Impact of Soil Biodisinfection Techniques in Horticultural Crops on Profitability within the Framework of the Circular Economy
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Technical Characteristics of Greenhouse Agriculture in Almeria
2.2. Systematic Literature Review
2.3. Cost Analysis
Cost Structure
- -
- TC: total costs (EUR/ha·year);
- -
- VC: variable costs (EUR/ha·year);
- -
- FC: fixed costs (EUR/ha·year).
- -
- RC: variation rate (%);
- -
- IV: initial value (EUR/ha·year);
- -
- FV: final value (EUR/ha·year).
3. Theoretical Framework
3.1. Biodesinfection Techniques
3.1.1. Soil Solarization
3.1.2. Soil Biodisinfection
- Biofumigation
- Biosolarization
- Useful organic amendments in the process
4. Results and Discussion
Cost Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAO. Background Notes on Sustainable, Productive and Resilient Agro-Food Systems: Value Chains, Human Capital, and the 2030 Agenda; FAO: Rome, Italy, 2019; ISBN 9789251316474. [Google Scholar]
- Gómez-Tenorio, M.Á.; Magdaleno-González, J.; Tello-Marquina, J.C. Evaluación e Implementación de Técnicas Regenerativas Para la Mejora de la Fertilidad en el Cultivo del Almendro en las Provincias de Almería y Granada; Editorial Tecnoagrícola de Spain: Madrid, Spain, 2021; ISBN 978-84-17596-98-9. [Google Scholar]
- Jacobs, A.A.; Evans, R.S.; Allison, J.K.; Garner, E.R.; Kingery, W.L.; Mcculley, R.L.; Major, G.; Resource, L.; Soil, A.; Office, S.; et al. Soil & Tillage Research Cover crops and no-tillage reduce crop production costs and soil loss, compensating for lack of short-term soil quality improvement in a maize and soybean production system. Soil Tillage Res. 2022, 218, 105310. [Google Scholar] [CrossRef]
- Martínez-Francés, M.A.; Lacasa-Plasencia, A.; Tello-Marquina, J.C. Ecología de la Microbiota Fúngica de los Suelos de los Invernaderos de Pimiento y su Interés Agronómico; Ministerio de Agricultura Pesca y Alimentacion: Madrid, Spain, 2009; ISBN 9788449109874.
- European Union of Audit. European Union Audit Preview. Biodiversity in Farming; European Union of Audit: Luxembourg, 2019. [Google Scholar]
- Región de Murcia, C.D.G. Decreto-Ley 2/2019 de 26 de Diciembre, de Protección Integral del Mar Menor; Boletín Oficial de la Región de Murcia: Murcia, Spain, 2019; pp. 36008–36089. [Google Scholar]
- Díez-Rojo, M.A.; López-Pérez, J.A.; Urbano-Terrón, P.; Bello-Pérez, A. Biodesinfección de Suelos y Manejo Agronómico Biodesinfección de Suelos y Manejo Agronómico; Ministerio de Medio Ambiente y Medio Rural y Marino: Madrid, Spain, 2010.
- UN. World Population Prospects 2022; United Nations, Ed.; UN: New York, NY, USA, 2022; ISBN 9789211483734. [Google Scholar]
- MAPA; Cajamar. Diagnóstico Inicial del Estado de la Transformación Digital del Sector Agroalimentario Español; Ministerio de Agricultura Pesca y Alimentacion y Cajamar: Madrid, Spain, 2022.
- UN. Draft Outcome Document of the United Nations Summit for the Adoption of the Post-2015 Development Agenda; UN: New York, NY, USA, 2015; Volume 13689. [Google Scholar]
- Cifuentes-Faura, J. European Union policies and their role in combating climate change over the years. Air Qual. Atmos. Health 2022, 15, 1333–1340. [Google Scholar] [CrossRef] [PubMed]
- European Comission. The European Green Deal; Office of the European Union: Brussels, Belgium, 2019; pp. 1–28. [Google Scholar]
- European Comission. A New Circular Economy Action Plan. In For a Cleaner and More Competitive Europe; Office of the European Union: Brussels, Belgium, 2020; p. 23. [Google Scholar]
- Kirchherr, J.; Reike, D.; Hekkert, M. Resources, Conservation & Recycling Conceptualizing the circular economy: An analysis of 114 de fi nitions. Resour. Conserv. Recycl. 2017, 127, 221–232. [Google Scholar] [CrossRef]
- Mazur-Wierzbicka, E. Circular economy: Advancement of European Union countries. Environ. Sci. Eur. 2021, 33, 111. [Google Scholar] [CrossRef]
- European Comission. EU Biodiversity Strategy for 2030. Bringing Nature Back into Our Lives; Office of the European Union: Brussels, Belgium, 2020; pp. 1–27. [Google Scholar]
- European Comission. A Farm to Fork Strategy for a Fair, Healthy and Environmentally-Friendly Food System; Office of the European Union: Brussels, Belgium, 2020; pp. 1–23. [Google Scholar]
- Castillo-Díaz, F.J.; Belmonte-Ureña, L.J.; Camacho-Ferre, F.; Tello-Marquina, J.C. Biodisinfection as a Profitable Fertilization Method for Horticultural Crops in the Framework of the Circular Economy. Agronomy 2022, 12, 521. [Google Scholar] [CrossRef]
- Gómez-Tenorio, M.A.; Lupión-Rodríguez, B.; Boix-Ruiz, A.; Ruiz-Olmos, C.; Marín-Guirao, J.I.; Tello-Marquina, J.C.; Camacho-Ferre, F.; De Cara-García, M. Meloidogyne-infested tomato crop residues are a suitable material for biodisinfestation to manage Meloidogyne sp. in greenhouses in Almería (south-east Spain). Acta Hortic. 2018, 1207, 217–221. [Google Scholar] [CrossRef]
- European Commision. Inception Impact Assessment. EU Nature Restoration Targets; Office of the European Union: Brussels, Belgium, 2021; p. 4. [Google Scholar]
- European Commission. Proposal for a Regulation of the European Parliament and of the Council on Nature Restoration; 22.6.2022 COM(2022) 304 Final; European Commission: Brussels, Belgium, 2022; Volume 0195, p. 91. [Google Scholar]
- Copa-Cogeca/Europêche. United Call for Rejection of Unrealistic Nature Legislation That Endangers Farmers and Fishers’ Livelihoods and Food Production in the EU; Copa-Cogeca/Europêche: Bruxelles, Belgium, 2023; p. 2. [Google Scholar]
- Rabobank. World Vegetable Map; Rabobank Gr.: Utrecht, The Netherlands, 2017; Volume 2017. [Google Scholar]
- MAPA. Encuesta Sobre Superficies y Rendimientos de Cultivos; Ministerio de Agricultura, Pesca y Alimentación: Madrid, Spain, 2023; p. 45.
