Hybrid Cheeses—Supplementation of Cheese with Plant-Based Ingredients for a Tasty, Nutritious and Sustainable Food Transition
Abstract
:1. Introduction
2. Recent Developments in Hybrid Cheeses
Cheese Type | Plant-Base | Fermentation | Main Results | Reference |
---|---|---|---|---|
Mozzarella | Hydroxypropylated barley starches | No | Replacement of 15% of rennet casein with starches provides acceptable textures with improved meltability | Mehfooz et al., 2021 [39] |
Mozzarella | Soy milk | Thermophilic Y 082 D (Clerici Sacco International Srl, Cadorago Como, Italy): Lactobacillus bulgaricus, Streptococcus thermophilus | Using 10 to 20% soy milk is acceptable. Higher proportion decreases meltability but increases nutritional profile | Jeewanthi et al., 2014 [40] |
Feta | Lab-made lentil milk, inulin | No | Adding too much lentil protein disrupts the structure, but 10% is acceptable. Inulin increases likeability as a fat replacer | Moradi et al., 2021 [41] |
Cream cheese | Lab-made soy protein concentrate | No | From 5 to 15 g/L soy protein concentrate added to partially skim milk; addition of this amount of soy protein did not impact sensory experience too strongly. The texture was still acceptable, taste was slightly negatively impacted. Products were stable | Rinaldoni et al., 2014 [42] |
Cream cheese | Pea protein, lupin protein or oats protein isolates | No | All emulsions created were stable; caseins and whey proteins are primarily adsorbed at the oil/water interface | Grasberger et al., 2021 [43] |
Cheddar | Soy milk | Streptococcus lactis (now Lactococcus lactis) | Cow’s milk can be replaced with soy milk up to 15% without impairing sensory qualities (but sensory experience was made by untrained lab personal) | Rani and Verna, 1995 [44] |
Cheddar | Soy protein isolate (SPI) | S. thermophilus, Lactobacillus delbrueckii ssp. bulgaricus | Up to 7% soy protein, no adverse effect on taste, microstructure was less compact with soy protein. Advise a max 5% soy protein | Atia et al., 2004 [45] |
Yogurt cheese | Lab-made soy milk | Thermophilic Y332A (Clerici Sacco International Srl, Cadorago Como, Italy), L. bulgaricus and S. thermophilus | Higher protein and lower fat content in cheeses supplemented with up to 20% soy milk; no significant difference in the rheology character between control and soy supplemented | Lee et al., 2015 [37] |
3. Achieving Texture through Raw Material Selection and Pre-Processing
Ingredients and Concentrations | Plant to Dairy Ratio | Processing conditions | Highlights | Reference |
---|---|---|---|---|
SPI, WPI—6% (w/v) protein content | 0:100, 30:70, 50:50, 70:30, 100:0 | Mixed; 90 °C 60 min; pH 7.0 | While soy protein in isolation formed large, soluble aggregates, the addition to whey protein significantly reduced the amount of soluble aggregate and induced precipitation. 7S and the basic subunit of 11S were present in the precipitate after heating with WPI. | Roesch and Corredig (2005) [73] |
SPI, MCI—10 and 15% (w/w) protein content | 50:50 | High shear mixing; 40, 60 and 95 °C 15 min; native pH (6.74–6.86) | Temperature above the denaturation of soy glycinin induced aggregation and gelling via disulfide bonding in both soy and casein; below soy protein critical gelling concentration, mixtures resulted in a Newtonian liquid with lower viscosity and improved storage stability compared to non-denaturing heat treatment. | Cosmin and Moraru (2013) [74] |
PPC, WPC—10, 16 and 22% (w/v) protein content | 80:20, 50:50, 20:80 | Mixed, 92 °C 30 min; pH 4.0, 6.0, 8.0 | Higher synergistic enhancement at 20:80 pea/whey was observed for gels at pH 6.0; 50:50 and 20:80 ratios both had synergistic viscosity enhancement after heat treatment. | Wong et al. (2013) [63] |
PPC (legumin and vicilin fractions), Purified casein micelles—1.8% (w/v) protein content | 50:50 | Mixed; 85 °C 60 min; pH 7.10 | Casein micelles stabilized pea proteins against heat-induced unfolding; vicilin, in presence of casein micelles, produced heat-induced soluble aggregates, while legumin produced insoluble aggregates. | Mession et al. (2017) [54] |
