P.; Drahokoupil, M.; Melzoch, K. Comparison of Lactic Acid Production by L. Casei in Batch, Fed-Batch and Continuous Cultivation, Testing the Use of Feather Hydrolysate as a Complex Nitrogen Source. Braz. Arch. Biol. Technol. 2020, 63, 1–12. [Google Scholar] [CrossRef]
- Zhao, B.; Wang, L.; Ma, C.; Yang, C.; Xu, P.; Ma, Y. Repeated Open Fermentative Production of Optically Pure L-Lactic Acid Using a Thermophilic Bacillus Sp. Strain. Bioresour. Technol. 2010, 101, 6494–6498. [Google Scholar] [CrossRef] [PubMed]
- Kongjan, P.; Usmanbaha, N.; Khaonuan, S.; Jariyaboon, R.; O-Thong, S.; Reungsang, A. Butanol Production from Algal Biomass by Acetone-Butanol-Ethanol Fermentation Process. In Clean Energy and Resources Recovery: Biomass Waste Based Biorefineries; Elsevier: Amsterdam, The Netherlands, 2021; Volume 1, pp. 421–446. [Google Scholar] [CrossRef]
- Rawoof, S.A.A.; Kumar, P.S.; Vo, D.-V.N.; Devaraj, K.; Mani, Y.; Devaraj, T.; Subramanian, S. Production of Optically Pure Lactic Acid by Microbial Fermentation: A Review. Environ. Chem. Lett. 2020, 19, 539–556. [Google Scholar] [CrossRef]
- Raina, N.; Slathia, P.S.; Sharma, P. Experimental Optimization of Thermochemical Pretreatment of Sal (Shorea Robusta) Sawdust by Central Composite Design Study for Bioethanol Production by Co-Fermentation Using Saccharomyces Cerevisiae (MTCC-36) and Pichia Stipitis (NCIM-3498). Biomass Bioenergy 2020, 143, 105819. [Google Scholar] [CrossRef]
- Qin, L.; Zhao, X.; Li, W.C.; Zhu, J.Q.; Liu, L.; Li, B.Z.; Yuan, Y.J. Process Analysis and Optimization of Simultaneous Saccharification and Co-Fermentation of Ethylenediamine-Pretreated Corn Stover for Ethanol Production. Biotechnol. Biofuels 2018, 11, 118. [Google Scholar] [CrossRef] [PubMed]
- Minty, J.J.; Lin, X.N. Engineering Synthetic Microbial Consortia for Consolidated Bioprocessing of Lignocellulosic Biomass into Valuable Fuels and Chemicals. In Direct Microbial Conversion of Biomass to Advanced Biofuels; Elsevier: Amsterdam, The Netherlands, 2015; pp. 365–381. [Google Scholar] [CrossRef]
- Zhou, S.; Zhang, M.; Zhu, L.; Zhao, X.; Chen, J.; Chen, W.; Chang, C. Hydrolysis of Lignocellulose to Succinic Acid: A Review of Treatment Methods and Succinic Acid Applications. Biotechnol. Biofuels Bioprod. 2023, 16, 1. [Google Scholar] [CrossRef]
- Dien, B.S.; Cotta, M.A.; Jeffries, T.W. Bacteria Engineered for Fuel Ethanol Production: Current Status. Appl. Microbiol. Biotechnol. 2003, 63, 258–266. [Google Scholar] [CrossRef]
- Joshi, A.; Verma, K.K.; D Rajput, V.; Minkina, T.; Arora, J. Recent Advances in Metabolic Engineering of Microorganisms for Advancing Lignocellulose-Derived Biofuels. Bioengineered 2022, 13, 8135–8163. [Google Scholar] [CrossRef]
- Bardhan, S.K.; Gupta, S.; Gorman, M.E.; Haider, M.A. Biorenewable Chemicals: Feedstocks, Technologies and the Conflict with Food Production. Renew. Sustain. Energy Rev. 2015, 51, 506–520. [Google Scholar] [CrossRef]
- Mores, S.; Vandenberghe, L.P.d.S.; Magalhães Júnior, A.I.; de Carvalho, J.C.; de Mello, A.F.M.; Pandey, A.; Soccol, C.R. Citric Acid Bioproduction and Downstream Processing: Status, Opportunities, and Challenges. Bioresour. Technol. 2021, 320, 124426. [Google Scholar] [CrossRef] [PubMed]
- Alexandri, M.; Schneider, R.; Mehlmann, K.; Venus, J. Recent Advances in D-Lactic Acid Production from Renewable Resources: Case Studies on Agro-Industrial Waste Streams. Food Technol. Biotechnol. 2019, 57, 293–304. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Thakur, A.; Panesar, P.S. Lactic Acid and Its Separation and Purification Techniques: A Review. Rev. Environ. Sci. Biotechnol. 2019, 18, 823–853. [Google Scholar] [CrossRef]
