Next Issue
Previous Issue

Table of Contents

Biomimetics, Volume 2, Issue 3 (September 2017)

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
View options order results:
result details:
Displaying articles 1-10
Export citation of selected articles as:

Research

Jump to: Review

Open AccessArticle The Antioxidant Activity of Quercetin in Water Solution
Biomimetics 2017, 2(3), 9; doi:10.3390/biomimetics2030009
Received: 30 May 2017 / Revised: 19 June 2017 / Accepted: 22 June 2017 / Published: 27 June 2017
PDF Full-text (5716 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Abstract: Despite its importance, little is known about the absolute performance and the mechanism for quercetin’s antioxidant activity in water solution. We have investigated this aspect by combining differential oxygen-uptake kinetic measurements and B3LYP/6311+g (d,p) calculations. At pH = 2.1 (30 °C),
[...] Read more.
Abstract: Despite its importance, little is known about the absolute performance and the mechanism for quercetin’s antioxidant activity in water solution. We have investigated this aspect by combining differential oxygen-uptake kinetic measurements and B3LYP/6311+g (d,p) calculations. At pH = 2.1 (30 °C), quercetin had modest activity (kinh = 4.0 × 103 M−1 s−1), superimposable to catechol. On raising the pH to 7.4, reactivity was boosted 40-fold, trapping two peroxyl radicals in the chromen-4-one core and two in the catechol with kinh of 1.6 × 105 and 7.0 × 104 M−1 s−1. Reaction occurs from the equilibrating mono-anions in positions 4′ and 7 and involves firstly the OH in position 3, having bond dissociation enthalpies of 75.0 and 78.7 kcal/mol, respectively, for the two anions. Reaction proceeds by a combination of proton-coupled electron-transfer mechanisms: electron–proton transfer (EPT) and sequential proton loss electron transfer (SPLET). Our results help rationalize quercetin’s reactivity with peroxyl radicals and its importance under biomimetic settings, to act as a nutritional antioxidant. Full article
(This article belongs to the Special Issue Bioinspired Catechol-based Systems: Chemistry and Applications)
Figures

Figure 1

Open AccessArticle A Bacteria-Based Self-Healing Cementitious Composite for Application in Low-Temperature Marine Environments
Biomimetics 2017, 2(3), 13; doi:10.3390/biomimetics2030013
Received: 24 May 2017 / Revised: 11 July 2017 / Accepted: 12 July 2017 / Published: 14 July 2017
PDF Full-text (3860 KB) | HTML Full-text | XML Full-text
Abstract
The current paper presents a bacteria-based self-healing cementitious composite for application in low-temperature marine environments. The composite was tested for its crack-healing capacity through crack water permeability measurements, and strength development through compression testing. The composite displayed an excellent crack-healing capacity, reducing the
[...] Read more.
The current paper presents a bacteria-based self-healing cementitious composite for application in low-temperature marine environments. The composite was tested for its crack-healing capacity through crack water permeability measurements, and strength development through compression testing. The composite displayed an excellent crack-healing capacity, reducing the permeability of cracks 0.4 mm wide by 95%, and cracks 0.6 mm wide by 93% following 56 days of submersion in artificial seawater at 8 °C. Healing of the cracks was attributed to autogenous precipitation, autonomous bead swelling, magnesium-based mineral precipitation, and bacteria-induced calcium-based mineral precipitation in and on the surface of the bacteria-based beads. Mortar specimens incorporated with beads did, however, exhibit lower compressive strengths than plain mortar specimens. This study is the first to present a bacteria-based self-healing cementitious composite for application in low-temperature marine environments, while the formation of a bacteria-actuated organic–inorganic composite healing material represents an exciting avenue for self-healing concrete research. Full article
(This article belongs to the Special Issue Extreme Biomimetics)
Figures

