Development and Validation of Micro-Azocasein Assay for Quantifying Bromelain
Abstract
:1. Introduction
2. Experimental Design
2.1. Materials
- Bromelain (Enzybel, Villers-Le-Bouillet, Belgium).
- Azocasein (Sigma Aldrich, St. Louis, MO, USA, cat. A2765).
- Cysteamine (Sigma Aldrich, St. Louis, MO, USA, cat. 30070).
- Dithiobutylamine (DTBA) (Sigma Aldrich, St. Louis, MO, USA, cat. 774405).
- Dithiothreitol (DTT) (Sigma Aldrich, St. Louis, MO, USA, cat. 43815).
- N-acetylcysteine (NAC) (Sigma Aldrich, St. Louis, MO, USA, cat. A7250).
- L-cysteine (Sigma Aldrich, St. Louis, MO, USA, C7352).
- All other reagents were purchased from Sigma Aldrich, (St. Louis, MO, USA).
2.2. Equipment
- UV spectrometer (Shimadzu, Kyoto, Japan, cat. UV-1800).
3. Procedure
3.1. Calibration Curves
- Prepare a fresh stock solution of bromelain 10 mg/mL in distilled water (dH2O).
- For standard curve preparation, prepare a 200 µg/mL bromelain solution in dH2O. Then, carry out a serial dilution starting from 200 µg/mL and below in dH2O. Other standard curves that were serially diluted, such as 800, 600, and 400, were also investigated to arrive at linearity.
- Prepare 1% azocasein (w/v) in dH2O. Weigh the required quantity of azocasein and dissolve it in dH20 by vigorous vortex mixing. For a volume of 50 mL, 1.0 mL of ethanol (absolute) is added to the solids before adding the amount of dH2O.
- 0.5 M sodium hydroxide is prepared by dissolving the required amount in dH2O.
- Add 250 µL of azocasein solution to 250 µL of each bromelain concentration in a polypropylene tube at room temperature. The control contains only dH2O + 1% azocasein.
- Vortex mix the tubes and place them on an agitator shaker at ambient room temperature (23 °C) for 1 h.
- Add 1500 µL of 5% (w/v) trichloroacetic acid (TCA) that was previously mixed and centrifuged at 3000 rpm for 7 min. TCA is prepared by dissolving the required amount in dH2O.
- Pipette 150 µL of the clear yellow supernatant into the microwell of a 96-microwell plate from each dilution in triplicates.
- Add 150 µL of 0.5 Sodium hydroxide to each well to stop the reaction.
- Read the absorbance at 410 nm using a UV spectrophotometer.
- For unknown samples, similarly, 250 µL of each sample is treated as in steps 5–10. The concentration of unknown samples is calculated from the bromelain standard curve. The unknown bromelain sample should be suitably diluted to fall within the range of 200 µg/mL and below, treated with azocasein, and the absorbance can be measured to quantify the bromelain content.
3.2. Linearity of Calibration Curve
3.3. Detection Limit
3.4. Precision
3.5. Accuracy
3.6. Robustness
3.7. Reaction Time
3.8. Solvent Matrix Effect
3.9. Effects of N-Acetylcysteine and Other Antioxidants on Calibration Curve
3.10. Statistical Analysis
4. Results
4.1. Linearity of Calibration Curves
4.2. Limits of Detection (LOD) and Limits of Quantification (LOQ)
= 5.412 µg/mL
= 10 (0.00338)/0.002061
= 16.4 µg/mL
4.3. Precision (Intra-Day and Inter-Day Measurement)
4.4. Accuracy
4.5. Robustness
4.6. Enzyme-Substrate Reaction Time (OD in Relation to Proteolysis)
4.7. Solvent Matrix Effect
- Figure 4A: Mean slope ± S.D. = 0.001665 ± 3.5122 × 10−5
- Figure 4B: Mean slope ± S.D. = 0.002059 ± 7.4087 × 10−6
- When comparing the slopes, 0.002059/0.001665 (100) = 123.66 − 100 = 23.66%.