- Pleissner, D.; Neu, A.K.; Mehlmann, K.; Schneider, R.; Puerta-Quintero, G.I.; Venus, J. Fermentative Lactic Acid Production from Coffee Pulp Hydrolysate Using Bacillus Coagulans at Laboratory and Pilot Scales. Bioresour. Technol. 2016, 218, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Glassner, D.A.; Elankovan, P.; Beacom, D.R.; Berglund, K.A. Purification Process for Succinic Acid Produced by Fermentation. Appl. Biochem. Biotechnol. 1995, 51–52, 73–82. [Google Scholar] [CrossRef]
- Saini, S.; Chandel, A.K.; Sharma, K.K. Past Practices and Current Trends in the Recovery and Purification of First Generation Ethanol: A Learning Curve for Lignocellulosic Ethanol. J. Clean. Prod. 2020, 268, 122357. [Google Scholar] [CrossRef]
- Bateni, H.; Saraeian, A.; Able, C. A Comprehensive Review on Biodiesel Purification and Upgrading. Biofuel Res. J. 2017, 15, 668–690. [Google Scholar] [CrossRef]
- Mma, S.; Jaber, R.; Shirazi, M.; Toufaily, J.; Hamieh, A.; Noureddin, A.; Ghanavati, H.; Ghaffari, A.; Zenouzi, A.; Karout, A.; et al. Biodiesel Wash-Water Reuse Using Microfiltration: Toward Zero-Discharge Strategy for Cleaner and Economized Biodiesel Production. Biofuel Res. J. 2015, 5, 148–151. [Google Scholar]
- Adhikari, S.; Fernando, S. Hydrogen Membrane Separation Techniques. Ind. Eng. Chem. Res. 2006, 45, 875–881. [Google Scholar] [CrossRef]
- Zăbavă, B.-Ș; Voicu, G.; Ungureanu, N.; Dincă, M.; Paraschin, G.; Munteanu, M.; Ferdes, M. Methods of Biogas Purification—A Review. Acta Tech. Corviniensis Bull. Eng. 2019, XII, 65–68. [Google Scholar]
- Poot, A.A.H. Chemical Bleaching of Ancient Textiles. Stud. Conserv. 1964, 9, 53–64. [Google Scholar] [CrossRef]
- Bajpai, P. Introduction and the Literature. In Biermann’s Handbook of Pulp and Paper; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1–18. [Google Scholar] [CrossRef]
- Eugenia Eugenio, M.; Ibarra, D.; Martín-Sampedro, R.; Espinosa, E.; Bascón, I.; Rodríguez, A. Alternative Raw Materials for Pulp and Paper Production in the Concept of a Lignocellulosic Biorefinery. In Cellulose; IntechOpen: Rijeka, Croatia, 2019; pp. 1–34. [Google Scholar] [CrossRef]
- Yankov, D. Fermentative Lactic Acid Production from Lignocellulosic Feedstocks: From Source to Purified Product. Front. Chem. 2022, 10, 823005. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Li, J.; Gao, H.; Zhou, D.; Xu, H.; Cong, Y.; Zhang, W.; Xin, F.; Jiang, M. Recent Progress on Bio-Succinic Acid Production from Lignocellulosic Biomass. World J. Microbiol. Biotechnol. 2021, 37, 16. [Google Scholar] [CrossRef]
- Lee, J.S.; Lin, C.J.; Lee, W.C.; Teng, H.Y.; Chuang, M.H. Production of Succinic Acid through the Fermentation of Actinobacillus Succinogenes on the Hydrolysate of Napier Grass. Biotechnol. Biofuels Bioprod. 2022, 15, 9. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.P.; Meng, J.; Bao, J. Fermentative Production of High Titer Citric Acid from Corn Stover Feedstock after Dry Dilute Acid Pretreatment and Biodetoxification. Bioresour. Technol. 2017, 224, 563–572. [Google Scholar] [CrossRef] [PubMed]
- BYJU’S. Types of Fermentation: Definition, Process, Advantages. 2023. Available online: https://byjus.com/biology/biofuel (accessed on 5 July 2023).
- U.S. Energy Information Administration. Biofuel Explained. 2021. Available online: https://www.eia.gov/energyexplained/biofuel/biodiesel-rd-other-use-supply.php (accessed on 15 September 2023).
- Aizarani, J. Fuel Ethanol Production Worldwide in 2022, by Country. 2023. Available online: https://www.statista.com/statistics/281606/ethanol-production-in-selected-countries/Source:https://www.statista.com/statistics/281606/ethanol-production-in-selected-countries/ (accessed on 25 August 2023).
- Gitnux. Biofuel Production: Statistics and Trends. 2023. Available online: https://blog.gitnux.com/biofuel-production-statistics/ (accessed on 28 August 2023).