PPI, SMP—14.8% (w/w) protein content | 50:50 | Mixed, (a) heat treated 90 °C 60 min; (b) acidified with glucono delta-lactone 2% (w/v) and (c) Enzymatic treatment CaSO4 (0.3%), chymosin (0.5%), and TGase (0.3%) | Pea gels induced by acid or enzyme had a higher storage modulus (G0). Thermal treatment induced covalent bonds. Enzyme-induced gels produced coarse aggregates with a more excellent resistance to strain. | Ben-Harb et al. (2018) [64] |
MPC, WPI, PPI, SPI—12% (w/w) Protein content | 50:50, 58:41, 66:33, 75:25, 83:16, 90:10, 100:0 | Stir mixed; 90 °C 1 h; pH 7.00 | Gelation temperature increased with plant protein, with soy being more effective than pea protein. | Silva et al. (2018) [65] |
PPI (globulin fraction); WPI (β-lactoglobulin fraction)—2% (w/v) Protein content | 0:100, 30:70, 50:50,70:30, 100:0 | Stir mixed; 85 °C 60 min; pH 7.20 | Synergistic effect for increased gels elasticity and water holding capacity compared to gels containing pure aggregates of Glob or mixtures of Glob and βlg aggregates. | Mohamed–Lazhar Chihia et al. (2018) [66] |
RPI, WPI—0.0 to 20% (w/w) Protein content; | 90:10, 80:20, 70:30, 60:40, 50:50, 40:60, 30:70, 20:80, 10:90 | Mixed, 80 to 95 °C 30 min; pH 7.00 | Independent gel network formation: higher plant to dairy ratio produced a stronger gel than single standalone ingredient. | Ainis et al. (2019) [75] |
OPC, OPI, SMP—12.3, 13.8 and 15.3% (w/w) total solids | 60:40 | Homogenized one-pass 200 bar; 80 °C 20 min; native pH | OPC good replacer of SMP; good functionality due to oat starch. | Brückner-Gühmann et al. (2019) [76] |
PPI, OPC, LPI, WPI, SM—8.0% (w/v) Protein content; 20 to 21.4% (w/v) fat content | 33:66, 32:67, 26:73, 67:32, 67:32, 68:31, 70:30, | Mixed, homogenized one-step 250 bar; 85 °C 5 min; pH 6.1 to 6.6 | Emulsion gel oil droplets were stabilized by dairy proteins; LPI and PPI induced low onset gelation temperature. | Grasberger et al. (2021) [43] |
LPI, SMP, WPI, milk fat and coconut oil—6.6% (w/w) Protein content; 1.5% (w/w) fat content | 50:50, 67:33 | Stirred and homogenized two-step 250/50 bar; heated 95 °C 10 min; pH native; LAB fermented | Fermentation improved the texture and reduced off-flavor of lupin-dominant formulation. | Canon etl al. (2022) [36] |
SPI, WPI—4% (w/v) protein content | 100:0, 75:25, 50:50, 25:75, 0:100 | Mixed; 95 °C 30 min; pH 7.00 then acidified | SPI inclusion decreased stiffness (low G′) and stretchability (lower γc) of acid-induced gels; hybrid gels displayed a relatively more elastic response in the nonlinear viscoelastic regime with a plastic behavior. | Xia et al. (2022) [67] |
PPI; SMP—5.0, 7.0, 9.0, and 11% (w/w) Protein content | 27:73, 33:66, 42:57, 60:40 | Stir mixed; 85 °C 5 min; pH 6.30 to 6.80 | The presence of pea proteins accelerates acid-induced gelation but weakens the structure of mixed gels. | Oliveira et al. (2022) [68] |
4. Concluding Remarks and Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Poore, J.; Nemecek, T. Reducing Food’s Environmental Impacts through Producers and Consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef] [Green Version]
- Clay, N.; Garnett, T.; Lorimer, J. Dairy Intensification: Drivers, Impacts and Alternatives. Ambio 2020, 49, 35–48. [Google Scholar] [CrossRef] [Green Version]
- Clark, M.A.; Domingo, N.G.G.; Colgan, K.; Thakrar, S.K.; Tilman, D.; Lynch, J.; Azevedo, I.L.; Hill, J.D. Global Food System Emissions Could Preclude Achieving the 1.5 °C and 2 °C Climate Change Targets. Science 2020, 370, 705–708. [Google Scholar] [CrossRef] [PubMed]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on Healthy Diets from Sustainable Food Systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef] [PubMed]
- Forbruget i 2021 Og Tendenser for 2022. Available online: https://coopanalyse.dk/analyse/02_9999-21-forbruget-i-2021/ (accessed on 15 June 2023).
- Zioga, E.; Tøstesen, M.; Kjærulf Madsen, S.; Shetty, R.; Bang-Berthelsen, C.H. Bringing Plant-Based Cli-Meat Closer to Original Meat Experience: Insights in Flavor. Future Foods 2022, 5, 100138. [Google Scholar] [CrossRef]