Figure 1

Open AccessArticle 2-S-Lipoylcaffeic Acid, a Natural Product-Based Entry to Tyrosinase Inhibition via Catechol Manipulation
Biomimetics 2017, 2(3), 15; doi:10.3390/biomimetics2030015
Received: 24 July 2017 / Revised: 4 August 2017 / Accepted: 9 August 2017 / Published: 10 August 2017
PDF Full-text (2802 KB) | HTML Full-text | XML Full-text
Abstract
Conjugation of naturally occurring catecholic compounds with thiols is a versatile and facile entry to a broad range of bioinspired multifunctional compounds for diverse applications in biomedicine and materials science. We report herein the inhibition properties of the caffeic acid- dihydrolipoic acid S
[...] Read more.
Conjugation of naturally occurring catecholic compounds with thiols is a versatile and facile entry to a broad range of bioinspired multifunctional compounds for diverse applications in biomedicine and materials science. We report herein the inhibition properties of the caffeic acid- dihydrolipoic acid S-conjugate, 2-S-lipoylcaffeic acid (LC), on mushroom tyrosinase. Half maximum inhibitory concentration (IC50) values of 3.22 ± 0.02 and 2.0 ± 0.1 µM were determined for the catecholase and cresolase activity of the enzyme, respectively, indicating a greater efficiency of LC compared to the parent caffeic acid and the standard inhibitor kojic acid. Analysis of the Lineweaver–Burk plot suggested a mixed-type inhibition mechanism. LC proved to be non-toxic on human keratinocytes (HaCaT) at concentrations up to 30 µM. These results would point to LC as a novel prototype of melanogenesis regulators for the treatment of pigmentary disorders. Full article
(This article belongs to the Special Issue Bioinspired Catechol-based Systems: Chemistry and Applications)
Figures

Open AccessArticle Examining Potential Active Tempering of Adhesive Curing by Marine Mussels
Biomimetics 2017, 2(3), 16; doi:10.3390/biomimetics2030016
Received: 26 July 2017 / Revised: 17 August 2017 / Accepted: 17 August 2017 / Published: 21 August 2017
PDF Full-text (2992 KB) | HTML Full-text | XML Full-text
Abstract
Mussels generate adhesives for staying in place when faced with waves and turbulence of the intertidal zone. Their byssal attachment assembly consists of adhesive plaques connected to the animal by threads. We have noticed that, every now and then, the animals tug on
[...] Read more.
Mussels generate adhesives for staying in place when faced with waves and turbulence of the intertidal zone. Their byssal attachment assembly consists of adhesive plaques connected to the animal by threads. We have noticed that, every now and then, the animals tug on their plaque and threads. This observation had us wondering if the mussels temper or otherwise control catechol chemistry within the byssus in order to manage mechanical properties of the materials. Here, we carried out a study in which the adhesion properties of mussel plaques were compared when left attached to the animals versus detached and exposed only to an aquarium environment. For the most part, detachment from the animal had almost no influence on the mechanical properties on low-energy surfaces. There was a slight, yet significant difference observed with attached versus detached adhesive properties on high energy surfaces. There were significant differences in the area of adhesive deposited by the mussels on a low- versus a high-energy surface. Mussel adhesive plaques appear to be unlike, for example, spider silk, for which pulling on the material is needed for assembly of proteinaceous fibers to manage properties. Full article
(This article belongs to the Special Issue Bioinspired Catechol-based Systems: Chemistry and Applications)
Figures

Figure 1

Open AccessArticle Size Control and Fluorescence Labeling of Polydopamine Melanin-Mimetic Nanoparticles for Intracellular Imaging
Biomimetics 2017, 2(3), 17; doi:10.3390/biomimetics2030017
Received: 19 June 2017 / Revised: 29 August 2017 / Accepted: 30 August 2017 / Published: 6 September 2017
PDF Full-text (3820 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
As synthetic analogs of the natural pigment melanin, polydopamine nanoparticles (NPs) are under active investigation as non-toxic anticancer photothermal agents and as free radical scavenging therapeutics. By analogy to the widely adopted polydopamine coatings, polydopamine NPs offer the potential for facile aqueous synthesis
[...] Read more.
As synthetic analogs of the natural pigment melanin, polydopamine nanoparticles (NPs) are under active investigation as non-toxic anticancer photothermal agents and as free radical scavenging therapeutics. By analogy to the widely adopted polydopamine coatings, polydopamine NPs offer the potential for facile aqueous synthesis and incorporation of (bio)functional groups under mild temperature and pH conditions. However, clear procedures for the convenient and reproducible control of critical NP properties such as particle diameter, surface charge, and loading with functional molecules have yet to be established. In this work, we have synthesized polydopamine-based melanin-mimetic nanoparticles (MMNPs) with finely controlled diameters spanning ≈25 to 120 nm and report on the pH-dependence of zeta potential, methodologies for PEGylation, and the incorporation of fluorescent organic molecules. A comprehensive suite of complementary techniques, including dynamic light scattering (DLS), cryogenic transmission electron microscopy (cryo-TEM), X-ray photoelectron spectroscopy (XPS), zeta-potential, ultravioletvisible (UV–Vis) absorption and fluorescence spectroscopy, and confocal microscopy, was used to characterize the MMNPs and their properties. Our PEGylated MMNPs are highly stable in both phosphate-buffered saline (PBS) and in cell culture media and exhibit no cytotoxicity up to at least 100 µg mL−1 concentrations. We also show that a post-functionalization methodology for fluorophore loading is especially suitable for producing MMNPs with stable fluorescence and significantly narrower emission profiles than previous reports, suggesting they will be useful for multimodal cell imaging. Our results pave the way towards biomedical imaging and possibly drug delivery applications, as well as fundamental studies of MMNP size and surface chemistry dependent cellular interactions. Full article
(This article belongs to the Special Issue Bioinspired Catechol-based Systems: Chemistry and Applications)
Figures