- Junta de Andalucía. Cartografía de Invernaderos en Almería, Granada y Málaga; Año 2021. Cons. Agric. Ganad. Pesca y Desarro. Sosten.; la Junta Andalucía. 2022, pp. 1–27. Available online: https://www.juntadeandalucia.es/sites/default/files/2021-11/Cartografia%20_inv_AL_GR_MA_v210928%20_1.pdf (accessed on 3 December 2022).
- EUROSTAT. Crop Production in EU Standard Humidity (from 2000 Onwards). [V0000_S0000] Fresh Vegetables (Including Melons) and Strawberries. Available online: https://ec.europa.eu/eurostat/databrowser/view/APRO_CPSH1__custom_4031262/default/table?lang=en (accessed on 3 December 2022).
- Gutiérrez-Gutiérrez, C. Anuario Agrícola. 2021. Fhmurcia; Fhmurcia: Murcia, Spain, 2022. [Google Scholar]
- Junta de Andalucía. Anuario. Available online: https://www.juntadeandalucia.es/organismos/agriculturaganaderiapescaydesarrollosostenible/servicios/estadistica-cartografia/anuarios.html (accessed on 15 June 2022).
- Cajamar. Análisis de la Campaña Hortofrutícola. Campaña 2021/2022; Cajamar Caja Rural: Barcelona, Spain, 2022. [Google Scholar]
- Valera-Martínez, D.L.; Belmonte-Ureña, L.J.; Molina Aiz, F.D.; López MArtínez, A. Los Invernaderos de Almería. Análisis de su Tecnología y Rentabilidad; Cajamar Caja Rural: Almeria, Spain, 2014; p. 504. [Google Scholar]
- Vanthoor, B.H.E.; Stigter, J.D.; van Henten, E.J.; Stanghellini, C.; de Visser, P.H.B.; Hemming, S. A methodology for model-based greenhouse design: Part 5, greenhouse design optimisation for southern-Spanish and Dutch conditions. Biosyst. Eng. 2012, 111, 350–368. [Google Scholar] [CrossRef]
- Junta de Andalucía. Caracterización de los Invernaderos de Andalucía; Junta de Andalucía: Sevilla, Spain, 2015. [Google Scholar]
- Duque-Acevedo, M.; Lancellotti, I.; Andreola, F.; Barbieri, L.; Belmonte-ureña, L.J.; Camacho-ferre, F. Management of Agricultural Waste Biomass as raw material for the construction sector. An analysis of sustainable and circular alternatives. Environ. Sci. Eur. 2022, 34, 70. [Google Scholar] [CrossRef]
- Junta de Andalucía. Líneas de Actuación en Materia de Gestión de Restos Vegetales en la Horticultura de Andalucía; Cons. Agric. Ganad. Pesca y Desarro. Sosten.; la Junta Andalucía. 2016, pp. 1–45. Available online: https://www.juntadeandalucia.es/export/drupaljda/Lineas_actuacion_materia_gestion_restos_vegetales_horticultura_Andalucia.pdf (accessed on 3 December 2022).
- Duque-Acevedo, M.; Belmonte-Ureña, L.J.; Plaza-Úbeda, J.A.; Camacho-Ferre, F. The management of agricultural waste biomass in the framework of circular economy and bioeconomy: An opportunity for greenhouse agriculture in Southeast Spain. Agronomy 2020, 10, 489. [Google Scholar] [CrossRef] [Green Version]
- Camacho-Ferre, F. Diferentes alternativas para la gestión del residuo biomasa procedente de cultivos de invernadero. In Innovaciones Tecnológicas en Cultivos de Invernadero; Rodríguez, E.J.F., Ed.; Universidad de Almería—Junta de Andalucía: Almería, Spain, 2003; pp. 211–237. ISBN 84-8748-052-7. [Google Scholar]
- European Commission. A Sustainable Bioeconomy for Europe: Strengthening the Connection between Economy, Society and the Environment. Updated Bioeconomy Strategy; European Commission: Brussels, Belgium, 2018; ISBN 978-92-79-94144-3. [Google Scholar]
- Sayadi-Gmada, S.; Roc, C.; Rojas-Serrano, F.; Garc, R.; Lorbach-Kelle, M.B.; Manrique-Gordillo, T. Inorganic Waste Management in Greenhouse Agriculture in Almeria (SE Spain): Towards a Circular System in Intensive Horticultural Production. Sustainability 2019, 11, 3782. [Google Scholar] [CrossRef] [Green Version]
- Castillo Díaz, F.J.; Marín-Guirao, J.I.; Belmonte-Ureña, L.J.; Tello-marquina, J.C. Effect of Repeated Plant Debris Reutilization as Organic Amendment on Greenhouse Soil Fertility. Int. J. Environ. Res. Public Health 2021, 18, 11544. [Google Scholar] [CrossRef] [PubMed]
- Camacho-Ferre, F. Técnicas de Producción en Cultivos Protegidos; Instituto de Publicaciones de Cajamar: Almería, Spain, 2004; ISBN 84-95531-17-8. [Google Scholar]
- García-García, M.C.; Céspedes-López, A.J.; Cano-Banderas, M.; Martín-Expósito, E.; Cánovas-Fernández, G.; Párra-Gómez, S. Trends in soil disinfection in greenhouses in south-eastern Spain. In Proceedings of the X International Symposium on SOIL and Substrate Disinfestation, Almeria, Spain, 6–8 June 2023. [Google Scholar]
- Honoré, M.N.; Belmonte-Ureña, L.J.; Navarro-Velasco, A.; Camacho-Ferre, F. Profit analysis of papaya crops under greenhouses as an alternative to traditional intensive horticulture in Southeast Spain. Int. J. Environ. Res. Public Health 2019, 16, 2908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acebedo, M.M.; Diánez, F.; Santos, M. Almeria’s Green Pest Management Revolution: An Opportunity That Arose from a Food Safety Alert. Agronomy 2022, 12, 619. [Google Scholar] [CrossRef]
- COEXPHAL. Memoria Coexphal 2020/2021; Coexphal: Almeria, Spain, 2022. [Google Scholar]
- Valera-Martínez, D.L.; Belmonte-Ureña, L.J.; Molina Aiz, F.D.; Camacho-Ferre, F. The greenhouses of Almería, Spain: Technological analysis and profitability. Acta Hortic. 2017, 1170, 2019–2226. [Google Scholar] [CrossRef]
- Kitchenham, B. Procedures for Performing Systematic Reviews; Keele University Technical Report TR/SE-0401; Keele University: Newcastle, UK, 2004; pp. 1–34. [Google Scholar]
- Tranfield, D.; Denyer, D.; Smart, P. Towards a Methodology for Developing Evidence-Informed Management Knowledge by Means of Systematic Review. Br. J. Manag. 2003, 14, 207–222. [Google Scholar] [CrossRef]
- Batlles-delaFuente, A.; Abad-segura, E.; González, M.; Cortés-García, F.J. An Evolutionary Approach on the Framework of Circular Economy Applied to Agriculture. Agronomy 2022, 12, 620. [Google Scholar] [CrossRef]
- Elsevier Scopus. Available online: https://www.elsevier.com/es-es/solutions/scopus (accessed on 14 August 2022).