- Suhud Shote, A. Biofuel: An Environmental Friendly Fuel. In Anaerobic Digestion; IntechOpen: Rijeka, Croatia, 2019; pp. 1–13. [Google Scholar] [CrossRef]
- Ghosh, B.B.; Ahindra, N. Biofuels Refining and Performance. In Biofuels Refining and Performance, 1st ed.; McGraw-Hill: New York, NY, USA, 2008. [Google Scholar]
- Park, J.M.; Oh, B.R.; Seo, J.W.; Hong, W.K.; Yu, A.; Sohn, J.H.; Kim, C.H. Efficient Production of Ethanol from Empty Palm Fruit Bunch Fibers by Fed-Batch Simultaneous Saccharification and Fermentation Using Saccharomyces Cerevisiae. Appl. Biochem. Biotechnol. 2013, 170, 1807–1814. [Google Scholar] [CrossRef]
- Braga, A.; Gomes, D.; Rainha, J.; Amorim, C.; Cardoso, B.B.; Gudiña, E.J.; Silvério, S.C.; Rodrigues, J.L.; Rodrigues, L.R. Zymomonas Mobilis as an Emerging Biotechnological Chassis for the Production of Industrially Relevant Compounds. Bioresour. Bioprocess. 2021, 8, 128. [Google Scholar] [CrossRef]
- Piriya, P.S.; Vasan, P.T.; Padma, V.S.; Vidhyadevi, U.; Archana, K.; Vennison, S.J. Cellulosic Ethanol Production by Recombinant Cellulolytic Bacteria Harbouring Pdc and Adh II Genes of Zymomonas Mobilis. Biotechnol. Res. Int. 2012, 2012, 817549. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Sandoval, M.T.; Galíndez-Mayer, J.; Bolívar, F.; Gosset, G.; Ramírez, O.T.; Martinez, A. Xylose-Glucose Co-Fermentation to Ethanol by Escherichia coli Strain MS04 Using Single- and Two-Stage Continuous Cultures under Micro-Aerated Conditions. Microb. Cell Factories 2019, 18, 145. [Google Scholar] [CrossRef]
- Saha, B.C.; Cotta, M.A. Ethanol Production from Lignocellulosic Biomass by Recombinant Escherichia coli Strain FBR5. Bioengineered 2012, 3, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Sierra-Ibarra, E.; Alcaraz-Cienfuegos, J.; Vargas-Tah, A.; Rosas-Aburto, A.; Valdivia-López, Á.; Hernández-Luna, M.G.; Vivaldo-Lima, E.; Martinez, A. Ethanol Production by Escherichia coli from Detoxified Lignocellulosic Teak Wood Hydrolysates with High Concentration of Phenolic Compounds. J. Ind. Microbiol. Biotechnol. 2022, 49, 77. [Google Scholar] [CrossRef]
- Ningthoujam, R.; Jangid, P.; Yadav, V.K.; Sahoo, D.K.; Patel, A.; Dhingra, H.K. Bioethanol Production from Alkali-Pretreated Rice Straw: Effects on Fermentation Yield, Structural Characterization, and Ethanol Analysis. Front. Bioeng. Biotechnol. 2023, 11, 1–9. [Google Scholar] [CrossRef]
- Prasad, S.; Kumar, S.; Yadav, K.K.; Choudhry, J.; Kamyab, H.; Bach, Q.V.; Sheetal, K.R.; Kannojiya, S.; Gupta, N. Screening and Evaluation of Cellulytic Fungal Strains for Saccharification and Bioethanol Production from Rice Residue. Energy 2020, 190, 116422. [Google Scholar] [CrossRef]
- Hernawan, H.; Maryana, R.; Pratiwi, D.; Wahono, S.K.; Darsih, C.; Hayati, S.N.; Poeloengasih, C.D.; Nisa, K.; Indrianingsih, A.W.; Prasetyo, D.J.; et al. Bioethanol Production from Sugarcane Bagasse by Simultaneous Sacarification and Fermentation Using Saccharomyces Cerevisiae. Am. Inst. Phys. Conf. Proc. 2017, 1823, 1–5. [Google Scholar] [CrossRef]
- Neupane, D. Biofuels from Renewable Sources, a Potential Option for Biodiesel Production. Bioengineering 2023, 10, 29. [Google Scholar] [CrossRef] [PubMed]
- Alternative Fuels Data Centre (AFDC). Biodiesel Benefits and Considerations. 2020. Available online: https://afdc.energy.gov/fuels/biodiesel_benefits.html (accessed on 29 September 2023).
- Smoot, G. What Is the Carbon Footprint of Biofuel? A Life-Cycle Assessment. 2020. Available online: https://impactful.ninja/the-carbon-footprint-of-biofuel/ (accessed on 13 August 2023).