- Boukid, F. Plant-Based Meat Analogues: From Niche to Mainstream. Eur. Food Res. Technol. 2021, 247, 297–308. [Google Scholar] [CrossRef]
- Mehany, T.; Siddiqui, S.A.; Olawoye, B.; Olabisi Popoola, O.; Hassoun, A.; Manzoor, M.F.; Punia Bangar, S. Recent Innovations and Emerging Technological Advances Used to Improve Quality and Process of Plant-Based Milk Analogs. Crit. Rev. Food Sci. Nutr. 2023, 1–31. [Google Scholar] [CrossRef]
- Montemurro, M.; Pontonio, E.; Coda, R.; Rizzello, C.G. Plant-Based Alternatives to Yogurt: State-of-the-Art and Perspectives of New Biotechnological Challenges. Foods 2021, 10, 316. [Google Scholar] [CrossRef]
- McClements, D.J.; Grossmann, L. The Science of Plant-Based Foods: Constructing next-Generation Meat, Fish, Milk, and Egg Analogs. Compr. Rev. Food Sci. Food Saf. 2021, 20, 4049–4100. [Google Scholar] [CrossRef]
- Miki, A.J.; Livingston, K.A.; Karlsen, M.C.; Folta, S.C.; McKeown, N.M. Using Evidence Mapping to Examine Motivations for Following Plant-Based Diets. Curr. Dev. Nutr. 2020, 4, nzaa013. [Google Scholar] [CrossRef] [Green Version]
- Nicolás Saraco, M.; Blaxland, J. Dairy-Free Imitation Cheese: Is Further Development Required? Br. Food J. 2020, 122, 3727–3740. [Google Scholar] [CrossRef]
- Short, E.C.; Kinchla, A.J.; Nolden, A.A. Plant-Based Cheeses: A Systematic Review of Sensory Evaluation Studies and Strategies to Increase Consumer Acceptance. Foods 2021, 10, 725. [Google Scholar] [CrossRef] [PubMed]
- Falkeisen, A.; Gorman, M.; Knowles, S.; Barker, S.; Moss, R.; McSweeney, M.B. Consumer Perception and Emotional Responses to Plant-Based Cheeses. Food Res. Int. 2022, 158, 111513. [Google Scholar] [CrossRef] [PubMed]
- Giacalone, D.; Clausen, M.P.; Jaeger, S.R. Understanding Barriers to Consumption of Plant-Based Foods and Beverages: Insights from Sensory and Consumer Science. Curr. Opin. Food Sci. 2022, 48, 100919. [Google Scholar] [CrossRef]
- Michel, F.; Hartmann, C.; Siegrist, M. Consumers’ Associations, Perceptions and Acceptance of Meat and Plant-Based Meat Alternatives. Food Qual. Prefer. 2021, 87, 104063. [Google Scholar] [CrossRef]
- Pointke, M.; Ohlau, M.; Risius, A.; Pawelzik, E. Plant-Based Only: Investigating Consumers’ Sensory Perception, Motivation, and Knowledge of Different Plant-Based Alternative Products on the Market. Foods 2022, 11, 2339. [Google Scholar] [CrossRef]
- Clegg, M.E.; Tarrado Ribes, A.; Reynolds, R.; Kliem, K.; Stergiadis, S. A Comparative Assessment of the Nutritional Composition of Dairy and Plant-Based Dairy Alternatives Available for Sale in the UK and the Implications for Consumers’ Dietary Intakes. Food Res. Int. 2021, 148, 110586. [Google Scholar] [CrossRef]
- Scholz-Ahrens, K.E.; Ahrens, F.; Barth, C.A. Nutritional and Health Attributes of Milk and Milk Imitations. Eur. J. Nutr. 2020, 59, 19–34. [Google Scholar] [CrossRef]
- Walther, B.; Schmid, A.; Sieber, R.; Wehrmüller, K. Cheese in Nutrition and Health. Dairy Sci. Technol. 2008, 88, 389–405. [Google Scholar] [CrossRef] [Green Version]
- Craig, W.J.; Mangels, A.R.; Brothers, C.J. Nutritional Profiles of Non-Dairy Plant-Based Cheese Alternatives. Nutrients 2022, 14, 1247. [Google Scholar] [CrossRef]
- Fresán, U.; Rippin, H. Nutritional Quality of Plant-Based Cheese Available in Spanish Supermarkets: How Do They Compare to Dairy Cheese? Nutrients 2021, 13, 3291. [Google Scholar] [CrossRef] [PubMed]
- Boukid, F.; Lamri, M.; Dar, B.N.; Garron, M.; Castellari, M. Vegan Alternatives to Processed Cheese and Yogurt Launched in the European Market during 2020: A Nutritional Challenge? Foods 2021, 10, 2782. [Google Scholar] [CrossRef] [PubMed]
- Barone, G.; O’Regan, J.; Kelly, A.L.; O’Mahony, J.A. Calcium Fortification of a Model Infant Milk Formula System Using Soluble and Insoluble Calcium Salts. Int. Dairy J. 2021, 117, 104951. [Google Scholar] [CrossRef]
- Wechsler, D.; Walther, B.; Dudler, V.; Aubert, R.; Haldimann, M. Jodiertes Salz Bei Der Käseherstellung: Beitrag Zur Jodversorgung. Agrar. Schweiz 2021, 12, 97–101. [Google Scholar] [CrossRef]
