Which Derivative?
Abstract
:1. Introduction
Remarks
- We work on .
- We use the two-sided Laplace transform (LT):
- The Fourier transform (FT) is obtained from the LT through the substitution with
- The functions and distributions have Laplace and/or Fourier transforms
- Current properties of the Dirac delta distribution and its derivatives will be used
- We will work with the usual convolution
- The fractional derivative order is assumed to be any real number
- The multi-valued expressions and will frequently be used. To obtain functions from them we will fix for branch-cut lines the negative real half axis for the first and the positive real half axis for the second; for both the first Riemann surface is chosen.
2. Some Classic Results
2.1. The Derivative Operators and Their Inverses
- The different time flow shows its influence: the causality (anti-causality) is clearly stated,
- We have and . We will call “anti-derivative” [6].
- In the derivative case () the summation goes only to N, since the becomes null for ,
- Let and be two integer values. With (7) and under the assumed functional space we can writeFor the backward derivatives the situation is similar. This result is straightforward using the properties of the binomial coefficients or the transform [15]
- The constant function
- The Heaviside, or unit step, function
2.2. System Interpretation
- The terms with negative exponents represent two TF corresponding to two disjoint regions of convergence, namely (causal system) and (anti-causal system),
- The terms with positive or null exponents are analytic on the whole complex plane and consequently there is no causality involved.
2.3. Other Important Results
- Derivative eigenfunctionsReturning back to (18)This result, for the particular case of , , yieldsThese results are also valid for negative n.
- The Leibniz relation for the productThe classic Leibniz relation gives the derivative of the product of two functions and can be written as
3. Backward Compatibility in Fractional Calculus
3.1. Some Considerations
3.2. Causal FC Based on the Incremental Ratio
- Linearity
- Additivity and Commutativity of the orders. If we apply (22) twice for any two orders, we have
- Neutral elementFrom (25) we conclude that there is always an inverse element, that is, for every there is always the order derivative.
- Backward compatibility ()If , then:We obtain this expression repeating the first order derivative.
- The generalized Leibniz rule for the productThe generalized Leibniz rule gives the FD of the product of two functions. It is one of the most important characteristics of the FD [18,19] and assumes the format [1]For the backward the formula is identical.
3.3. Some Examples
- Constant functionIf , for every and , then we have
- Causal power functionAs , we deduce using (24) that
3.4. Obtaining Integral Formulations
- has a worst analytic behaviour than ; eventually it can be discontinuous.
- The convolution has a smoothing effect. Therefore, in the left side above we are computing the derivative of a function with “better behaviour”.
- If has Laplace transform with a nondegenerate region of convergence, the three derivatives give the same result,
- The Liouville-Caputo derivative demands too much from analytical point of view, since it needs the unnecessary existence of the order derivative,
- If the Riemann-Liouville derivative does not exist, since the integral is divergent.
3.5. The TF of the Differintegrator
3.6. Classic Riemann-Liouville and Caputo Derivatives
4. The Linear Differential Equations
4.1. The Transfer Function and the Impulse Response
4.2. The Initial Condition Problem
- Equation (45) is defined for any ,
- Our observation window is the unit step ,
- The IC depend on the structure of the system and are independent of the tools that we adopt for the analysis,
- The IC are the values assumed by the variables at the instant of opening the observation window.
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
C | Caputo |
FT | Fourier transform |
FD | Fractional derivative |
FI | Fractional integral |
GL | Grünwald-Letnikov |
IC | Initial conditions |
L | Liouville |
LT | Laplace transform |
RL | Riemann-Liouville |
TF | Transfer function |
References
- Samko, S.; Kilbas, A.; Marichev, O. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach Science Publishers: Amsterdam, The Netherlands, 1993. [Google Scholar]
- Kilbas, A.; Srivastava, H.; Trujillo, J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Magin, R. Fractional Calculus in Bioengineering; Begell House: Redding, CA, USA, 2006. [Google Scholar]
- Tarasov, V.E. Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media; Nonlinear Physical Science; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Uchaikin, V.V. Fractional Derivatives for Physicists and Engineers: Background and Theory; Nonlinear Physical Science; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Ortigueira, M.D. Fractional Calculus for Scientists and Engineers, 2nd ed.; Lecture Notes in Electrical Engineering; Springer: Dordrecht, The Netherlands, 2011. [Google Scholar]