- Integrated Flow Solutions (IFS). Biodiesel Guide-Sources, Production, Uses, and Regulations. 2020. Available online: https://ifsolutions.com/category/power-generation/ (accessed on 29 September 2023).
- Climate Technology Centre and Network. Second and Third Generation of Biofuels. 2011. Available online: https://www.ctc-n.org/files/UNFCCC_docs/ref17x03_3.pdf (accessed on 18 September 2023).
- Chintagunta, A.D.; Zuccaro, G.; Kumar, M.; Kumar, S.P.J.; Garlapati, V.K.; Postemsky, P.D.; Kumar, N.S.S.; Chandel, A.K.; Simal-Gandara, J. Biodiesel Production From Lignocellulosic Biomass Using Oleaginous Microbes: Prospects for Integrated Biofuel Production. Front. Microbiol. 2021, 12, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Khot, M.; Raut, G.; Ghosh, D.; Alarcón-Vivero, M.; Contreras, D.; Ravikumar, A. Lipid Recovery from Oleaginous Yeasts: Perspectives and Challenges for Industrial Applications. Fuel 2020, 259, 116292. [Google Scholar] [CrossRef]
- Pasha, M.K.; Dai, L.; Liu, D.; Guo, M.; Du, W. An Overview to Process Design, Simulation and Sustainability Evaluation of Biodiesel Production. Biotechnol. Biofuels 2021, 14, 192. [Google Scholar] [CrossRef] [PubMed]
- Vasaki, M.; Sithan, M.; Ravindran, G.; Paramasivan, B.; Ekambaram, G.; Karri, R.R. Biodiesel Production from Lignocellulosic Biomass Using Yarrowia Lipolytica. Energy Convers. Manag. X 2022, 13, 100167. [Google Scholar] [CrossRef]
- Sayeda, A.A.; Mohsen, S.A.; Osama, H.E.S.; Azhar, A.H.; Saher, S.M. Biodiesel Production from Egyptian Isolate Fusarium Oxysporum NRC2017. Bull. Natl. Res. Cent. 2019, 43, 210. [Google Scholar] [CrossRef]
- Bhatia, S.K.; Jagtap, S.S.; Bedekar, A.A.; Bhatia, R.K.; Rajendran, K.; Pugazhendhi, A.; Rao, C.V.; Atabani, A.E.; Kumar, G.; Yang, Y.H. Renewable Biohydrogen Production from Lignocellulosic Biomass Using Fermentation and Integration of Systems with Other Energy Generation Technologies. Sci. Total Environ. 2021, 765, 144429. [Google Scholar] [CrossRef]
- Lopez-Hidalgo, A.M.; Sánchez, A.; De León-Rodríguez, A. Simultaneous Production of Bioethanol and Biohydrogen by Escherichia coli WDHL Using Wheat Straw Hydrolysate as Substrate. Fuel 2017, 188, 19–27. [Google Scholar] [CrossRef]
- Yin, Y.; Wang, J. Isolation and Characterization of a Novel Strain Clostridium Butyricum INET1 for Fermentative Hydrogen Production. Int. J. Hydrogen Energy 2017, 42, 12173–12180. [Google Scholar] [CrossRef]
- Jiang, L.; Long, C.; Wu, X.; Xu, H.; Shao, Z.; Long, M. Optimization of Thermophilic Fermentative Hydrogen Production by the Newly Isolated Caloranaerobacter Azorensis H53214 from Deep-Sea Hydrothermal Vent Environment. Int. J. Hydrogen Energy 2014, 39, 14154–14160. [Google Scholar] [CrossRef]
- Hu, C.C.; Giannis, A.; Chen, C.L.; Qi, W.; Wang, J.Y. Comparative Study of Biohydrogen Production by Four Dark Fermentative Bacteria. Int. J. Hydrogen Energy 2013, 38, 15686–15692. [Google Scholar] [CrossRef]
- Reyes, L.H.; Xiong, W.; Michener, W.; Maness, P.C.; Chou, K. Engineering Cellulolytic Bacterium Clostridium Thermocellum to Co-Ferment Cellulose- and Hemicellulose-Derived Sugars Simultaneously. In Proceedings of the 2018 AIChE Annual Meeting, Pittsburgh, PA, USA, 27–30 October 2018. [Google Scholar]
- Luthfi, A.A.I.; Abdul, P.M.; Jahim, J.M.; Engliman, N.S.; Jamali, N.S.; Tan, J.P.; Manaf, S.F.A.; Sajab, M.S.; Bukhari, N.A. Isolation and Characterization of Biohydrogen-Producing Bacteria for Biohydrogen Fermentation Using Oil Palm Biomass-Based Carbon Source. Appl. Sci. 2023, 13, 656. [Google Scholar] [CrossRef]
- Environmental and Energy Study Institute (EESI). Biogas: Converting Waste to Energy. 2017. Available online: www.eesi.org (accessed on 23 August 2023).