- García-Raya, P.; Ruiz-Olmos, C.; Marín-Guirao, J.I.; Asensio-Grima, C.; Tello-Marquina, J.C.; de Cara-García, M. Greenhouse Soil Biosolarization with Tomato Plant Debris as a Unique Fertilizer for Tomato Crops Greenhouse Soil Biosolarization with Tomato Plant Debris as a Unique Fertilizer for Tomato Crops. Int. J. Environ. Res. Public Health 2019, 16, 279. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Olmos, C.A.; Gómez-Tenorio, M.Á.; Camacho-ferre, F.; Belmonte-Ureña, L.J.; Tello-Marquina, J.C. Control de nematodos del género Meloidogyne en un suelo de invernadero cultivado con papaya utilizando la técnica de biosolarización de suelos. Terralia 2018, 116, 53–62. [Google Scholar]
- Batlles-delaFuente, A.; Belmonte-Ureña, L.J.; Duque-Acevedo, M.; Camacho-Ferre, F. A Profitable Alternative for the Spanish Southeast: The Case of Production of Figs in Greenhouses. Agronomy 2022, 12, 2577. [Google Scholar] [CrossRef]
- Subhashree, S.N.; Igathinathane, C.; Hendrickson, J.; Archer, D.; Liebig, M. Forage economics calculator web tool: A decision support system for forage management. Comput. Electron. Agric. 2023, 208, 107775. [Google Scholar] [CrossRef]
- Xu, Z.; Sarmento, L.; Ito, L.; Tokai, A. Cost and health benefit analysis of remediation alternatives for the heavy-metal-contaminated agricultural land in a Pb—Zn mining town in China. J. Clean. Prod. 2023, 397, 136503. [Google Scholar] [CrossRef]
- Zhuo, C.; Xueqin, L.; Zhiwei, W.; Yantao, Y.; Tanglei, S.; Taoli, H. Industrial Crops & Products Techno-economic and whole life cycle assessment of ester fuels production from agricultural waste via hydrothermal liquefaction. Ind. Crop. Prod. 2023, 192, 116096. [Google Scholar] [CrossRef]
- Castillo-Díaz, F.J.; Belmonte-Ureña, L.J.; Batlles-delaFuente, A.; Camacho-Ferre, F. Impact of the new measures related to the circular economy on the management of agrochemical packaging in Spanish agriculture and the use of biodegradable plastics. Environ. Sci. Eur. 2022, 34, 94. [Google Scholar] [CrossRef]
- Celiktopuz, E.; Kapur, B.; Saridas, M.A.; Güney, O.; Aksoy, F. Plant Physiology and Biochemistry Yield, quality and physiological variation of strawberry in response to irrigation regimes and exogenous proline with a cost benefit analysis. Plant Physiol. Biochem. 2023, 195, 238–246. [Google Scholar] [CrossRef] [PubMed]
- Colla, G. Foliar Applications of Protein Hydrolysate, Plant and Seaweed Extracts Increase Yield but Differentially Modulate Fruit Quality of Greenhouse Tomato. HortScience 2017, 52, 1214–1220. [Google Scholar] [CrossRef]
- Heinrich, T.; Park, H.; Orozco, R.; Ding, Z.; Álvarez-López, V.; Mosquera-losada, M.R.; Steinbeis, L.; Hoffmann, T. Biochar production from late-harvest grass—Challenges and potential for farm-scale implementation. Sustain. Prod. Consum. 2023, 37, 256–267. [Google Scholar] [CrossRef]
- López-Serrano, M.A.; Velasco-Muñoz, J.F.; Aznar-Sánchez, J.A.; Román-Sánchez, I.M. Financial Evaluation of the Use of Reclaimed Water in Agriculture in Southeastern Spain, A Mediterranean Region. Agronomy 2021, 11, 2218. [Google Scholar] [CrossRef]
- Morselli, N.; Boccaletti, S.; Meglioraldi, S.; Puglia, M.; Pedrazzi, S.; Allesina, G. Biomass-powered thermal weeding in wine farms: An environmental and economic assessment. J. Clean. Prod. 2023, 385, 135684. [Google Scholar] [CrossRef]
- Roberts, M.; Hawes, C.; Young, M. Environmental management on agricultural land: Cost benefit analysis of an integrated cropping system for provision of environmental public goods. J. Environ. Manag. 2023, 331, 117306. [Google Scholar] [CrossRef]
- Streimikis, J.; Baležentis, T. Agricultural sustainability assessment framework integrating sustainable development goals and interlinked priorities of environmental, climate and agriculture policies. Sustain. Dev. 2020, 28, 1702–1712. [Google Scholar] [CrossRef]
- Torresano, F.; Camacho-Ferre, F. Valoración de las Diferentes Labores Culturales en los Cultivos de Tomate, Pimiento, Calabacín, Pepino, Sandía, Melón, Judía y Berenjena; Agrupación Española de Entidades Aseguradoras de los Seguros Agrarios Combinados (Agroseguro); Universidad de Almería: Almería, Spain, 2012. [Google Scholar]
- Agroseguro. Agroseguro. Available online: https://agroseguro.es/conocenos/quienes-somos/ (accessed on 14 April 2023).