- Herrmann, R. Fractional Calculus: An Introduction for Physicists; World Scientific Publishing: Singapore, 2011. [Google Scholar]
- Ortigueira, M.D.; Machado, J.T. What is a fractional derivative? J. Comput. Phys. 2015, 293, 4–13. [Google Scholar] [CrossRef]
- Ortigueira, M.D. On the “walking dead” derivatives: Riemann-Liouville and Caputo. In Proceedings of the 2014 International Conference on Fractional Differentiation and Applications, Catania, Italy, 23–25 June 2014; pp. 579–588. [Google Scholar]
- Ortigueira, M.D.; Machado, J.T.; Trujillo, J.J. Fractional derivatives and periodic functions. Int. J. Dyn. Control 2015, 5, 72–78. [Google Scholar] [CrossRef]
- Machado, J.T.; Mainardi, F.; Kiryakova, V. Fractional Calculus: Quo Vadimus? (Where are we Going?). Fract. Calc. Appl. Anal. 2015, 18, 495–526. [Google Scholar] [CrossRef]
- Dugowson, S. Les Différentielles Métaphysiques. Ph.D. Thesis, Université Paris Nord, Villetaneuse, France, 1994. (In French). [Google Scholar]
- Závada, P. Operator of Fractional Derivative in the Complex Plane. Commun. Math. Phys. 1998, 192, 261–285. [Google Scholar] [CrossRef]
- Westerlund, S. Dead Matter Has Memory; Causal Consulting: Kalmar, Sweden, 2002. [Google Scholar]
- Proakis, J.G.; Manolakis, D.G. Digital Signal Processing: Principles, Algorithms, and Applications; Prentice Hall: Upper Saddle River, NJ, USA, 2007. [Google Scholar]
- Ortigueira, M.D. Fractional central differences and derivatives. J. Vib. Control 2008, 14, 1255–1266. [Google Scholar] [CrossRef]
- Gel’fand, I.M.; Shilov, G.E. Generalized Functions. Volume I: Properties and Operations; Academic Press: New York, NY, USA, 1964. [Google Scholar]
- Tarasov, V.E. No violation of the Leibniz rule. No fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 2945–2948. [Google Scholar] [CrossRef]
- Tarasov, V.E. Leibniz Rule and Fractional Derivatives of Power Functions. ASME J. Comput. Nonlinear Dyn. 2015, 11, 031014. [Google Scholar] [CrossRef]
- Liouville, J. Memóire sur le calcul des différentielles à indices quelconques. Journal de l’École Polytechnique 1832, 13, 71–162. (In French) [Google Scholar]
- Liouville, J. Memóire sur l’usage que l’on peut faire de la formule de Fourier, dans le calcul des différentielles à indices quelconques. Journal für die reine und angewandte Mathematik (Journal de Crelle) 1835, 13, 219–232. (In French) [Google Scholar] [CrossRef]
- Liouville, J. Memóire sur le changement de la variable indépendante, dans le calcul des différentielles à indices quelconquess. Journal de l’École Polytechnique, Paris 1835, 15, 17–54. (In French) [Google Scholar]
- Liouville, J. Memóire sur la détermination d’une fonction arbitraire placée sous un signe d’intégration définie. Journal de l’École Polytechnique, Paris 1835, 15, 55–60. (In French) [Google Scholar]
- Liouville, J. Note sur une formule pour les différentielles à indices quelconques à l’occasion d’un mémoire de M. Tortolini. Journal de Mathématiques Pures et Appliquées 1855, 20, 115–120. (In French) [Google Scholar]
- Grünwald, A.K. Ueber “begrentz” Derivationen und deren Anwendung. Zeitschrift für Mathematik und Physik 1867, 12, 441–480. (In German) [Google Scholar]
- Letnikov, A. Note relative à l’explication des principes fondamentaux de la théorie de la différentiation à indice quelconque (A propos d’un mémoire). Matematicheskii Sbornik 1873, 6, 413–445. (In French) [Google Scholar]
- Kiryakova, V. A long standing conjecture failed? In Transform Methods and Special Functions; Institute of Mathematics and Informatics, Bulgarian Academy of Sciences: Sofia, Bulgarian, 1998; pp. 579–588. [Google Scholar]
- Ortigueira, M.D. A coherent approach to non-integer order derivatives. Signal Process. 2006, 86, 2505–2515. [Google Scholar] [CrossRef]
- Ortigueira, M.D.; Magin, R.L.; Trujillo, J.J.; Velasco, M.P. A real regularized fractional derivative. Signal Image Video P 2012, 6, 351–358. [Google Scholar] [CrossRef]
- Ortigueira, M.D.; Coito, F.J. System initial conditions vs derivative initial conditions. Comput. Math. Appl. 2010, 59, 1782–1789. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ortigueira, M.; Machado, J. Which Derivative? Fractal Fract. 2017, 1, 3. https://doi.org/10.3390/fractalfract1010003
Ortigueira M, Machado J. Which Derivative? Fractal and Fractional. 2017; 1(1):3. https://doi.org/10.3390/fractalfract1010003
Chicago/Turabian StyleOrtigueira, Manuel, and José Machado. 2017. "Which Derivative?" Fractal and Fractional 1, no. 1: 3. https://doi.org/10.3390/fractalfract1010003
APA StyleOrtigueira, M., & Machado, J. (2017). Which Derivative? Fractal and Fractional, 1(1), 3. https://doi.org/10.3390/fractalfract1010003