Open AccessArticle Noncovalent Interactions in the Catechol Dimer
Biomimetics 2017, 2(3), 18; doi:10.3390/biomimetics2030018
Received: 21 June 2017 / Revised: 4 September 2017 / Accepted: 5 September 2017 / Published: 13 September 2017
PDF Full-text (6948 KB) | HTML Full-text | XML Full-text
Abstract
Noncovalent interactions play a significant role in a wide variety of biological processes and bio-inspired species. It is, therefore, important to have at hand suitable computational methods for their investigation. In this paper, we report on the contribution of dispersion and hydrogen bonds
[...] Read more.
Noncovalent interactions play a significant role in a wide variety of biological processes and bio-inspired species. It is, therefore, important to have at hand suitable computational methods for their investigation. In this paper, we report on the contribution of dispersion and hydrogen bonds in both stacked and T-shaped catechol dimers, with the aim of delineating the respective role of these classes of interactions in determining the most stable structure. By using second-order Møller–Plesset (MP2) calculations with a small basis set, specifically optimized for these species, we have explored a number of significant sections of the interaction potential energy surface and found the most stable structures for the dimer, in good agreement with the highly accurate, but computationally more expensive coupled cluster single and double excitation and the perturbative triples (CCSD(T))/CBS) method. Full article
(This article belongs to the Special Issue Bioinspired Catechol-based Systems: Chemistry and Applications)
Figures

Review

Jump to: Research

Open AccessReview Effective Elastic Modulus of Structured Adhesives: From Biology to Biomimetics
Biomimetics 2017, 2(3), 10; doi:10.3390/biomimetics2030010
Received: 28 February 2017 / Revised: 24 May 2017 / Accepted: 24 June 2017 / Published: 29 June 2017
Cited by 1 | PDF Full-text (4972 KB) | HTML Full-text | XML Full-text
Abstract
Micro- and nano-hierarchical structures (lamellae, setae, branches, and spatulae) on the toe pads of many animals play key roles for generating strong but reversible adhesion for locomotion. The hierarchical structure possesses significantly reduced, effective elastic modulus (Eeff), as compared to
[...] Read more.
Micro- and nano-hierarchical structures (lamellae, setae, branches, and spatulae) on the toe pads of many animals play key roles for generating strong but reversible adhesion for locomotion. The hierarchical structure possesses significantly reduced, effective elastic modulus (Eeff), as compared to the inherent elastic modulus (Einh) of the corresponding biological material (and therefore contributes to a better compliance with the counterpart surface). Learning from nature, three types of hierarchical structures (namely self-similar pillar structure, lamella–pillar hybrid structure, and porous structure) have been developed and investigated. Full article
(This article belongs to the Special Issue Micro- and Nano-Structured Bio-Inspired Surfaces)
Figures

