Next Issue
Volume 5, December
Previous Issue
Volume 5, June
 
 

Int. J. Turbomach. Propuls. Power, Volume 5, Issue 3 (September 2020) – 12 articles

Cover Story (view full-size image): In the majority of compressible flow CFD simulations, the standard ideal gas state equation is accurate enough. However, there is a range of applications where the deviations from the ideal gas behaviour is significant enough that performance predictions are no longer valid and more accurate models are needed. While a considerable amount of the literature has been written about the application of real gas state equations in CFD simulations, there is much less information on the numerical issues involved in the actual implementation of such models. The aim of this article is to present a robust implementation of real gas flow physics in an in-house, coupled, pressure-based solver, and highlight the main difference that arises as compared to standard ideal gas model. View this paper.
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
17 pages, 4278 KiB  
Article
TGSim Plus™—Real-Time Dynamic Simulation Suite of Gas Turbine Systems for the MATLAB®/Simulink® Environment
by Attilio Brighenti, Davide Duranti and Debora Quintabà
Int. J. Turbomach. Propuls. Power 2020, 5(3), 24; https://doi.org/10.3390/ijtpp5030024 - 11 Sep 2020
Viewed by 3793
Abstract
Dynamic simulation of turbomachinery by Hardware in the Loop (HIL) real-time systems has become an essential practice, due to the high cost of real equipment testing and the need to verify the control and diagnostic systems’ reaction to emergency situations. The authors developed [...] Read more.
Dynamic simulation of turbomachinery by Hardware in the Loop (HIL) real-time systems has become an essential practice, due to the high cost of real equipment testing and the need to verify the control and diagnostic systems’ reaction to emergency situations. The authors developed a full model of a power generation Gas Turbine Plant, including liquid and gaseous auxiliaries, and the electrical generator and starter motor, integrated in a MATLAB®/Simulink® simulation suite: TGSim Plus™. This allows assembling models of various gas turbine (GT) architectures by customised Simulink® library blocks and simulating steady state and transient conditions, such as complete start-up and shutdown operations as well as emergency, contingent operations and artificially injected fault scenarios. The model solver runs real-time steps at milliseconds scale. The paper describes the main modelling characteristics and typical results of steady state and transient simulations of a heavy-duty gas turbine under development by Doosan Heavy Industries and Construction (Changwon, South Korea). Comparison with benchmark design simulations obtained by a reference non real-time software shows a good match between the two environments, duly taking into account some differences in the GT models setting affecting parts of the sequence. The paper discusses also the bleed streams warm-up influence on GT performance and the start-up states trajectories dependency on control logic and on the starter helper motor torque envelope. Full article
Show Figures

Figure 1

13 pages, 2217 KiB  
Article
Infrared Thermography Investigation of Heat Transfer on Outlet Guide Vanes in a Turbine Rear Structure
by Isak Jonsson, Valery Chernoray and Radheesh Dhanasegaran
Int. J. Turbomach. Propuls. Power 2020, 5(3), 23; https://doi.org/10.3390/ijtpp5030023 - 01 Sep 2020
Cited by 12 | Viewed by 3276
Abstract
Aerothermal heat transfer measurements in fluid dynamics have a relatively high acceptance of uncertainty due to the intricate nature of the experiments. The large velocity and pressure gradients present in turbomachinery application add further complexity to the measurement procedure. Recent method and manufacturing [...] Read more.
Aerothermal heat transfer measurements in fluid dynamics have a relatively high acceptance of uncertainty due to the intricate nature of the experiments. The large velocity and pressure gradients present in turbomachinery application add further complexity to the measurement procedure. Recent method and manufacturing development has addressed some of the primary sources of uncertainty in these heat transfer measurements. However, new methods have so far not been applied in a holistic approach for heat transfer studies. This gap is bridged in the present study where a cost-effective and highly accurate method for heat transfer measurements is implemented, utilising infrared thermography technique (IRT) for surface temperature measurement. Novel heat transfer results are obtained for the turbine rear sturcture (TRS), at engine representative conditions for three different outlet guide vane (OGV) blade loading and at Reynolds Number of 235000. In addition to that, an extensive description of the implementation and error mitigation is presented. Full article
Show Figures