- Finnegan, W.; Yan, M.; Holden, N.M.; Goggins, J. A Review of Environmental Life Cycle Assessment Studies Examining Cheese Production. Int. J. Life Cycle Assess. 2018, 23, 1773–1787. [Google Scholar] [CrossRef]
- Carlsson Kanyama, A.; Hedin, B.; Katzeff, C. Differences in Environmental Impact between Plant-Based Alternatives to Dairy and Dairy Products: A Systematic Literature Review. Sustainability 2021, 13, 12599. [Google Scholar] [CrossRef]
- Cap, S.; Bots, P.; Scherer, L. Environmental, Nutritional and Social Assessment of Nuts. Sustain. Sci. 2023, 18, 933–949. [Google Scholar] [CrossRef]
- Andonaba, J.-B.; Lompo, S.S.; Ouédraogo, V.; Ouédraogo, F.; Ouédraogo, M.S.; Konaté, I.; Diallo, B.; Traoré, A. Skin Damage and Aesthetic Disadvantage Observed in Women in the Hand Craft Shelling Chain of Cashew Nuts in a Factory to Bobo-Dioulasso, Burkina Faso. J. Cosmet. Dermatol. Sci. Appl. 2017, 7, 211–220. [Google Scholar] [CrossRef] [Green Version]
- Madsen, S.K.; Priess, C.; Wätjen, A.P.; Øzmerih, S.; Mohammadifar, M.A.; Heiner Bang-Berthelsen, C. Development of a Yoghurt Alternative, Based on Plant-Adapted Lactic Acid Bacteria, Soy Drink and the Liquid Fraction of Brewers’ Spent Grain. FEMS Microbiol. Lett. 2021, 368, fnab093. [Google Scholar] [CrossRef]
- Garcia-Fontanals, L.; Llorente, R.; Valderrama, J.; Bravo, S.; Talens, C. Hybrid Spreadable Cheese Analogues with Faba Bean and Mealworm (Tenebrio Molitor) Flours: Optimisation Using Desirability-Based Mixture Design. Foods 2023, 12, 1522. [Google Scholar] [CrossRef]
- Guyomarc’h, F.; Arvisenet, G.; Bouhallab, S.; Canon, F.; Deutsch, S.-M.; Drigon, V.; Dupont, D.; Famelart, M.-H.; Garric, G.; Guédon, E.; et al. Mixing Milk, Egg and Plant Resources to Obtain Safe and Tasty Foods with Environmental and Health Benefits. Trends Food Sci. Technol. 2021, 108, 119–132. [Google Scholar] [CrossRef]
- Drigon, V.; Nicolle, L.; Guyomarc’H, F.; Gagnaire, V.; Arvisenet, G. Attitudes and Beliefs of French Consumers towards Innovative Food Products That Mix Dairy and Plant-Based Components. Int. J. Gastron. Food Sci. 2023, 32, 100725. [Google Scholar] [CrossRef]
- Bachmann, H.-P. Cheese Analogues: A Review. Int. Dairy J. 2001, 11, 505–515. [Google Scholar] [CrossRef]
- Madsen, S.K.; Thulesen, E.T.; Mohammadifar, M.A.; Bang-Berthelsen, C.H. Chufa Drink: Potential in Developing a New Plant-Based Fermented Dessert. Foods 2021, 10, 3010. [Google Scholar] [CrossRef]
- Canon, F.; Maillard, M.-B.; Famelart, M.-H.; Thierry, A.; Gagnaire, V. Mixed Dairy and Plant-Based Yogurt Alternatives: Improving Their Physical and Sensorial Properties through Formulation and Lactic Acid Bacteria Cocultures. Curr. Res. Food Sci. 2022, 5, 665–676. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.-K.; Mok, B.R.; Jeewanthi, R.K.C.; Yoon, Y.C.; Paik, H.-D. Physicochemical and Microbiological Properties of Yogurt-Cheese Manufactured with Ultrafiltrated Cow’s Milk and Soy Milk Blends. Korean J. Food Sci. Anim. Resour. 2015, 35, 205–210. [Google Scholar] [CrossRef] [Green Version]
- Christensen, L.F.; García-Béjar, B.; Bang-Berthelsen, C.H.; Hansen, E.B. Extracellular Microbial Proteases with Specificity for Plant Proteins in Food Fermentation. Int. J. Food Microbiol. 2022, 381, 109889. [Google Scholar] [CrossRef]
- Mehfooz, T.; Mohsin Ali, T.; Ahsan, M.; Abdullah, S.; Hasnain, A. Use of Hydroxypropylated Barley Starch as Partial Casein Replacer in Imitation Mozzarella Cheese. J. Food Process. Preserv. 2021, 45, e16094. [Google Scholar] [CrossRef]
- Jeewanthi, R.K.C.; Lee, N.-K.; Lee, K.A.; Yoon, Y.C.; Paik, H.-D. Comparative Analysis of Improved Soy-Mozzarella Cheeses Made of Ultrafiltrated and Partly Skimmed Soy Blends with Other Mozzarella Types. J. Food Sci. Technol. 2015, 52, 5172–5179. [Google Scholar] [CrossRef] [Green Version]
- Moradi, D.; Ziarati, P.; Sawicka, B. Physicochemical and Rheological Properties of Lentil Milk/Inulin Blend—A Feta Cheese Analogue. Legume Sci. 2021, 3, e80. [Google Scholar] [CrossRef]
- Rinaldoni, A.N.; Palatnik, D.R.; Zaritzky, N.; Campderrós, M.E. Soft Cheese-like Product Development Enriched with Soy Protein Concentrates. LWT Food Sci. Technol. 2014, 55, 139–147. [Google Scholar] [CrossRef]