- INE. Índices Nacionales: General y de Grupos ECOICOP. Available online: https://www.ine.es/jaxiT3/Tabla.htm?t=22344 (accessed on 6 April 2023).
- Katan, J.; Greenberger, A.; Alon, H.; Grinstein, A. Solar Heating by Polyethylene Mulching for the Control of Diseases caused by Soil-Borne Pathogens. Phytopathology 1976, 66, 683–688. [Google Scholar] [CrossRef]
- Katan, J. Soil solarization: The idea, the research and its development. Phytoparasitica 2015, 43, 1–4. [Google Scholar] [CrossRef]
- Guerrero, M.M.; Lacasa, C.M.; Martínez, V.; Martínez-Lluch, M.C.; Larregla, S.; Lacasa, A. Soil biosolarization for Verticillium dahliae and Rhizoctonia solani control in artichoke crops in southeastern Spain. Span. J. Agric. Res. 2019, 17, e1002. [Google Scholar] [CrossRef] [Green Version]
- García-Ruiz, A.; Tello-Marquina, J.C.; Avilés-Guerrero, M.; Ordovás-Ascaso, J. Fusariosis del Clavel (Fusarium oxysporum f. sp. dianthi) Últimos Avances en su Control; Ediciones Agrotécnicas: Madrid, Spain, 2009. [Google Scholar]
- Palmero, D.; de Cara-García, M.; Santos, M.; Tello-Marquina, J.C. Control of diseases from forma especiales of Fusarium oxysporum causing wilt in intensive horticultural crops. Res. Signpost 2011, 661, 209–228. [Google Scholar]
- Marín-Guirao, J.I.; Tello-Marquina, J.C.; Díaz, M.; Boix, A.; Ruiz-Olmos, C.A.; Camacho-Ferre, F. Effect of greenhouse soil bio-disinfection on soil nitrate content and tomato fruit yield and quality. Soil Res. 2016, 54, 200–206. [Google Scholar] [CrossRef]
- Marín-Guirao, J.I.; de Cara-García, M.; Tello-Marquina, J.C. Effect of soil biodisinfection on soil fungal communities associated to horticultural crops. Ecosistemas 2019, 28, 63–72. [Google Scholar] [CrossRef] [Green Version]
- Kirkegaard, J.A.; Gardner, P.A.; Desmarchelier, J.M.; Angus, J.F. Benefits of brassica break crops in the Southeast wheatbelt. In Proceedings of the 7th Australian Agronomy Conference, Wagga Wagga, Australia, 19–24 September 1993; pp. 282–285. [Google Scholar]
- Kirkegaard, J.A.; Gardner, J.; Desmarcherlier, J.M.; Angus, J.F. Biofumigation Using Brassica species to Control Pest and Diseases in Horticulture and Agriculture. In Proceedings of the 9th Australian Research Assembly on Brassicas, Waga Wagga, Australia, 5–7 October 1993; Wrather, N., Mailes, R.J., Eds.; pp. 77–82. [Google Scholar]
- Lazzeri, L.; Leoni, O.; Manici, L.M. Biocidal plant dried pellets for biofumigation. Ind. Crop. Prod. 2004, 20, 59–65. [Google Scholar] [CrossRef]
- Lazzeri, L.; Manici, M. The glucosinolate-myrosinase system: A natural and practical tool for biofumigation. Acta Hortic. 2000, 532, 89–95. [Google Scholar] [CrossRef]
- Gardiner, J.B.; Morra, M.J.; Eberlein, C.V.; Brown, P.D.; Borek, V. Allelochemicals released in soil following incorporation of rapeseed (Brassica napus) green manures. J. Agric. Food Chem. 1999, 47, 3837–3842. [Google Scholar] [CrossRef] [PubMed]
- Gimsing, A.L.; Kirkegaard, J.A. Glucosinolate and isothiocyanate concentration in soil following incorporation of Brassica biofumigants. Soil Biol. Biochem. 2006, 38, 2255–2264. [Google Scholar] [CrossRef]
- Marín-guirao, J.I. Evaluación del Efecto de Distintas Materias Orgánicas Sobre la Microbiota Edáfica, Contenido de Nitratos en Suelo, y Producción y Calidad de Cultivos de Tomate y Sandía en Suelo Arenado Bajo Plástico; Universidad de Almería: Almería, Spain, 2016. [Google Scholar]
- Achmon, Y.; Harrold, D.R.; Claypool, J.T.; Stapleton, J.J.; Vandergheynst, J.S.; Simmons, C.W. Assessment of tomato and wine processing solid wastes as soil amendments for biosolarization. Waste Manag. 2016, 48, 156–164. [Google Scholar] [CrossRef] [Green Version]
- Seo, M.W.; Lee, S.W.; Lee, S.H.; Jang, I.B.; Heo, H.J. Effect of Green Manure Incorporation and Solarization on Root Rot Disease of 3-year-old Ginseng in Soil of Continuous Cropping Ginseng. Korean J. Med. Crop Sci. 2019, 27, 284–291. [Google Scholar] [CrossRef]
- Díaz-Hernández, S.; Gallo-Llobet, L.; Domínguez-Correa, P.; Rodríguez, A. Effect of repeated cycles of soil solarization and biosolarization on corky root, weeds and fruit yield in screen-house tomatoes under subtropical climate conditions in the Canary Islands. Crop Prot. 2017, 94, 20–27. [Google Scholar] [CrossRef]
- García-Raya, P. Efecto de la Adición de Restos de Cosecha de Tomate Mediante Biosolarización en la Producción, Calidad del Tomate y Morfología de la Planta; Universidad de Almería: Almeria, Spain, 2018. [Google Scholar]
- Gamliel, A.; Stapleton, J.J. Effect of Chicken Compost or Ammonium Phosphate and Solarization on Pathogen Control, Rhizosphere Microorganisms, and Lettuce Growth. Plant Dis. 1993, 77, 886. [Google Scholar] [CrossRef]
- Guerrero, M.M.; Ros, C.; Lacasa, C.M.; Martínez, V.; Lacasab, A.; Fernández, P.; Núñez-Zofío, M.; Larreglac, S.; Martíneza, M.A.; Díez-Rojo, M.A.; et al. Effect of biosolarization using pellets of brassica carinata on soil-borne pathogens in protected pepper crops. Acta Hortic. 2010, 883, 337–344. [Google Scholar] [CrossRef]
- Núñez-Zofio, M.; Larregla, S.; Garbisu, C. Repeated biodisinfection controls the incidence of Phytophthora root and crown rot of pepper while improving soil quality. Span. J. Agric. Res. 2012, 10, 794–805. [Google Scholar] [CrossRef]