- A difference of 23.66% is observed.
4.8. Effects of N-Acetylcysteine and Other Antioxidants on the Calibration Curve
= 469.7/576.9 (100) = 81.4; 100 − 81.4 = 18.6% enhancement
= 553.3/576.9 (100) = 95.9; 100 − 95.9 = 4.1% enhancement
= 6985/576.9 (100) = 1210; 100 − 1210 = −1110 depression
= 1301/576.9 (100) = 225.5; 100 − 225.5 = −125.5% depression
= 1410/576.9 (100) = 244.4; 100 − 244.4 = −144.4% depression
= 1318/576.9 (100) = 228.5; 100 − 228.5= −128.5% depression
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Coêlho, D.F.; Saturnino, T.P.; Fernandes, F.F.; Mazzola, P.G.; Silveira, E.; Tambourgi, E.B. Azocasein Substrate for Determination of Proteolytic Activity: Reexamining a Traditional Method Using Bromelain Samples. BioMed Res. Int. 2016, 2016, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Cupp-Enyard, C. Sigma’s non-specific protease activity assay-casein as a substrate. JoVE (J. Vis. Exp.) 2008, 19, e899. [Google Scholar]
- Zhang, X.; Shuai, Y.; Tao, H.; Li, C.; He, L. Novel Method for the Quantitative Analysis of Protease Activity: The Casein Plate Method and Its Applications. ACS Omega 2021, 6, 3675–3680. [Google Scholar] [CrossRef] [PubMed]
- Leippe, D.M.; Nguyen, D.; Zhou, M.; Good, T.; Kirkland, T.A.; Scurria, M.; Bernad, L.; Ugo, T.; Vidugiriene, J.; Cali, J.J.; et al. A bioluminescent assay for the sensitive detection of proteases. BioTechniques 2011, 51, 105. [Google Scholar] [CrossRef]
- Wang, S.-L.; Lin, H.-T.; Liang, T.-W.; Chen, Y.-J.; Yen, Y.-H.; Guo, S.-P. Reclamation of chitinous materials by bromelain for the preparation of antitumor and antifungal materials. Bioresour. Technol. 2008, 99, 4386–4393. [Google Scholar] [CrossRef]
- Pavan, R.; Jain, S.; Shraddha; Kumar, A. Properties and Therapeutic Application of Bromelain: A Review. Biotechnol. Res. Int. 2012, 2012, 976203. [Google Scholar] [CrossRef] [PubMed]
- Hirche, C.; Citterio, A.; Hoeksema, H.; Koller, J.; Lehner, M.; Martinez, J.R.; Kneser, U. Eschar removal by bromelain based enzymatic debridement (Nexobrid((R))) in burns: An European consensus. Burns 2017, 43, 1640–1653. [Google Scholar] [CrossRef]
- Amini, A.; Masoumi-Moghaddam, S.; Ehteda, A.; Morris, D.L. Secreted mucins in pseudomyxoma peritonei: Pathophysiological significance and potential therapeutic prospects. Orphanet J. Rare Dis. 2014, 9, 71. [Google Scholar] [CrossRef]
- Pillai, K.; Akhter, J.; Mekkawy, A.; Chua, T.C.; Morris, D.L. Physical and chemical characteristics of mucin secreted by pseudomyxoma peritonei (PMP). Int. J. Med Sci. 2017, 14, 18–28. [Google Scholar] [CrossRef] [PubMed]
- Pillai, K.; Akhter, J.; Chua, T.C.; Morris, D.L. Anticancer property of bromelain with therapeutic potential in malignant peritoneal mesothelioma. Cancer Investig. 2013, 31, 241–250. [Google Scholar] [CrossRef]
- ICH Harmonised Guideline. Validation of Analytical Procedures: Q2(R2). Available online: https://www.ich.org/page/quality-guidelines (accessed on 1 November 2023).