- Grasberger, K.F.; Gregersen, S.B.; Jensen, H.B.; Sanggaard, K.W.; Corredig, M. Plant-Dairy Protein Blends: Gelation Behaviour in a Filled Particle Matrix. Food Struct. 2021, 29, 100198. [Google Scholar] [CrossRef]
- Rani, M.; Verma, N.S. Changes in Organoleptic Quality during Ripening of Cheese Made from Cows and Soya Milk Blends, Using Microbial Rennet. Food Chem. 1995, 54, 369–375. [Google Scholar] [CrossRef]
- Atia, M.; Wenshui, X.; Guonong, Z. Effect of Soy Protein Supplementation on the Quality of Ripening Cheddar-Type Cheese. Int. J. Dairy Technol. 2004, 57, 209–214. [Google Scholar] [CrossRef]
- Joardder, M.U.H.; Rashid, F.; Karim, M.A. The Relationships Between Structural Properties and Mechanical Properties of Plant-Based Food Materials: A Critical Review. Food Rev. Int. 2022, 1–24. [Google Scholar] [CrossRef]
- Ubbink, J.; Burbidge, A.; Mezzenga, R. Food Structure and Functionality: A Soft Matter Perspective. Soft Matter 2008, 4, 1569–1581. [Google Scholar] [CrossRef]
- Pogaku, R.; Seng, C.E.; Boonbeng, L.; Kallu, U.R. Whey Protein Isolate-Starch System—A Critical Review. Int. J. Food Eng. 2007, 3. [Google Scholar] [CrossRef]
- Nicolai, T.; Chassenieux, C. Heat-Induced Gelation of Casein Micelles. Food Hydrocoll. 2021, 118, 106755. [Google Scholar] [CrossRef]
- Barone, G.; Yazdi, S.R.; Lillevang, S.K.; Ahrné, L. Calcium: A Comprehensive Review on Quantification, Interaction with Milk Proteins and Implications for Processing of Dairy Products. Compr. Rev. Food Sci. Food Saf. 2021, 20, 5616–5640. [Google Scholar] [CrossRef]
- Lucey, J.A. Chapter 16—Milk Protein Gels. In Milk Proteins, 3rd ed.; Boland, M., Singh, H., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 599–632. ISBN 978-0-12-815251-5. [Google Scholar]
- Nicolai, T.; Chassenieux, C. Heat-Induced Gelation of Plant Globulins. Curr. Opin. Food Sci. 2019, 27, 18–22. [Google Scholar] [CrossRef]
- Shand, P.J.; Ya, H.; Pietrasik, Z.; Wanasundara, P.K.J.P.D. Physicochemical and Textural Properties of Heat-Induced Pea Protein Isolate Gels. Food Chem. 2007, 102, 1119–1130. [Google Scholar] [CrossRef]
- Mession, J.-L.; Roustel, S.; Saurel, R. Interactions in Casein Micelle—Pea Protein System (Part I): Heat-Induced Denaturation and Aggregation. Food Hydrocoll. 2017, 67, 229–242. [Google Scholar] [CrossRef]
- Mession, J.-L.; Roustel, S.; Saurel, R. Interactions in Casein Micelle—Pea Protein System (Part II): Mixture Acid Gelation with Glucono-δ-Lactone. Food Hydrocoll. 2017, 73, 344–357. [Google Scholar] [CrossRef]
- Zheng, L.; Regenstein, J.M.; Zhou, L.; Wang, Z. Soy Protein Isolates: A Review of Their Composition, Aggregation, and Gelation. Compr. Rev. Food Sci. Food Saf. 2022, 21, 1940–1957. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.-S.; Chang, S.K.C.; Li, L.-T.; Tatsumi, E. Effect of Selective Thermal Denaturation of Soybean Proteins on Soymilk Viscosity and Tofu’s Physical Properties. Food Res. Int. 2004, 37, 815–822. [Google Scholar] [CrossRef]
- Miketinas, D.; Champagne, C.M. The Vegetarian/Flexitarian Diets. In Nutrition Guide for Physicians and Related Healthcare Professions; Nutrition and Health; Wilson, T., Temple, N.J., Bray, G.A., Eds.; Humana: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Schmitt, C.; Silva, J.V.; Amagliani, L.; Chassenieux, C.; Nicolai, T. Heat-Induced and Acid-Induced Gelation of Dairy/Plant Protein Dispersions and Emulsions. Curr. Opin. Food Sci. 2019, 27, 43–48. [Google Scholar] [CrossRef]
- Lima Nascimento, L.G.; Odelli, D.; Fernandes de Carvalho, A.; Martins, E.; Delaplace, G.; Peres de sá Peixoto Júnior, P.; Nogueira Silva, N.F.; Casanova, F. Combination of Milk and Plant Proteins to Develop Novel Food Systems: What Are the Limits? Foods 2023, 12, 2385. [Google Scholar] [CrossRef] [PubMed]
- Higher Yield and Lower Carbon Emission by Intercropping Maize with Rape, Pea, and Wheat in Arid Irrigation Areas|SpringerLink. Available online: https://link.springer.com/article/10.1007/s13593-013-0161-x (accessed on 2 June 2023).