Figure 1

23 pages, 12102 KiB  
Article
Impact of Underlying RANS Turbulence Models in Zonal Detached Eddy Simulation: Application to a Compressor Rotor
by Julien Marty and Cédric Uribe
Int. J. Turbomach. Propuls. Power 2020, 5(3), 22; https://doi.org/10.3390/ijtpp5030022 - 26 Aug 2020
Cited by 4 | Viewed by 3610
Abstract
The present study focuses on the impact of the underlying RANS turbulence model in the Zonal Detached Eddy Simulation (ZDES) method when used for secondary flow prediction. This is carried out in light of three issues commonly investigated for hybrid RANS/LES methods (detection [...] Read more.
The present study focuses on the impact of the underlying RANS turbulence model in the Zonal Detached Eddy Simulation (ZDES) method when used for secondary flow prediction. This is carried out in light of three issues commonly investigated for hybrid RANS/LES methods (detection and protection of attached boundary layer, emergence, and growth of resolved turbulent fluctuations and accurate prediction of separation front due to progressive adverse pressure gradient). The studied configuration is the first rotor of a high pressure compressor. Three different turbulence modelings (Spalart and Allmaras model (SA), Menter model with (SST) and without (BSL) shear stress correction) are assessed as ZDES underlying turbulence model and also as turbulence model of unsteady RANS simulations. Whatever the underlying turbulence model, the ZDES behaves well with respect to the first two issues as the boundary layers appear effectively shielded and the RANS-to-LES switch is close downstream of trailing edges and separation fronts leading to a quick LES treatment of wakes and shear layers. Both tip leakage and corner flows are strongly influenced by the Navier–Stokes resolution approach (unsteady RANS vs. ZDES) but the underlying turbulence modelling (SA vs. SST vs. BSL) impacts mainly the junction flow near the hub for both approaches. ZDES underlying turbulence model choice appear essential since it leads to quite different corner flow separation topologies and so to inversion of the downstream stagnation pressure radial gradient. Full article
Show Figures

Figure 1

10 pages, 3520 KiB  
Article
Thermal Performance Evaluation in Gas Turbine Aero Engines Accessory Gearbox
by Soheil Jafari, Ahmed Bouchareb and Theoklis Nikolaidis
Int. J. Turbomach. Propuls. Power 2020, 5(3), 21; https://doi.org/10.3390/ijtpp5030021 - 26 Aug 2020
Cited by 3 | Viewed by 4557
Abstract
This paper presents a methodological approach for mathematical modelling and physics-based analysis of accessory gearbox (AGB) thermal behavior in gas turbine aero engines. The AGB structure, as one of the main sources of heat in gas turbine aero engines, is firstly described and [...] Read more.
This paper presents a methodological approach for mathematical modelling and physics-based analysis of accessory gearbox (AGB) thermal behavior in gas turbine aero engines. The AGB structure, as one of the main sources of heat in gas turbine aero engines, is firstly described and its power losses will be divided into load-dependent and no-load dependent parts. Different mechanisms of heat generation are then identified and formulated to develop a toolbox for calculation of the churning, sliding friction, and rolling friction losses between contact surfaces of the AGB. The developed tool is also capable of calculating the heat loss mechanisms in different elements of the AGB, such as gears, bearings, and seals. The generated model is used to simulate and analyze the AGB thermal performance in the different flight phases in a typical flight mission, where the obtained results are validated against publicly available data. The analysis of the results confirms the effectiveness of the proposed method to estimate the heat loss values in the AGBs of gas turbine aero engines and to predict the thermal loads of the AGB in different flight phases. The developed tool enables the gas turbine thermal management system designers to deal with the generated heats effectively and in an optimal way. Full article
Show Figures