- Klein, E.; Katan, J.; Austerweil, M.; Gamliel, A. Laboratory System to Study Soil Solarization and Organic Amendment Effects on Plant Pathogens. Phytopathology 2007, 97, 1476–1983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basallote-Ureba, M.J.; Vela-Delgado, M.D.; Capote, N.; Melero-Vara, J.M.; López-Herrera, C.J.; Prados-Ligero, A.M.; Talavera-Rubia, M.F. Control of Fusarium wilt of carnation using organic amendments combined with soil solarization, and report of associated Fusarium species in southern Spain. Crop Prot. 2016, 89, 184–192. [Google Scholar] [CrossRef]
- Blok, W.J.; Lamers, J.G.; Termorshuizen, A.J.; Bollen, G.J. Control of soilborne plant pathogens by incorporating fresh organic amendments followed by tarping. Phytopathology 2000, 90, 253–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilardi, G.; Pugliese, M.; Gullino, M.L.; Garibaldi, A. Effect of different organic amendments on lettuce fusarium wilt and on selected soilborne microorganisms. Plant Pathol. 2016, 65, 704–712. [Google Scholar] [CrossRef]
- Huang, X.Q.; Wen, T.; Zhang, J.B.; Meng, L.; Zhu, T.B.; Liu, L.L.; Cai, Z.C. Control of soil-borne pathogen Fusarium oxysporum by biological soil disinfestation with incorporation of various organic matters. Eur. J. Plant Pathol. 2015, 143, 223–235. [Google Scholar] [CrossRef]
- Marín-Guirao, J.I.; Tello-Marquina, J.C. Microbiota edáfica y fatiga de suelo en invernaderos de la provincia de Gran. In I Jornadas de Transferencia Hortofrutícola de Ciambital; Camacho-Ferre, F., Valera-Martínez, D.L., Belmonte-Ureña, L., Herrero-Sánchez, C., Reca-Cardeña, J., Marín-Membrive, P., del Pino-Gracia, A., Casa-Fernández, M., Eds.; Universidad de Almería: Almería, Spain, 2017; pp. 17–36. ISBN 978-84-16389-98-8. [Google Scholar]
- Guerrero-Díaz, M.M.; Lacasa-Martínez, M.; Hernández-Piñera, A.; Martínez-Alarcon, V.; Lacasa-Plasencia, A. Evaluation of repeated biodisinfestation using Brassica carinata pellets to control Meloidogyne incognita in protected pepper crops. Span. J. Agric. Res. 2013, 11, 485–493. [Google Scholar] [CrossRef] [Green Version]
- Valdes, Y.; Viaene, N.; Moens, M. Effects of yellow mustard amendments on the soil nematode community in a potato field with focus on Globodera rostochiensis. Appl. Soil Ecol. 2012, 59, 39–47. [Google Scholar] [CrossRef]
- Chamorro, M.; Miranda, L.; Domínguez, P.; Medina, J.J.; Soria, C.; Romero, F.; Santos, B.D.L. Evaluation of biosolarization for the control of charcoal rot disease (Macrophomina phaseolina) in strawberry. Crop Prot. 2015, 67, 279–286. [Google Scholar] [CrossRef]
- Epstein, E. The Science of Composting; CRC Press: New York, NY, USA, 1997. [Google Scholar]
- Simmons, C.W.; Guo, H.; Claypool, J.T.; Marshall, M.N.; Perano, K.M.; Stapleton, J.J.; VanderGheynst, J.S. Managing compost stability and amendment to soil to enhance soil heating during soil solarization. Waste Manag. 2013, 33, 1090–1096. [Google Scholar] [CrossRef] [Green Version]
- Lazarovits, G. Management of soil-borne plant pathogens with organic soil amendments: A disease control strategy salvaged from the past. Can. J. Plant Pathol. 2001, 23, 1–7. [Google Scholar] [CrossRef]
- Momma, N.; Kobara, Y.; Uematsu, S.; Kita, N.; Shinmura, A. Development of biological soil disinfestations in Japan. Appl. Microbiol. Biotechnol. 2013, 97, 3801–3809. [Google Scholar] [CrossRef] [PubMed]
- Katase, M.; Kubo, C.; Ushio, S.; Ootsuka, E.; Takeuchi, T.; Mizukubo, T. Nematicidal activity of volatile fatty acids generated from wheat bran in reductive soil disinfestation. Jpn. J. Nematol. 2009, 39, 53–62. [Google Scholar] [CrossRef] [Green Version]
- Kirkegaard, J.A.; Sarwar, M. Biofumigation potential of brassicas: I. Variation in glucosinolate profiles of diverse field-grown brassicas. Plant Soil 1998, 201, 71–89. [Google Scholar] [CrossRef]
- Hansen, Z.R.; Keinath, A.P. Increased pepper yields following incorporation of biofumigation cover crops and the effects on soilborne pathogen populations and pepper diseases. Appl. Soil Ecol. 2013, 63, 67–77. [Google Scholar] [CrossRef]
- Ros, C.; Sánchez, F.; Martínez, V.; Lacasa, C.M.; Hernández, A.; Torres, J.; Guerrero, M.M.; Lacasa, A. El cultivo de brásicas para biosolarización reduce las poblaciones de Meloidogyne incognita en los invernaderos de pimiento del sudeste de Spain. ITEA Inf. Técnica Económica Agrar. 2016, 112, 109–126. [Google Scholar] [CrossRef]
- Lamers, J.G.; Runia, W.T.; Molendijk, L.P.G.; Bleeker, P.O. Perspectives of anaerobic soil disinfestation. Acta Hortic. 2010, 883, 277–284. [Google Scholar] [CrossRef] [Green Version]
- Rosskopf, E.N.; Kokalis-Burelle, N.; Hong, J. Status of ADS Development in Florida. In Proceedings of the Annual International Research Conference on Methyl Bromide. Alternatives and Emissions Reductions, Orlando, FL, USA, 30 October–2 November 2011; Volume 42, pp. 103–112. [Google Scholar]
- Fernandez-Bayo, J.D.; Shea, E.A.; Parr, A.E.; Achmon, Y.; Stapleton, J.J.; VanderGheynst, J.S.; Hodson, A.K.; Simmons, C.W. Almond processing residues as a source of organic acid biopesticides during biosolarization. Waste Manag. 2020, 101, 74–82. [Google Scholar] [CrossRef]
- MAGRAMA. Plan Estatal Marco de Gestión de Residuos PEMAR (2016–2022); Ministerio de Agricultura, Pesca y Alimentación: Madrid, Spain, 2015; pp. 1–182.