- Matsuo, A.; Matsushita, K.; Fukuzumi, A.; Tokumasu, N.; Yano, E.; Zaima, N.; Moriyama, T. Comparison of Various Soybean Allergen Levels in Genetically and Non-Genetically Modified Soybeans. Foods 2020, 9, 522. [Google Scholar] [CrossRef] [Green Version]
- Wong, D.; Vasanthan, T.; Ozimek, L. Synergistic Enhancement in the Co-Gelation of Salt-Soluble Pea Proteins and Whey Proteins. Food Chem. 2013, 141, 3913–3919. [Google Scholar] [CrossRef]
- Ben-Harb, S.; Panouillé, M.; Huc-Mathis, D.; Moulin, G.; Saint-Eve, A.; Irlinger, F.; Bonnarme, P.; Michon, C.; Souchon, I. The Rheological and Microstructural Properties of Pea, Milk, Mixed Pea/Milk Gels and Gelled Emulsions Designed by Thermal, Acid, and Enzyme Treatments. Food Hydrocoll. 2018, 77, 75–84. [Google Scholar] [CrossRef]
- Silva, J.V.C.; Balakrishnan, G.; Schmitt, C.; Chassenieux, C.; Nicolai, T. Heat-Induced Gelation of Aqueous Micellar Casein Suspensions as Affected by Globular Protein Addition. Food Hydrocoll. 2018, 82, 258–267. [Google Scholar] [CrossRef]
- Chihi, M.; Sok, N.; Saurel, R. Acid Gelation of Mixed Thermal Aggregates of Pea Globulins and β-Lactoglobulin. Food Hydrocoll. 2018, 85, 120–128. [Google Scholar] [CrossRef]
- Xia, W.; Zhu, L.; Delahaije, R.J.B.M.; Cheng, Z.; Zhou, X.; Sagis, L.M.C. Acid-Induced Gels from Soy and Whey Protein Thermally-Induced Mixed Aggregates: Rheology and Microstructure. Food Hydrocoll. 2022, 125, 107376. [Google Scholar] [CrossRef]
- Oliveira, I.C.; de Paula Ferreira, I.E.; Casanova, F.; Cavallieri, A.L.F.; Lima Nascimento, L.G.; de Carvalho, A.F.; Nogueira Silva, N.F. Colloidal and Acid Gelling Properties of Mixed Milk and Pea Protein Suspensions. Foods 2022, 11, 1383. [Google Scholar] [CrossRef]
- Guinee, T.P.; Mulholland, E.O.; Kelly, J.; Callaghan, D.J.O. Effect of Protein-to-Fat Ratio of Milk on the Composition, Manufacturing Efficiency, and Yield of Cheddar Cheese. J. Dairy Sci. 2007, 90, 110–123. [Google Scholar] [CrossRef] [PubMed]
- Beghdadi, A.; Picart-Palmade, L.; Cunault, C.; Marchesseau, S.; Chevalier-Lucia, D. Impact of Two Thermal Processing Routes on Protein Interactions and Acid Gelation Properties of Casein Micelle-Pea Protein Mixture Compared to Casein Micelle-Whey Protein One. Food Res. Int. 2022, 155, 111060. [Google Scholar] [CrossRef]
- Klost, M.; Brzeski, C.; Drusch, S. Effect of Protein Aggregation on Rheological Properties of Pea Protein Gels. Food Hydrocoll. 2020, 108, 106036. [Google Scholar] [CrossRef]
- Chao, D.; Aluko, R.E. Modification of the Structural, Emulsifying, and Foaming Properties of an Isolated Pea Protein by Thermal Pretreatment. CyTA J. Food 2018, 16, 357–366. [Google Scholar] [CrossRef] [Green Version]
- Roesch, R.R.; Corredig, M. Heat-Induced Soy−Whey Proteins Interactions: Formation of Soluble and Insoluble Protein Complexes. J. Agric. Food Chem. 2005, 53, 3476–3482. [Google Scholar] [CrossRef]
- Beliciu, C.M.; Moraru, C.I. Physico-Chemical Changes in Heat Treated Micellar Casein—Soy Protein Mixtures. LWT Food Sci. Technol. 2013, 54, 469–476. [Google Scholar] [CrossRef]
- Ainis, W.N.; Ersch, C.; Farinet, C.; Yang, Q.; Glover, Z.J.; Ipsen, R. Rheological and Water Holding Alterations in Mixed Gels Prepared from Whey Proteins and Rapeseed Proteins. Food Hydrocoll. 2019, 87, 723–733. [Google Scholar] [CrossRef] [Green Version]
- Brückner-Gühmann, M.; Benthin, A.; Drusch, S. Enrichment of yoghurt with oat protein fractions: Structure formation, textural properties and sensory evaluation. Food Hydrocoll. 2019, 86, 146–153. [Google Scholar] [CrossRef]
- Tangyu, V.M. Towards Healthy and Tasty Plant-Based Milk Alternatives: Food-Grade Microbial Fermentation for Improved Nutritional Value and Flavor Perception. Ph.D. Dissertation, Universität des Saarlandes, Saarbrücken, Germany, 2022. [Google Scholar] [CrossRef]
- Boukria, O.; El Hadrami, E.M.; Boudalia, S.; Safarov, J.; Leriche, F.; Aït-Kaddour, A. The Effect of Mixing Milk of Different Species on Chemical, Physicochemical, and Sensory Features of Cheeses: A Review. Foods 2020, 9, 1309. [Google Scholar] [CrossRef] [PubMed]
- Kilcawley, K.N.; Faulkner, H.; Clarke, H.J.; O’Sullivan, M.G.; Kerry, J.P. Factors Influencing the Flavour of Bovine Milk and Cheese from Grass Based versus Non-Grass Based Milk Production Systems. Foods 2018, 7, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, X.; Shi, X.; Wang, B. A Review on the General Cheese Processing Technology, Flavor Biochemical Pathways and the Influence of Yeasts in Cheese. Front. Microbiol. 2021, 12, 703284. [Google Scholar] [CrossRef]