- Xu, N.; Liu, S.; Xin, F.; Zhou, J.; Jia, H.; Xu, J.; Jiang, M.; Dong, W. Biomethane Production from Lignocellulose: Biomass Recalcitrance and Its Impacts on Anaerobic Digestion. Front. Bioeng. Biotechnol. 2019, 7, 191. [Google Scholar] [CrossRef] [PubMed]
- Siciliano, A.; Limonti, C.; Curcio, G.M. Improvement of Biomethane Production from Organic Fraction of Municipal Solid Waste (Ofmsw) through Alkaline Hydrogen Peroxide (Ahp) Pretreatment. Fermentation 2021, 7, 197. [Google Scholar] [CrossRef]
- Mora-Cortés, D.; Garcés-Gómez, Y.A.; Pacheco, S.I. Improvement of Biomethane Potential by Anaerobic Co-Digestion of Sewage Sludge and Cocoa Pod Husks. Int. J. Technol. 2020, 11, 482–491. [Google Scholar] [CrossRef]
- Sukhang, S.; Choojit, S.; Reungpeerakul, T.; Sangwichien, C. Bioethanol Production from Oil Palm Empty Fruit Bunch with SSF and SHF Processes Using Kluyveromyces Marxianus Yeast. Cellulose 2020, 27, 301–314. [Google Scholar] [CrossRef]
- Boonchuay, P.; Techapun, C.; Leksawasdi, N.; Seesuriyachan, P.; Hanmoungjai, P.; Watanabe, M.; Srisupa, S.; Chaiyaso, T. Bioethanol Production from Cellulose-Rich Corncob Residue by the Thermotolerant Saccharomyces Cerevisiae TC-5. J. Fungi 2021, 7, 547. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, E.; Del Río, P.G.; Romaní, A.; Garrote, G.; Domingues, L. Hemicellulosic Bioethanol Production from Fast-Growing Paulownia Biomass. Processes 2021, 9, 173. [Google Scholar] [CrossRef]
- Feng, J.; Li, Q.; Zhang, Y.; Yang, H.; Guo, L. High NH3-N Tolerance of a CheR2-Deletion Rhodobacter Capsulatus Mutant for Photo-Fermentative Hydrogen Production Using Cornstalk. Int. J. Hydrogen Energy 2019, 44, 15833–15841. [Google Scholar] [CrossRef]
- Morales-Martínez, T.K.; Medina-Morales, M.A.; Ortíz-Cruz, A.L.; Rodríguez-De la Garza, J.A.; Moreno-Dávila, M.; López-Badillo, C.M.; Ríos-González, L. Consolidated Bioprocessing of Hydrogen Production from Agave Biomass by Clostridium Acetobutylicum and Bovine Ruminal Fluid. Int. J. Hydrogen Energy 2020, 45, 13707–13716. [Google Scholar] [CrossRef]
- Medina-Morales, M.A.; De la Cruz-Andrade, L.E.; Paredes-Peña, L.A.; Morales-Martínez, T.K.; Rodríguez-De la Garza, J.A.; Moreno-Dávila, I.M.; Tamayo-Ordóñez, M.C.; Rios-González, L.J. Biohydrogen Production from Thermochemically Pretreated Corncob Using a Mixed Culture Bioaugmented with Clostridium Acetobutylicum. Int. J. Hydrogen Energy 2021, 46, 25974–25984. [Google Scholar] [CrossRef]
- Schroyen, M.; Vervaeren, H.; Vandepitte, H.; Van Hulle, S.W.H.; Raes, K. Effect of Enzymatic Pretreatment of Various Lignocellulosic Substrates on Production of Phenolic Compounds and Biomethane Potential. Bioresour. Technol. 2015, 192, 696–702. [Google Scholar] [CrossRef] [PubMed]
- Kavitha, S.; Yukesh Kannah, R.; Kasthuri, S.; Gunasekaran, M.; Pugazhendi, A.; Rene, E.R.; Pant, D.; Kumar, G.; Rajesh Banu, J. Profitable Biomethane Production from Delignified Rice Straw Biomass: The Effect of Lignin, Energy and Economic Analysis. Green Chem. 2020, 22, 8024–8035. [Google Scholar] [CrossRef]
- Li, Y.; Hou, Z.; Shi, Q.; Cheng, Y.; Zhu, W. Methane Production From Different Parts of Corn Stover via a Simple Co-Culture of an Anaerobic Fungus and Methanogen. Front. Bioeng. Biotechnol. 2020, 8, 314. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Tan, W.; Zhao, X.; Dang, Q.; Song, Q.; Xi, B.; Zhang, X. Evaluation on the Methane Production Potential of Wood Waste Pretreated with NaOH and Co-Digested with Pig Manure. Catalysts 2019, 9, 539. [Google Scholar] [CrossRef]
- Anyasi, T.A.; Jideani, A.I.O.; Edokpayi, J.N.; Anokwuru, C.P. Application of Organic Acids in Food Preservation. In Biochemistry Research Trends: Organic Acids Characteristics, Properties and Synthesis; Springer: Berlin, Germany, 2017; pp. 1–45. [Google Scholar]