- Guerrero, M.M.; Guirao, P.; Martinez-lluch, M.C.; Tello, J.C.; Lacasa, A. Soil fatigue and its specificity towards pepper plants in greenhouses. Span. J. Agric. Res. 2014, 12, 644–652. [Google Scholar] [CrossRef] [Green Version]
- Fernández, P.; Lacasa, A.; Guirao, P.; Larregla, S. Effects of Biosolarization with fresh sheep manure on soil physical properties of pepper greenhouses in Campo de Cartagena. In Proceedings of the 6th Workshop on Agri-Food Research, Cartagena, Spain, 8–9 May 2018; Artés-Hernández, F., Cos, J.E., Fernández-Hernández, J.A., Calatrava, J.A., Aguayo, E., Alarcón, J.J., Guitiérrez-Cortines, M.E., Eds.; pp. 97–100, ISBN 9788416325641. [Google Scholar]
- Ros, C.; Martínez, V.; Sánchez-Solana, F.; López-Marín, J.; Lacasa, C.M.; Guerrero, M.d.M.; Lacasa, A. Combination of biosolarization and grafting to control Meloidogyne incognita in greenhouse pepper crops. Crop Prot. 2018, 113, 33–39. [Google Scholar] [CrossRef]
- Medina, J.J.; Miranda, L.; Soria, C.; Palencia, P. Non-Chemical Alternatives to Methyl Bromide for Strawberry: Biosolarization as Case-Study in Huelva (Spain). Acta Hortic. 2009, 842, 961–964. [Google Scholar] [CrossRef]
- Miranda, L.; Domínguez, P.; Soria, C.; Zea, T.; Talavera, M.; Velasco, L.; Romero, F.; Santos, B.D.L.; Newton, A.I. Soil Biosolarization for Strawberry Cultivation. Acta Hortic. 2012, 926, 407–414. [Google Scholar]
- Marín-guirao, J.I.; Gómez-Tenorio, M.Á.; Castillo-Díaz, F.J.; Magdaleno-González, J.; Tello-Marquina, J.C. Incidencia de la biodesinfección de suelos de invernadero usando restos vegetales del cultivo de pimiento sobre la microbiota edáfica (Hongos y bacterias). In Proceedings of the I Congreso Internacional de Sistemas Agrarios Tradicionales, V Encuentro InterVegas, Tenerife, Spain, 24–26 October 2019. [Google Scholar]
- Serrano-Pérez, P.; De Santiago, A.; Rodríguez-Molina, M.d.C. Biofumigation with Pellets of Defatted Seed Meal of Brassica carinata: Factors Affecting Performance against Phytophthora nicotianae in Pepper Crops. Front. Sustain. Food Syst. 2021, 5, 664531. [Google Scholar] [CrossRef]
- Ros, M.; Garcia, C.; Hernandez, M.T.; Lacasa, A.; Fernandez, P.; Pascual, J.A. Effects of biosolarization as methyl bromide alternative for Meloidogyne incognita control on quality of soil under pepper. Biol. Fertil. Soils 2008, 45, 37–44. [Google Scholar] [CrossRef]
- Guerrero, M.; Martínez, M.; Ros, C.; Martínez, M.; Bello, A.; Lacasa, A. Biosolarización y biofumigación para la producción de pimiento ecológico en invernadero. In Proceedings of the VII Congreso SEAE, Zaragoza, Spain, 18–23 September 2006; p. 103. [Google Scholar]
- Martínez, M.A.; Guerrero, M.M.; Martínez, M.C.; Ros, C.; Lacasa, A.; Tello-Marquina, J.C. Efecto de la biosolarización reiterada sobre la microbiota fúngica en cultivos de pimiento. In Proceedings of the VII Congreso SEAE, Zaragoza, Spain, 18–23 September 2006; p. 212. [Google Scholar]
- Guerrero-Díaz, M.M.; Lacasa-Martinez, C.M.; Hernández, A.; Martínez, V.; Martínez, M.C.; Fernández-Molina, P.; Lacasa, A. Biosolarization with agroindustrial byproduct for the control of soilborne pathogens in protected pepper crops in southeast Spain. Acta Hortic. 2014, 1044, 157–161. [Google Scholar] [CrossRef]
- Mitidieri, M.S.; Brambilla, V.; Barbieri, M.; Piris, E.; Celié, R. Tomato Crop Health, Yield, and Greenhouse Soil Conditions after 17 Years of Repeated Treatments of Biofumigation and Solarization. Glob. J. Agric. Innov. Res. Dev. 2021, 8, 123–139. [Google Scholar] [CrossRef]
- Domínguez, P.; Miranda, L.; Soria, C.; de los Santos, B.; Chamorro, M.; Romero, F.; Daugovish, O.; López-Aranda, J.M.; Medina, J.J. Soil biosolarization for sustainable strawberry production. Agron. Sustain. Dev. 2014, 34, 821–829. [Google Scholar] [CrossRef] [Green Version]
- Domínguez, P.; Miranda, L.; Medina, J.J.; Santos, B.D.L.; Daugovish, O.; Soria, C.; Chamorro, M.; López-, J.M.; Domínguez, P.; Miranda, L.; et al. Evaluation of Non-Fumigant Alternative Soil Treatments for Strawberry Production in Huelva Evaluation of Non-Fumigant Alternative Soil Treatments for Strawberry Production in Huelva (Spain). Int. J. Fruit Sci. 2016, 16, 28–36. [Google Scholar] [CrossRef]
- Sánchez-Navarro, A.; Jiménez-Ballesta, R.; Girona-Ruiz, A.; Alarcón-Vera, I.; Delgado-Iniesta, M.J. Rapid Response Indicators for Predicting Changes in Soil Properties Due to Solarization or Biosolarization on an Intensive Horticultural Crop in Semiarid Regions. Land 2022, 11, 64. [Google Scholar] [CrossRef]