- Khattab, A.R.; Guirguis, H.A.; Tawfik, S.M.; Farag, M.A. Cheese Ripening: A Review on Modern Technologies towards Flavor Enhancement, Process Acceleration and Improved Quality Assessment. Trends Food Sci. Technol. 2019, 88, 343–360. [Google Scholar] [CrossRef]
- Samtiya, M.; Aluko, R.E.; Dhewa, T. Plant Food Anti-Nutritional Factors and Their Reduction Strategies: An Overview. Food Prod. Process. Nutr. 2020, 2, 6. [Google Scholar] [CrossRef] [Green Version]
- Popova, A.; Mihaylova, D. Antinutrients in Plant-Based Foods: A Review. Open Biotechnol. J. 2019, 13, 68–76. [Google Scholar] [CrossRef] [Green Version]
- Leonard, W.; Zhang, P.; Ying, D.; Fang, Z. Surmounting the off-flavor challenge in plant-based foods. Crit. Rev. Food Sci. Nutr. 2022, 1–22. [Google Scholar] [CrossRef]
- Mittermeier-Kleßinger, V.K.; Hofmann, T.; Dawid, C. Mitigating Off-Flavors of Plant-Based Proteins. J. Agric. Food Chem. 2021, 69, 9202–9207. [Google Scholar] [CrossRef]
- Azzara, C.D.; Campbell, L.B. Off-Flavors of Dairy Products. Dev. Food Sci. 1992, 28, 329–374. [Google Scholar] [CrossRef]
- Pua, A.; Tang, V.C.Y.; Goh, R.M.V.; Sun, J.; Lassabliere, B.; Liu, S.Q. Ingredients, Processing, and Fermentation: Addressing the Organoleptic Boundaries of Plant-Based Dairy Analogues. Foods 2022, 11, 875. [Google Scholar] [CrossRef] [PubMed]
- Bicas, J.L.; Rodriguez-Amaya, D.B. Generation of Process-Derived Flavors and off-Flavors. In Chemical Changes During Processing and Storage of Foods: Implications for Food Quality and Human Health; Academic Press: Cambridge, MA, USA, 2021; pp. 385–451. [Google Scholar] [CrossRef]
- Fischer, E.; Cayot, N.; Cachon, R. Potential of Microorganisms to Decrease the “Beany” Off-Flavor: A Review. J. Agric. Food Chem. 2022, 70, 4493–4508. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, J.; Lv, M.; Shao, Z.; Hungwe, M.; Wang, J.; Bai, X.; Xie, J.; Wang, Y.; Geng, W. Metabolism Characteristics of Lactic Acid Bacteria and the Expanding Applications in Food Industry. Front. Bioeng. Biotechnol. 2021, 9, 612285. [Google Scholar] [CrossRef] [PubMed]
- Ghavidel, R.A.; Prakash, J. The Impact of Germination and Dehulling on Nutrients, Antinutrients, in Vitro Iron and Calcium Bioavailability and in Vitro Starch and Protein Digestibility of Some Legume Seeds. LWT 2007, 40, 1292–1299. [Google Scholar] [CrossRef]
- Ma, W.; Zhang, C.; Kong, X.; Li, X.; Chen, Y.; Hua, Y. Effect of Pea Milk Preparation on the Quality of Non-Dairy Yoghurts. Food Biosci. 2021, 44, 101416. [Google Scholar] [CrossRef]
- Pan, M.; Cao, Y.; Chi, X.; Song, Z.; Ai, N.; Sun, B. Influence of Processing Conditions on the Physicochemical Properties of a New-Type of Nutritional Drink-Millet Skim Milk Beverage. Molecules 2019, 24, 1338. [Google Scholar] [CrossRef] [Green Version]
- Gandy, A.L.; Schilling, M.W.; Coggins, P.C.; White, C.H.; Yoon, Y.; Kamadia, V.V. The Effect of Pasteurization Temperature on Consumer Acceptability, Sensory Characteristics, Volatile Compound Composition, and Shelf-Life of Fluid Milk. J. Dairy Sci. 2008, 91, 1769–1777. [Google Scholar] [CrossRef] [Green Version]
- Chambers, D.H.; Esteve, E.; Retiveau, A. Effect of Milk Pasteurization on Flavor Properties of Seven Commercially Available French Cheese Types. J. Sens. Stud. 2010, 25, 494–511. [Google Scholar] [CrossRef]
- McSweeney, P.L.H. Cheese: Biochemistry of Cheese Ripening. Encycl. Dairy Sci. 2011, 1, 667–674. [Google Scholar] [CrossRef]
- Gobbetti, M.; Neviani, E.; Fox, P. Cheese: An Overview. In The Cheeses of Italy: Science and Technology; Gobbetti, M., Neviani, E., Fox, P., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 39–53. ISBN 978-3-319-89854-4. [Google Scholar]
- Harper, A.R.; Dobson, R.C.J.; Morris, V.K.; Moggré, G.J. Fermentation of Plant-Based Dairy Alternatives by Lactic Acid Bacteria. Microb. Biotechnol. 2022, 15, 1404–1421. [Google Scholar] [CrossRef]
- Astolfi, M.L.; Marconi, E.; Protano, C.; Canepari, S. Comparative elemental analysis of dairy milk and plant-based milk alternatives. Food Control 2020, 116, 107327. [Google Scholar] [CrossRef]