Figure 1

Open AccessReview Catechol-Based Hydrogel for Chemical Information Processing
Biomimetics 2017, 2(3), 11; doi:10.3390/biomimetics2030011
Received: 31 May 2017 / Revised: 21 June 2017 / Accepted: 23 June 2017 / Published: 3 July 2017
PDF Full-text (2838 KB) | HTML Full-text | XML Full-text
Abstract
Catechols offer diverse properties and are used in biology to perform various functions that range from adhesion (e.g., mussel proteins) to neurotransmission (e.g., dopamine), and mimicking the capabilities of biological catechols have yielded important new materials (e.g., polydopamine). It is well known that
[...] Read more.
Catechols offer diverse properties and are used in biology to perform various functions that range from adhesion (e.g., mussel proteins) to neurotransmission (e.g., dopamine), and mimicking the capabilities of biological catechols have yielded important new materials (e.g., polydopamine). It is well known that catechols are also redox-active and we have observed that biomimetic catechol-modified chitosan films are redox-active and possess interesting molecular electronic properties. In particular, these films can accept, store and donate electrons, and thus offer redox-capacitor capabilities. We are enlisting these capabilities to bridge communication between biology and electronics. Specifically, we are investigating an interactive redox-probing approach to access redox-based chemical information and convert this information into an electrical modality that facilitates analysis by methods from signal processing. In this review, we describe the broad vision and then cite recent examples in which the catechol–chitosan redox-capacitor can assist in accessing and understanding chemical information. Further, this redox-capacitor can be coupled with synthetic biology to enhance the power of chemical information processing. Potentially, the progress with this biomimetic catechol–chitosan film may even help in understanding how biology uses the redox properties of catechols for redox signaling. Full article
(This article belongs to the Special Issue Bioinspired Catechol-based Systems: Chemistry and Applications)
Figures

Open AccessReview Composite Materials and Films Based on Melanins, Polydopamine, and Other Catecholamine-Based Materials
Biomimetics 2017, 2(3), 12; doi:10.3390/biomimetics2030012
Received: 8 May 2017 / Revised: 24 June 2017 / Accepted: 26 June 2017 / Published: 6 July 2017
PDF Full-text (1951 KB) | HTML Full-text | XML Full-text
Abstract
Polydopamine (PDA) is related to eumelanins in its composition and structure. These pigments allow the design, inspired by natural materials, of composite nanoparticles and films for applications in the field of energy conversion and the design of biomaterials. This short review summarizes the
[...] Read more.
Polydopamine (PDA) is related to eumelanins in its composition and structure. These pigments allow the design, inspired by natural materials, of composite nanoparticles and films for applications in the field of energy conversion and the design of biomaterials. This short review summarizes the main advances in the design of PDA-based composites with inorganic and organic materials. Full article
(This article belongs to the Special Issue Bioinspired Catechol-based Systems: Chemistry and Applications)
Figures

Open AccessReview Protein-Mediated Biotemplating on the Nanoscale
Biomimetics 2017, 2(3), 14; doi:10.3390/biomimetics2030014
Received: 22 May 2017 / Revised: 18 July 2017 / Accepted: 1 August 2017 / Published: 8 August 2017
PDF Full-text (2207 KB) | HTML Full-text | XML Full-text
Abstract
Purified proteins offer a homogeneous population of biological nanoparticles, equipped in many cases with specific binding sites enabling the directed self-assembly of envisaged one-, two- or three-dimensional arrays. These arrays may serve as nanoscale biotemplates for the preparation of novel functional composite materials,
[...] Read more.
Purified proteins offer a homogeneous population of biological nanoparticles, equipped in many cases with specific binding sites enabling the directed self-assembly of envisaged one-, two- or three-dimensional arrays. These arrays may serve as nanoscale biotemplates for the preparation of novel functional composite materials, which exhibit potential applications, especially in the fields of nanoelectronics and optical devices. This review provides an overview of the field of protein-mediated biotemplating, focussing on achievements made throughout the past decade. It is comprised of seven sections designed according to the size and configuration of the protein-made biotemplate. Each section describes the design and size of the biotemplate, the resulting hybrid structures, the fabrication methodology, the analytical tools employed for the structural analysis of the hybrids obtained, and, finally, their claimed/intended applications and a feasibility demonstration (whenever available). In conclusion, a short assessment of the overall status of the achievements already made vs. the future challenges of this field is provided. Full article
(This article belongs to the Special Issue Biomimetic Nanotechnology)
Figures

Figure 1

Journal Contact

MDPI AG
Biomimetics Editorial Office
St. Alban-Anlage 66, 4052 Basel, Switzerland
E-Mail: 
Tel. +41 61 683 77 34
Fax: +41 61 302 89 18
Editorial Board
Contact Details Submit to Biomimetics Edit a special issue Review for Biomimetics
logo
loading...
Back to Top