- López-Elías, J.; Jiménez, L.J.; Huez, L.M.A.; Garza, O.S.; Cruz, B.F.; Bautista, O.A.L. Medidas de control biológico en la producción de pepino, bajo condiciones de invernadero. Idesia (Arica) 2017, 35, 7–12. [Google Scholar] [CrossRef] [Green Version]
- De la Lastra, E.; Marín-Guirao, J.I.; López-Moreno, F.J.; Soriano, T.; de Cara-García, M.; Capote, N. Potential inoculum sources of Fusarium species involved in asparagus decline syndrome and evaluation of soil disinfestation methods by qPCR protocols. Pest Manag. Sci. 2021, 77, 4749–4757. [Google Scholar] [CrossRef]
- Khadka, R.B.; Marasini, M.; Rawal, R.; Testen, A.L.; Miller, S.A. Effects of anaerobic soil disinfestation carbon sources on soilborne diseases and weeds of okra and eggplant in Nepal. Crop Prot. 2020, 135, 104846. [Google Scholar] [CrossRef]
- Mauromicale, G.; Lo Monaco, A.; Longo, A.M.G. Improved efficiency of soil solarization for growth and yield of greenhouse tomatoes. Agron. Sustain. Dev. 2010, 30, 753–761. [Google Scholar] [CrossRef]
- Mauromicale, G.; Longo, A.M.G.; Lo Monaco, A. The effect of organic supplementation of solarized soil on the quality of tomato fruit. Sci. Hortic. (Amsterdam) 2011, 129, 189–196. [Google Scholar] [CrossRef]
- Castillo-Díaz, F.J.; Ruiz-Olmos, C.A.; Gómez-Tenorio, M.Á.; Tello-Marquina, J.C. Efecto de la biosolarización sobre la producción de tomate cultivado bajo invernadero en Almería. Parte I: Evaluación de diferentes restos vegetales. Agrícola Vergel 2021, 432, 103–112. [Google Scholar]
- Junta de Andalucía. Observatorio de Precios y Mercados. Costes. Available online: https://www.juntadeandalucia.es/agriculturaypesca/observatorio/servlet/FrontController?action=List&table=11200&subsector=&page=1&ec=default (accessed on 12 April 2023).
- Castillo-Díaz, F.J.; Batlles-delafuente, A.; Belmonte-Ureña, L.J.; Camacho-ferre, F. Impact of environmental policies on the profitability of greenhouse agriculture in southeastern Spain. Sustain. Dev. 2023, 1–18. [Google Scholar] [CrossRef]
- Martos-Pedrero, A.; Jiménez-Castillo, D.; Ferrón-Vílchez, V.; Cortés-García, F.J. Corporate social responsibility and export performance under stakeholder view: The mediation of innovation and the moderation of the legal form. Corp. Soc. Responsib. Environ. Manag. 2022, 30, 248–266. [Google Scholar] [CrossRef]
- Plaza-Úbeda, J.A.; Abad-Segura, E.; de Burgos-Jiménez, J.; Boteva-Asenova, A.; Belmonte-Ureña, L.J. Trends and New Challenges in the Green Supply Chain: The Reverse Logistics. Sustainability. 2020, 13, 331. [Google Scholar] [CrossRef]
- Sidorowicz, A.; Maqbool, Q.; Nazar, M. Future of Nanofertilizer. In Nanotechnology for Agriculture: Crop Production & Protection; Springer Nature: Berlin/Heidelberg, Germany, 2019; Volume 1, pp. 143–152. [Google Scholar]
- European Union. Regulation (eu) 2018/848 of the European Parliament and of the Council of 30 May 2018 on Organic Production and Labelling of Organic Products and Repealing Council Regulation (EC) No 834/2007. Off. J. Eur. Union 2018, 150, 1–92. [Google Scholar]
Type | Crop | |
---|---|---|
Long cycle | Tomato | |
Short cycle | Autumn–Winter | Spring–Summer |
Tomato | Watermelon | |
Sweet pepper | Watermelon |
Treatment | 10 cm Depth | 30 cm Depth | |||
---|---|---|---|---|---|
Tmax 1 | Tmin 1 | N. Hours > 40 °C 1 | Tmax 1 | Tmin 1 | |
Control | 33.0 ± 1.3 | 22.6 ± 0.8 | 0.0 ± 0.0 | 29.1 ± 1.4 | 25.5 ± 0.9 |
Solarization | 42.6 ± 1.0 | 24.8 ± 2.1 | 107.0 ± 50.4 | 35.1 ± 1.2 | 24.9 ± 1.7 |
Biosolarization | 43.6 ± 1.0 | 26.1 ± 0.4 | 136.8 ± 56.8 | 36.4 ± 0.4 | 26.3 ± 0.51 |
Causal Agent | Source |
---|---|
Pythium ultimum | [85] |
Phytophthora capsici | [86,87] |
Fusarium oxysporum f. sp. radicis-lycopersici | [88] |
Fusarium oxysporum f. sp. dianthi | [70,71,89] |
Fusarium oxysporum f. sp. asparagi | [90] |
Fusarium oxysporum f. sp. lactucae | [91] |
Fusarium oxysporum f. sp. cubense | [92] |
Fusarium oxysporum f. sp. radicis-cucumerinum | [93] |
Pyrenochaeta lycopersici | [83] |
Meloidogyne incognita | [86,94] |
Meloidogyne spp. | [19,87] |
Globodera rostochiensis | [95] |
Verticillium dahliae | [69] |
Rhizoctonia solani | [69,87] |
Macrophomina phaseolina | [96] |
Organic Amendment | Dose (kg·m−2) 1 | Source |
---|---|---|
Fresh sheep/goat manure | 4.1 ± 0.2 | [4,19,69,83,86,87,94,96,109,110,111] |
Mixture of semi-composted horse manure and poultry manure | 3.4 ± 2.1 | [87] |
Chicken manure | 1.7 ± 0.9 | [4,72,73,87,89,109,112,113] |
Tomato plant debris | 4.3 ± 1.9 | [18,19,39,50] |
Sweet-pepper plant waste | 6.3 ± 3.3 | [114] |