Figure 1

32 pages, 1492 KiB  
Article
Real Gas Models in Coupled Algorithms Numerical Recipes and Thermophysical Relations
by Lucian Hanimann, Luca Mangani, Ernesto Casartelli, Damian M. Vogt and Marwan Darwish
Int. J. Turbomach. Propuls. Power 2020, 5(3), 20; https://doi.org/10.3390/ijtpp5030020 - 03 Aug 2020
Cited by 8 | Viewed by 4589
Abstract
In the majority of compressible flow CFD simulations, the standard ideal gas state equation is accurate enough. However, there is a range of applications where the deviations from the ideal gas behaviour is significant enough that performance predictions are no longer valid and [...] Read more.
In the majority of compressible flow CFD simulations, the standard ideal gas state equation is accurate enough. However, there is a range of applications where the deviations from the ideal gas behaviour is significant enough that performance predictions are no longer valid and more accurate models are needed. While a considerable amount of the literature has been written about the application of real gas state equations in CFD simulations, there is much less information on the numerical issues involved in the actual implementation of such models. The aim of this article is to present a robust implementation of real gas flow physics in an in-house, coupled, pressure-based solver, and highlight the main difference that arises as compared to standard ideal gas model. The consistency of the developed iterative procedures is demonstrated by first comparing against results obtained with a framework using perfect gas simplifications. The generality of the developed framework is tested by using the parameters from two different real gas state equations, namely the IAPWS-97 and the cubic state equations state equations. The highly polynomial IAPWS-97 formulation for water is applied to a transonic nozzle case where steam is expanded at transonic conditions until phase transition occurs. The cubic state equations are applied to a two stage radial compressor setup. Results are compared in terms of accuracy with a commercial code and measurement data. Results are also compared against simulations using the ideal gas model, highlighting the limitations of the later model. Finally, the effects of the real gas formulations on computational time are compared with results obtained using the ideal gas model. Full article
Show Figures

Figure 1

17 pages, 6583 KiB  
Article
Optimal Design of a Ljungström Turbine for ORC Power Plants: From a 2D model to a 3D CFD Validation
by Umberto Coronetta and Enrico Sciubba
Int. J. Turbomach. Propuls. Power 2020, 5(3), 19; https://doi.org/10.3390/ijtpp5030019 - 20 Jul 2020
Cited by 3 | Viewed by 4220
Abstract
In the last few years, waste-energy recovery systems based on the Organic Rankine Cycle (ORC) have gained increased attention in the global energy market as a versatile and sustainable technology for thermo-electric energy conversion from low-to-medium temperature sources, up to 350 °C. For [...] Read more.
In the last few years, waste-energy recovery systems based on the Organic Rankine Cycle (ORC) have gained increased attention in the global energy market as a versatile and sustainable technology for thermo-electric energy conversion from low-to-medium temperature sources, up to 350 °C. For a long time, water has been the only working fluid commercially adopted in powerplants: axial and, for smaller machines, radial inflow turbines have been the preferred expanders since their gulp capacity matches the ρ-T curve of water steam. The density of most organic compounds displays extremely large variations during the expansion (and the volume flow rate correspondingly increases along the machine channels), so that Radial Outflow Turbines (ROTs) have been recently considered instead of traditional solutions. This work proposes a two-dimensional inviscid model for the stage optimization of a counter-rotating ROT, known as the Ljungström turbine. The study starts by considering five different working fluids that satisfy both the gulp requirements of the turbine and the hot source characteristics. On the basis of a limited number of geometric assumptions and for a fixed set of operating conditions, different kinematic parameters are optimized to obtain the most efficient cascade configuration. Moreover, as shown in the conclusions, the most efficient blade profile leads to higher friction losses, making further investigation regarding the best configuration necessary. Full article
Show Figures

Figure 1

13 pages, 1449 KiB  
Article
Analysis of Nodal Diameter Zero Blade Vibrations of a Radial Turbine
by Markus Wunderlich, Alexander Esper, Manfred Wirsum and Klaus Buchmann
Int. J. Turbomach. Propuls. Power 2020, 5(3), 18; https://doi.org/10.3390/ijtpp5030018 - 09 Jul 2020
Viewed by 3421
Abstract
This paper presents results of strain gauge measurements, which have been carried out on a full-scale turbocharger test rig. Rotational speed of the turbocharger was ramped up and down through four preliminary anticipated rotor-blade resonances, with a known combination of main order of [...] Read more.
This paper presents results of strain gauge measurements, which have been carried out on a full-scale turbocharger test rig. Rotational speed of the turbocharger was ramped up and down through four preliminary anticipated rotor-blade resonances, with a known combination of main order of excitation and corresponding nodal diameter. An analysis of the transient data is presented. An investigation of spectra with high frequency resolutions, centered on individual blade resonance points in time, is presented. In contrast to former research, all blades resonate at the same point in time and thus at the same resonance frequency, if the excitation corresponds to a nodal diameter of zero. Strain data from the shaft is used to support findings, which, in other publications, often solely rely on strain data from individual blades. Full article
Show Figures