- Ritonja, A.; Rowan, A.D.; Buttle, D.J.; Rawlings, N.D.; Turk, V.; Barrett, A.J. Stem bromelain: Amino acid sequence and implications for weak binding of cystatin. FEBS Lett. 1989, 247, 419–424. [Google Scholar] [CrossRef] [PubMed]
- Lemańska, K.; Szymusiak, H.; Tyrakowska, B.; Zieliński, R.; Soffers, A.E.; Rietjens, I.M. The influence of pH on antioxidant properties and the mechanism of antioxidant action of hydroxyflavones. Free Radic. Biol. Med. 2001, 31, 869–881. [Google Scholar] [CrossRef] [PubMed]
Precision | Measured Concentration (µg/mL) | Mean Recovery (%) | RSD (%) |
---|---|---|---|
Intra-day (n = 3) | 25.886 ± 0.002 | 103 | 0.37 |
Inter-day Day1 (n = 3) | 25.926 ± 0.163 | 103.7 | 0.6 |
Inter-day Day2 (n = 3) | 25.093 ± 0.133 | 100.37 | 0.53 |
Inter-day Day1 & 2 (n = 6) | 25.509 ± 0.416 | 102.04 | 1.63 |
BR Sample (µg/mL) | Added BR (µg/mL) | BR Detected (µg/mL) | Accuracy (%) |
---|---|---|---|
25.085 ± 0.098 | 3.0 | 27.94 ± 0.068 | 99.8 |
25.085 ± 0.098 | 4.0 | 28.82 ± 0.0049 | 99.4 |
25.085 ± 0.098 | 9.0 | 33.898 ± 0.0121 | 99.5 |
Mean Recovery | 99.56 ± 0.17 |
UV (nm) | Absorbance | Bromelain Content (%) | |
---|---|---|---|
Sample Solution (25 µg/mL) | Standard Solution (25 µg/mL) | ||
400 | 0.250 ± 0.001 | 0.252 ± 0.001 | 99.2 |
410 | 0.252 ± 0.0012 | 0.250 ± 0.0004 | 100.8 |
420 | 0.252 ± 0.0016 | 0.252 ± 0.0026 | 100 |
430 | 0.251 ± 0.0028 | 0.253 ± 0.0008 | 99.2 |
440 | 0.251 ± 0.0025 | 0.252 ± 0.0029 | 99.6 |
450 | 0.240 ± 0.0029 | 0.240 ± 0.0005 | 100 |
Solvent | LOD (µg/mL) | LOQ (µg/mL) |
---|---|---|
Phosphate buffer Saline (PBS) | 5.86 | 17.75 |
Distilled water (dH2O) | 5.39 | 16.35 |
Additives | Enhancement/Depression |
---|---|
L-cysteine | Enhancement |
N-acetylcysteine (NAC) | Enhancement |
Dithiobutylamine (DTBA) | Depression |
Dithiothreitol(DTT) | Depression |
Ascorbic acid | Depression |
Cysteamine | Depression |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pillai, K.; Akhter, J.; Mekkawy, A.H.; Valle, S.J.; Morris, D.L. Development and Validation of Micro-Azocasein Assay for Quantifying Bromelain. Methods Protoc. 2024, 7, 25. https://doi.org/10.3390/mps7020025
Pillai K, Akhter J, Mekkawy AH, Valle SJ, Morris DL. Development and Validation of Micro-Azocasein Assay for Quantifying Bromelain. Methods and Protocols. 2024; 7(2):25. https://doi.org/10.3390/mps7020025
Chicago/Turabian StylePillai, Krishna, Javed Akhter, Ahmed H. Mekkawy, Sarah J. Valle, and David L. Morris. 2024. "Development and Validation of Micro-Azocasein Assay for Quantifying Bromelain" Methods and Protocols 7, no. 2: 25. https://doi.org/10.3390/mps7020025