Papaya vegetable waste | 15.0 ± 5.0 | [51] |
Beer bagasse | 2.0 ± 0.0 | [69] |
Broccoli plant remains | 2.0 ± 0.0 | [69] |
Brassica carinata pellets | 0.6 ± 0.6 | [18,39,50,86,89,94,96,113,115] |
White mustard (Sinapsis alba) | 5.9 ± 1.9 | [87] |
Sugar-beet vinasse | 1.5 ± 0.0 | [96,113] |
Olive residues | 2.0 ± 0.7 | [89,96] |
Carnation and chrysanthemum compost | 12.0 ± 0.0 | [71] |
Dehydrated broccoli (Brassica oleacea var. italica dehydrated) | 0.8 ± 0.0 | [72,73] |
Glycerin | 0.1 ± 0.0 | [113] |
Feather meal | 0.1 ± 0.0 | [114] |
Crop | Source |
---|---|
Pepper (Capsicum annuum) 2 * | [86,94,116,117,118,119] |
Carnation (Dianthus caryophyllus) 2 * | [70,71] |
Artichoke (Cynara scolymus) 2 | [69] |
Tomato (Solanum lycopersicon) 2 * | [83,120] |
Strawberry (Fragaria x ananassa) 2 | [96,113,121,122] |
Lettuce (Lactuca sativa) 2 | [123] |
Cucumber (Cucumis sativus) 1,2 * | [124] |
Asparagus (Asparagus officinalis) 2 | [125] |
Eggplant (Solanum melongena) 2 | [126] |
Okra (Abelmoschus esculentus) 2 | [126] |
Alternative 1 | Alternative 2 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Concept (EUR/ha·Year) | Tomato Long Cycle | Sweet Pepper | Watermelon | Total | Sweet Pepper | Watermelon | Total | Tomato | Watermelon | Total | Tomato | Watermelon | Total | |
C | A | C | A | C | A | |||||||||
Technical assessment | 355 | 355 | 177 | 177 | 355 | 177 | 177 | 355 | 177 | 177 | 355 | 177 | 177 | 355 |
Soil preparation | 4489 | 3282 | 4475 | 4475 | 8950 | 3272 | 3272 | 6544 | 0 | 4475 | 4475 | 0 | 3272 | 3272 |
Removal of plant debris | 1157 | 0 | 1156 | 1154 | 2309 | 0 | 0 | 0 | 0 | 1154 | 1154 | 0 | 0 | 0 |
Incorporation of plant remains | 0 | 1367 | 0 | 0 | 0 | 1072 | 1072 | 2144 | 0 | 0 | 0 | 682 | 1072 | 1754 |
Solarization | 994 | 1984 | 496 | 495 | 991 | 991 | 991 | 1981 | 496 | 495 | 991 | 991 | 991 | 1981 |
Water for solarization | 132 | 163 | 66 | 66 | 132 | 82 | 82 | 163 | 66 | 66 | 132 | 82 | 82 | 163 |
Chemical disinfectant | 234 | 0 | 117 | 117 | 233 | 0 | 0 | 0 | 117 | 117 | 233 | 0 | 0 | 0 |
Covering and structure | 5457 | 5457 | 2725 | 2725 | 5449 | 2725 | 2725 | 5449 | 2725 | 2725 | 5449 | 2725 | 2725 | 5449 |
Seeds and seedling production | 6592 | 6592 | 8044 | 2323 | 10,368 | 8044 | 2323 | 10,368 | 0 | 2323 | 2323 | 0 | 2323 | 2323 |
Labor, supplies, etc. | 62,956 | 62,956 | 39,178 | 7270 | 46,447 | 39,178 | 7270 | 46,447 | 27,864 | 7270 | 35,133 | 27,864 | 7270 | 35,133 |
Water | 2405 | 1511 | 920 | 897 | 1817 | 578 | 563 | 1141 | 1216 | 897 | 2114 | 764 | 563 | 1327 |
Fertilizers | 4517 | 1391 | 2030 | 2579 | 4609 | 0 | 660 | 660 | 2230 | 2579 | 4810 | 1391 | 660 | 2051 |
Total variable cost | 89,290 | 85,059 | 59,383 | 22,279 | 81,661 | 56,118 | 19,135 | 75,252 | 34,891 | 22,279 | 57,170 | 34,675 | 19,135 | 53,809 |
Soil maintenance | 2424 | 2424 | 1182 | 1182 | 2364 | 1182 | 1182 | 2364 | 1218 | 1182 | 2400 | 1218 | 1182 | 2400 |
Covering and structure | 4852 | 4852 | 2366 | 2366 | 4732 | 2366 | 2366 | 4732 | 2438 | 2366 | 4804 | 2438 | 2366 | 4804 |
Energy and fixed supplies | 1915 | 1915 | 934 | 934 | 1869 | 934 | 934 | 1869 | 962 | 934 | 1897 | 962 | 934 | 1897 |
Insurance, management, and financial services | 4219 | 4219 | 2058 | 2058 | 4115 | 2058 | 2058 | 4115 | 2120 | 2058 | 4177 | 2120 | 2058 | 4177 |
Equipment and irrigation system | 11,625 | 11,625 | 4741 | 4741 | 9483 | 4741 | 4741 | 9483 | 5841 | 4741 | 10,583 | 5841 | 4741 | 10,583 |
Total fixed costs | 25,034 | 25,034 | 11,281 | 11,281 | 22,563 | 11,281 | 11,281 | 22,563 | 12,579 | 11,281 | 23,861 | 12,579 | 11,281 | 23,861 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castillo-Díaz, F.J.; Belmonte-Ureña, L.J.; Batlles-delaFuente, A.; Camacho-Ferre, F. Impact of Soil Biodisinfection Techniques in Horticultural Crops on Profitability within the Framework of the Circular Economy. Horticulturae 2023, 9, 859. https://doi.org/10.3390/horticulturae9080859
Castillo-Díaz FJ, Belmonte-Ureña LJ, Batlles-delaFuente A, Camacho-Ferre F. Impact of Soil Biodisinfection Techniques in Horticultural Crops on Profitability within the Framework of the Circular Economy. Horticulturae. 2023; 9(8):859. https://doi.org/10.3390/horticulturae9080859
Chicago/Turabian StyleCastillo-Díaz, Francisco José, Luis J. Belmonte-Ureña, Ana Batlles-delaFuente, and Francisco Camacho-Ferre. 2023. "Impact of Soil Biodisinfection Techniques in Horticultural Crops on Profitability within the Framework of the Circular Economy" Horticulturae 9, no. 8: 859. https://doi.org/10.3390/horticulturae9080859