- Chheda, J.N.; Román-Leshkov, Y.; Dumesic, J.A. Production of 5-Hydroxymethylfurfural and Furfural by Dehydration of Biomass-Derived Mono- and Poly-Saccharides. Green Chem. 2007, 9, 342–350. [Google Scholar] [CrossRef]
- Liu, W.; Bao, Q.; Jirimutu; Qing, M.; Siriguleng; Chen, X.; Sun, T.; Li, M.; Zhang, J.; Yu, J.; et al. Isolation and Identification of Lactic Acid Bacteria from Tarag in Eastern Inner Mongolia of China by 16S RRNA Sequences and DGGE Analysis. Microbiol. Res. 2012, 167, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, J.; Hassan, N.; Idris, A.; Ngadiman, N.H.A. Optimization of Simultaneous Saccharification and Fermentation Process Conditions for the Production of Succinic Acid from Oil Palm Empty Fruit Bunches. J. Wood Chem. Technol. 2020, 40, 136–145. [Google Scholar] [CrossRef]
- Tong, Z.; Zheng, X.; Tong, Y.; Shi, Y.C.; Sun, J. Systems Metabolic Engineering for Citric Acid Production by Aspergillus Niger in the Post-Genomic Era. Microb. Cell Factories 2019, 18, 28. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, J.; Lv, M.; Shao, Z.; Hungwe, M.; Wang, J.; Bai, X.; Xie, J.; Wang, Y.; Geng, W. Metabolism Characteristics of Lactic Acid Bacteria and the Expanding Applications in Food Industry. Front. Bioeng. Biotechnol. 2021, 9, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.-Q.; Holland, R. LEUCONOSTOC spp. In Encyclopedia of Dairy Sciences; Elsevier: Amsterdam, The Netherlands, 2002; pp. 1539–1543. [Google Scholar] [CrossRef]
- Williams, N.C.; O’Neill, L.A.J. A Role for the Krebs Cycle Intermediate Citrate in Metabolic Reprogramming in Innate Immunity and Inflammation. Front. Immunol. 2018, 9, 141. [Google Scholar] [CrossRef]
- Pinhal, S.; Ropers, D.; Geiselmann, J.; De Jong, H. Acetate Metabolism and the Inhibition of Bacterial Growth by Acetate. J. Bacteriol. 2019, 201, e00147-19. [Google Scholar] [CrossRef]
- Cubas-Cano, E.; González-Fernández, C.; Ballesteros, M.; Tomás-Pejó, E. Biotechnological Advances in Lactic Acid Production by Lactic Acid Bacteria: Lignocellulose as Novel Substrate. Biofuels Bioprod. Biorefining 2018, 12, 290–303. [Google Scholar] [CrossRef]
- Statista Research Department. Lactic Acid Global Market Volume. 2023. Available online: https://www.statista.com/statistics/1310495/lactic-acid-market-volume-worldwide/Source:https://www.statista.com/statistics/1310495/lactic-acid-market-volume-worldwide/ (accessed on 30 July 2023).
- MARKET AND MARKET. Lactic Acid Market and Industry Analysis. 2023. Available online: https://www.marketsandmarkets.com/Market-Reports/polylacticacid-387.html (accessed on 18 September 2023).
- Hancock, A. Renewable Chemicals Market Size, Share & Trends Analysis Report by 2030. 2023. Available online: https://www.linkedin.com/pulse/renewable-chemicals-market-size-share-trends-analysis-ashley-hancock/ (accessed on 28 September 2023).
- Market.us Study. Succinic Acid Market Size and Value to Reach USD 359.8 Million in 2032. 2023. Available online: https://www.globenewswire.com/en/news-release/2023/05/09/2664413/0/en/Succinic-Acid-Market-Size-and-Value-to-Reach-USD-359-8-Million-in-2032-Growing-at-CAGR-of-7-3-Market-us-Study.html (accessed on 10 September 2023).
- Maleki, H.; Azimi, B.; Ismaeilimoghadam, S.; Danti, S. Poly(Lactic Acid)-Based Electrospun Fibrous Structures for Biomedical Applications. Appl. Sci. 2022, 12, 3192. [Google Scholar] [CrossRef]
- Grand View Research. Succinic Acid Market Size, Share & Trends Analysis Report. 2021. Available online: https://www.grandviewresearch.com/industry-analysis/succinic-acid-market (accessed on 30 September 2023).