Graphical abstract

14 pages, 4083 KiB  
Article
Heat Transfer Enhancement of Impingement Cooling by Adopting Circular-Ribs or Vortex Generators in the Wall Jet Region of A Round Impingement Jet
by Ken-Ichiro Takeishi, Robert Krewinkel, Yutaka Oda and Yuichi Ichikawa
Int. J. Turbomach. Propuls. Power 2020, 5(3), 17; https://doi.org/10.3390/ijtpp5030017 - 07 Jul 2020
Cited by 12 | Viewed by 3291
Abstract
In the near future, when designing and using Double Wall Airfoils, which will be manufactured by 3D printers, the positional relationship between the impingement cooling nozzle and the heat transfer enhancement ribs on the target plate naturally becomes more accurate. Taking these circumstances [...] Read more.
In the near future, when designing and using Double Wall Airfoils, which will be manufactured by 3D printers, the positional relationship between the impingement cooling nozzle and the heat transfer enhancement ribs on the target plate naturally becomes more accurate. Taking these circumstances into account, an experimental study was conducted to enhance the heat transfer of the wall jet region of a round impingement jet cooling system. This was done by installing circular ribs or vortex generators (VGs) in the impingement cooling wall jet region. The local heat transfer coefficient was measured using the naphthalene sublimation method, which utilizes the analogy between heat and mass transfer. As a result, it was clarified that, within the ranges of geometries and Reynolds numbers at which the experiments were conducted, it is possible to improve the averaged Nusselt number Nu up to 21% for circular ribs and up to 51% for VGs. Full article
Show Figures

Figure 1

16 pages, 6257 KiB  
Article
Comparison and Sensibility Analysis of Warning Parameters for Rotating Stall Detection in an Axial Compressor
by Gabriel Margalida, Pierric Joseph, Olivier Roussette and Antoine Dazin
Int. J. Turbomach. Propuls. Power 2020, 5(3), 16; https://doi.org/10.3390/ijtpp5030016 - 07 Jul 2020
Cited by 14 | Viewed by 3276
Abstract
The present paper aims at evaluating the surveillance parameters used for early stall warning in axial compressors, and is based on unsteady pressure measurements at the casing of a single stage axial compressor. Two parameters—Correlation and Root Mean Square (RMS)—are first compared and [...] Read more.
The present paper aims at evaluating the surveillance parameters used for early stall warning in axial compressors, and is based on unsteady pressure measurements at the casing of a single stage axial compressor. Two parameters—Correlation and Root Mean Square (RMS)—are first compared and their relative performances discussed. The influence of sensor locations (in both radial and axial directions) is then considered, and the role of the compressor’s geometrical irregularities in the behavior of the indicators is clearly highlighted. The influence of the throttling process is also carefully analyzed. This aspect of the experiment’s process appears to have a non-negligible impact on the stall warning parameters, despite being poorly documented in the literature. This last part of this research work allow us to get a different vision of the alert parameters compared to what is classically done in the literature, as the level of irregularity that is reflected by the magnitude of the parameters appears to be an image of a given flow rate value, and not a clear indicator of the stall inception. Full article
Show Figures