- Sedó Molina, G.E.; Shetty, R.; Xiao, H.; Wätjen, A.P.; Tovar, M.; Bang-Berthelsen, C.H. Development of a Novel Lactic Acid Bacteria Starter Culture Approach: From Insect Microbiome to Plant-Based Fermentations. LWT 2022, 165, 113797. [Google Scholar] [CrossRef]
- Fu, G.; Chen, K.; Wang, J.; Wang, M.; Li, R.; Wu, X.; Wu, C.; Zhang, P.; Liu, C.; Wan, Y. Screening of Tea Saponin-Degrading Strain to Degrade the Residual Tea Saponin in Tea Seed Cake. Prep. Biochem. Biotechnol. 2020, 50, 697–707. [Google Scholar] [CrossRef]
- Michlmayr, H.; Kneifel, W. β-Glucosidase Activities of Lactic Acid Bacteria: Mechanisms, Impact on Fermented Food and Human Health. FEMS Microbiol. Lett. 2014, 352, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Overney, C.E.; Huang, J.J. Genome Sequence of Bacillus megaterium O1, a Saponin-Degrading Bacterium. Microbiol. Resour. Announc. 2020, 9, e00524-20. [Google Scholar] [CrossRef] [PubMed]
- Oleszek, M.; Oleszek, W. Saponins in Food. Handb. Diet. Phytochem. 2020, 1–40. [Google Scholar] [CrossRef]
- Hennessy, R.C.; Jørgensen, N.O.G.; Scavenius, C.; Enghild, J.J.; Greve-Poulsen, M.; Sørensen, O.B.; Stougaard, P. A Screening Method for the Isolation of Bacteria Capable of Degrading Toxic Steroidal Glycoalkaloids Present in Potato. Front. Microbiol. 2018, 9, 2648. [Google Scholar] [CrossRef] [Green Version]
- Spinnler, H.E.; Gripon, J.C. Surface Mould-Ripened Cheeses. Cheese Chem. Phys. Microbiol. 2004, 2, 157–174. [Google Scholar] [CrossRef]
- Molimard, P.; Spinnler, H.E. Review: Compounds Involved in the Flavor of Surface Mold-Ripened Cheeses: Origins and Properties. J. Dairy Sci. 1996, 79, 169–184. [Google Scholar] [CrossRef]
- Collins, Y.F.; McSweeney, P.L.H.; Wilkinson, M.G. Evidence of a Relationship between Autolysis of Starter Bacteria and Lipolysis in Cheddar Cheese during Ripening. J. Dairy Res. 2003, 70, 105–113. [Google Scholar] [CrossRef] [Green Version]
- Dherbécourt, J.; Falentin, H.; Jardin, J.; Maillard, M.B.; Baglinière, F.; Barloy-Hubler, F.; Thierry, A. Identification of a Secreted Lipolytic Esterase in Propionibacterium Freudenreichii, a Ripening Process Bacterium Involved in Emmental Cheese Lipolysis. Appl. Environ. Microbiol. 2010, 76, 1181–1188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murtaza, M.A.; Ur-Rehman, S.; Anjum, F.M.; Huma, N.; Hafiz, I. Cheddar Cheese Ripening and Flavor Characterization: A Review. Crit. Rev. Food Sci. Nutr. 2014, 54, 1309–1321. [Google Scholar] [CrossRef]
- Smit, G.; Smit, B.A.; Engels, W.J.M. Flavour Formation by Lactic Acid Bacteria and Biochemical Flavour Profiling of Cheese Products. FEMS Microbiol. Rev. 2005, 29, 591–610. [Google Scholar] [CrossRef] [PubMed]
- Engels, W.J.M.; Vlieg, J.V.H.; Smit, G. Flavour formation in cheese. In Dairy Processing: Improving Quality; Elsevier: Amsterdam, The Netherlands, 2003; pp. 492–511. [Google Scholar]
- Teusink, B.; Molenaar, D. Systems Biology of Lactic Acid Bacteria: For Food and Thought. Curr. Opin. Syst. Biol. 2017, 6, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Awasthi, M.K.; Kumar, V.; Hellwig, C.; Wikandari, R.; Harirchi, S.; Sar, T.; Wainaina, S.; Sindhu, R.; Binod, P.; Zhang, Z.; et al. Filamentous Fungi for Sustainable Vegan Food Production Systems within a Circular Economy: Present Status and Future Prospects. Food Res. Int. 2023, 164, 112318. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Genet, B.M.L.; Sedó Molina, G.E.; Wätjen, A.P.; Barone, G.; Albersten, K.; Ahrné, L.M.; Hansen, E.B.; Bang-Berthelsen, C.H. Hybrid Cheeses—Supplementation of Cheese with Plant-Based Ingredients for a Tasty, Nutritious and Sustainable Food Transition. Fermentation 2023, 9, 667. https://doi.org/10.3390/fermentation9070667
Genet BML, Sedó Molina GE, Wätjen AP, Barone G, Albersten K, Ahrné LM, Hansen EB, Bang-Berthelsen CH. Hybrid Cheeses—Supplementation of Cheese with Plant-Based Ingredients for a Tasty, Nutritious and Sustainable Food Transition. Fermentation. 2023; 9(7):667. https://doi.org/10.3390/fermentation9070667
Chicago/Turabian StyleGenet, Blandine M. L., Guillermo Eduardo Sedó Molina, Anders Peter Wätjen, Giovanni Barone, Kristian Albersten, Lilia M. Ahrné, Egon Bech Hansen, and Claus H. Bang-Berthelsen. 2023. "Hybrid Cheeses—Supplementation of Cheese with Plant-Based Ingredients for a Tasty, Nutritious and Sustainable Food Transition" Fermentation 9, no. 7: 667. https://doi.org/10.3390/fermentation9070667