- Jaiswal, C. Global Succinic Acid Market Overview. 2023. Available online: https://www.marketresearchfuture.com/reports/succinic-acid-market-1914 (accessed on 26 September 2023).
- Research and Markets. Citric Acid Market. 2023. Available online: https://www.researchandmarkets.com/reports/5732513/citric-acid-market-global-industry-trends (accessed on 1 September 2023).
- Expert Market Research. Global Citric Acid Market Size, Share, Analysis Report 2023–2028. 2023. Available online: https://www.expertmarketresearch.com/reports/citric-acid-market (accessed on 15 September 2023).
- Precedence Research. Citric Acid Market Size 2023–2032. 2023. Available online: https://www.precedenceresearch.com/citric-acid-market (accessed on 4 September 2023).
- Market Insider. Global Citric Acid Market 2018–2023. 2018. Available online: https://markets.businessinsider.com/news/stocks/global-citric-acid-market-2018-2023-1002001216 (accessed on 30 July 2023).
- Harahap, B.M.; Ahring, B.K. Acetate Production from Syngas Produced from Lignocellulosic Biomass Materials along with Gaseous Fermentation of the Syngas: A Review. Microorganisms 2023, 11, 995. [Google Scholar] [CrossRef]
- Marino, D.J. Ethyl Acetate. 2005. Available online: https://www.sciencedirect.com/science/article/pii/B0123694000003902 (accessed on 14 September 2023).
- MC GROUP. Ethyl Acetate (ETAC): 2023 World Market Outlook and Forecast up to 2032. 2023. Available online: https://mcgroup.co.uk/researches/acetic-acid (accessed on 25 September 2023).
- McKeen, L.W. Polyolefins, Polyvinyls, and Acrylics. In Permeability Properties of Plastics and Elastomers; Elsevier: Amsterdam, The Netherlands, 2012; pp. 145–193. [Google Scholar] [CrossRef]
- Zaldivar, J.; Martinez, A.; Ingram, L.O. Effect of Selected Aldehydes on the Growth and Fermentation of Ethanologenic Escherichia coli. Biotechnol. Bioeng. 1999, 65, 24–33. [Google Scholar] [CrossRef]
- Van Der Pol, E.C.; Eggink, G.; Weusthuis, R.A. Production of L(+)-Lactic Acid from Acid Pretreated Sugarcane Bagasse Using Bacillus Coagulans DSM2314 in a Simultaneous Saccharification and Fermentation Strategy. Biotechnol. Biofuels 2016, 9, 248. [Google Scholar] [CrossRef]
- Jönsson, L.J.; Martín, C. Pretreatment of Lignocellulose: Formation of Inhibitory by-Products and Strategies for Minimizing Their Effects. Bioresour. Technol. 2016, 199, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Xia, L. Production and Immobilization of Cellobiase from Aspergillus Niger ZU-07. Process Biochem. 2004, 39, 1363–1367. [Google Scholar] [CrossRef]
- Ou, M.S.; Mohammed, N.; Ingram, L.O.; Shanmugam, K.T. Thermophilic Bacillus Coagulans Requires Less Cellulases for Simultaneous Saccharification and Fermentation of Cellulose to Products than Mesophilic Microbial Biocatalysts. Appl. Biochem. Biotechnol. 2009, 155, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Amrane, A.; Prigent, Y. A Novel Concept of Bioreactor: Specialized Function Two-Stage Continuous Reactor, and Its Application to Lactose Conversion into Lactic Acid. J. Biotechnol. 1996, 45, 195–203. [Google Scholar] [CrossRef]
- Bouchoux, A.; Roux-De Balmann, H.; Lutin, F. Nanofiltration of Glucose and Sodium Lactate Solutions: Variations of Retention between Single- and Mixed-Solute Solutions. J. Memb. Sci. 2005, 258, 123–132. [Google Scholar] [CrossRef]
- Min-Tian, G.; Hirata, M.; Koide, M.; Takanashi, H.; Hano, T. Production of L-Lactic Acid by Electrodialysis Fermentation (EDF). Process Biochem. 2004, 39, 1903–1907. [Google Scholar] [CrossRef]
- Kim, J.; Kim, Y.M.; Lebaka, V.R.; Wee, Y.J. Lactic Acid for Green Chemical Industry: Recent Advances in and Future Prospects for Production Technology, Recovery, and Applications. Fermentation 2022, 8, 609. [Google Scholar] [CrossRef]
- Han, J. Process Systems Engineering Studies for Catalytic Production of Bio-Based Platform Molecules from Lignocellulosic Biomass. Energy Convers. Manag. 2017, 138, 511–517. [Google Scholar] [CrossRef]
- Hicks, K.B.; Montanti, J.; Nghiem, N.P. Use of Barley Grain and Straw for Biofuels and Other Industrial Uses. In Barley: Chemistry and Technology, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 269–291. [Google Scholar] [CrossRef]
- Haddad, M.; Nassar, D.; Shtaya, M. Heavy Metals Accumulation in Soil and Uptake by Barley (Hordeum Vulgare) Irrigated with Contaminated Water. Sci. Rep. 2023, 13, 4121. [Google Scholar] [CrossRef]
- Gibson, M.T.; Welch, I.M.; Barrett, P.R.F.; Ridge, I. Barley Straw as an Inhibitor of Algal Growth II: Laboratory Studies. J. Appl. Phycol. 1990, 2, 241–248. [Google Scholar] [CrossRef]
- Supanchaiyamat, N.; Jetsrisuparb, K.; Knijnenburg, J.T.N.; Tsang, D.C.W.; Hunt, A.J. Lignin Materials for Adsorption: Current Trend, Perspectives and Opportunities. Bioresour. Technol. 2019, 272, 570–581. [Google Scholar] [CrossRef] [PubMed]
- Wei, D.; Lv, S.; Zuo, J.; Zhang, S.; Liang, S. Recent Advances Research and Application of Lignin-Based Fluorescent Probes. React. Funct. Polym. 2022, 178, 105354. [Google Scholar] [CrossRef]
- Faria, F.A.C.; Evtuguin, D.V.; Rudnitskaya, A.; Gomes, M.T.S.R.; Oliveira, J.A.B.P.; Graça, M.P.F.; Costa, L.C. Lignin-Based Polyurethane Doped with Carbon Nanotubes for Sensor Applications. Polym. Int. 2012, 61, 788–794. [Google Scholar] [CrossRef]
- Durmaz, E.; Sertkaya, S.; Yilmaz, H.; Olgun, C.; Ozcelik, O.; Tozluoglu, A.; Candan, Z. Lignocellulosic Bionanomaterials for Biosensor Applications. Micromachines 2023, 14, 1450. [Google Scholar] [CrossRef] [PubMed]
- Tortolini, C.; Capecchi, E.; Tasca, F.; Pofi, R.; Venneri, M.A.; Saladino, R.; Antiochia, R. Novel Nanoarchitectures Based on Lignin Nanoparticles for Electrochemical Eco-friendly Biosensing Development. Nanomaterials 2021, 11, 718. [Google Scholar] [CrossRef] [PubMed]
- Kaur, R.; Thakur, N.S.; Chandna, S.; Bhaumik, J. Development of Agri-Biomass Based Lignin Derived Zinc Oxide Nanocomposites as Promising UV Protectant-Cum-Antimicrobial Agents. J. Mater. Chem. B 2020, 8, 260–269. [Google Scholar] [CrossRef]
- Wakefield, J.C. Styrene Toxicological Overview. 2007. Available online: https://assets.publishing.service.gov.uk/media/5a7e4e80ed915d74e33f163f/HPA_STYRENE_Toxicological_Overview_v1.pdf (accessed on 23 August 2023).
Substrate | Enzyme Name | CAZy Families |
---|---|---|
Cellulose | β-1,4-endoglucanase | GH5, GH7, GH9, and GH12, GH45 and GH48 |
β-1,4-glucosidase | GH1, GH3, and GH9 | |
Cellobiohydrolase | GH4, GH6, GH7, GH9, and GH48 | |
Xylan (hemicellulose) | β-1,4-endoxylanase | GH8, GH9, GH10, and GH11 |
β-1,4-xylosidase | GH3 and GH43 | |
α-glucuronidase | GH67 and GH115 | |
Acetylxylan esterase | CE1, CE4, CE5, and CE16 | |
Feruloyl esterase | CE1 | |
Arabinoxylan α-arabinofuranohydrolase | GH62 | |
Xyloglucan (hemicellulose) | Xyloglucan β-1,4-endoglucanase | GH12 and GH74 |
β-1,4-galactosidase | GH2 and GH35 | |
α-xylosidase | GH31 | |
α-fucosidase | GH29 and GH95 | |
α-arabinofuranosidase | GH51 and GH54 | |
Galactomannan (hemicellulose) | α-1,4-galactosidase | GH4, 27, 36, GH57, GH97, and GH110 |
β-1,4-endomannanase | GH5 and GH26 | |
β-1,4-mannosidase | GH2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ojo, A.O. An Overview of Lignocellulose and Its Biotechnological Importance in High-Value Product Production. Fermentation 2023, 9, 990. https://doi.org/10.3390/fermentation9110990
Ojo AO. An Overview of Lignocellulose and Its Biotechnological Importance in High-Value Product Production. Fermentation. 2023; 9(11):990. https://doi.org/10.3390/fermentation9110990
Chicago/Turabian StyleOjo, Abidemi Oluranti. 2023. "An Overview of Lignocellulose and Its Biotechnological Importance in High-Value Product Production" Fermentation 9, no. 11: 990. https://doi.org/10.3390/fermentation9110990