Graphical abstract

25 pages, 6741 KiB  
Article
Combined Optic-Acoustic Monitoring of Combustion in a Gas Turbine
by Fabrice Giuliani, Lukas Andracher, Vanessa Moosbrugger, Nina Paulitsch and Andrea Hofer
Int. J. Turbomach. Propuls. Power 2020, 5(3), 15; https://doi.org/10.3390/ijtpp5030015 - 06 Jul 2020
Cited by 1 | Viewed by 4727
Abstract
The need for better combustion monitoring in gas turbines has become more acute with the latest technical requirements, standards, and policies in terms of safety, environment, efficiency, operation flexibility, and operation costs. Combustion Bay One e.U. and FH JOANNEUM GmbH initiated in 2015 [...] Read more.
The need for better combustion monitoring in gas turbines has become more acute with the latest technical requirements, standards, and policies in terms of safety, environment, efficiency, operation flexibility, and operation costs. Combustion Bay One e.U. and FH JOANNEUM GmbH initiated in 2015 an experimental research program about the feasibility and first assessments of placing optical systems near the combustor. The project’s acronym “emootion” stands for “Engine health MOnitOring and refined combusTION control based on optical diagnostic techniques embedded in the combustor”. The motivation of the project is twofold. On one side, one wants to exploit the radiative feature of the flame and to transform it into a piece of reliable information about the combustion status. On the other side, this information can be useful in terms of data interpretation or data reconciliation with other information coming from other sensors such as temperature probes, fast pressure probes, or accelerometers. The focus is put on several aspects of combustor operations: on detection of the flame, on monitoring of the ignition process, on a quality assessment of combustion based on its spectral contents (including soot formation), and on the detection of possible combustion instabilities. Promising results were obtained using photodiodes that offer an adequate trade-off between narrow-band sensitivity and signal time response. It is shown that it is convenient to combine a fast-pressure sensor with an optical sensor in a compact form; this combination has led to the so-called Rayleigh Criterion Probe (RCP). The split in red, green, and blue (RGB) light components and their further analysis allows for mapping the different types of operation. Regarding the probe packaging aspect, it is discussed that the level of light collection needed to keep an acceptable signal-to-noise ratio has been so far a restraint for the use of optical fibres. Solutions are proposed to bring the optical sensor as close as possible to the optical interface and to make it operational and reliable in prevailing heat. This contribution closes with a description of the pressure tests in a new combustion facility built for this purpose. A compact and portable combustion monitoring system including at least 3 RCPs can become an instrumentation standard within the next decade. Full article
Show Figures

Figure 1

16 pages, 1808 KiB  
Article
Gradient-Free and Gradient-Based Optimization of a Radial Turbine
by Nicolas Lachenmaier, Daniel Baumgärtner, Heinz-Peter Schiffer and Johannes Kech
Int. J. Turbomach. Propuls. Power 2020, 5(3), 14; https://doi.org/10.3390/ijtpp5030014 - 06 Jul 2020
Cited by 3 | Viewed by 3717
Abstract
A turbocharger’s radial turbine has a strong impact on the fuel consumption and transient response of internal combustion engines. This paper summarizes the efforts to design a new radial turbine aiming at high efficiency and low inertia by applying two different optimization techniques [...] Read more.
A turbocharger’s radial turbine has a strong impact on the fuel consumption and transient response of internal combustion engines. This paper summarizes the efforts to design a new radial turbine aiming at high efficiency and low inertia by applying two different optimization techniques to a parametrized CAD model. The first workflow wraps 3D fluid and solid simulations within a meta-model assisted genetic algorithm to find an efficient turbine subjected to several constraints. In the next step, the chosen turbine is re-parametrized and fed into the second workflow which makes use of a gradient projection algorithm to further fine-tune the design. This requires the computation of gradients with respect to the CAD parametrization, which is done by calculating and combining surface sensitivities and design velocities. Both methods are applied successfully, i.e., the first delivers a well-performing turbine, which, by the second method, is further improved by 0.34% in efficiency. Full article
Show Figures

Figure 1

19 pages, 14867 KiB  
Article
Experimental and Numerical Analysis of Deformation in a Rotating RC Helicopter Blade
by Pedro J. Sousa, Francisco Barros, Paulo J. Tavares and Pedro M. G. P. Moreira
Int. J. Turbomach. Propuls. Power 2020, 5(3), 13; https://doi.org/10.3390/ijtpp5030013 - 02 Jul 2020
Cited by 1 | Viewed by 2728
Abstract
Rotating structures are important and commonly used in the transportation and energy generation fields, where a better understanding of the deformations these structures endure is essential for both the design and maintenance phases. This work presents a novel image sensing methodology for measuring [...] Read more.
Rotating structures are important and commonly used in the transportation and energy generation fields, where a better understanding of the deformations these structures endure is essential for both the design and maintenance phases. This work presents a novel image sensing methodology for measuring the displacements of rotating parts in operation due to dynamic loading. This methodology employs 3D digital image correlation combined with a custom stroboscopic lighting solution to achieve apparent stillness of the target while it rotates and then processes the acquired data to remove small imprecisions and align it to the rotor’s intrinsic coordinate system. It was applied to an RC helicopter, whose blade deformation was measured and compared with a computational model, using fluid–structure interaction between computational fluid dynamics (CFD) and finite element analysis (FEA). Using live measurement techniques, it was possible to obtain the actual behaviour of the blades, which can be used to validate and tune computational models. The proposed methodology complements the methods available in the literature, which were centred around relative out-of-plane displacements, by enabling the comparison of absolute out-of-plane and in-plane ones. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop