Next Article in Journal
The Multicomponent Higher-Order Chen–Lee–Liu System: The Riemann–Hilbert Problem and Its N-Soliton Solution
Next Article in Special Issue
Asymptotic Regularity and Existence of Time-Dependent Attractors for Second-Order Undamped Evolution Equations with Memory
Previous Article in Journal
Experimental Investigation of the Relationship between Surface Crack of Concrete Cover and Corrosion Degree of Steel Bar Using Fractal Theory
Previous Article in Special Issue
Operational Calculus for the General Fractional Derivatives of Arbitrary Order
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

An Existence Study for a Multiplied System with p-Laplacian Involving φ-Hilfer Derivatives

by
Hamid Beddani
1,
Moustafa Beddani
2,
Carlo Cattani
3 and
Mountassir Hamdi Cherif
1,4,*
1
Laboratory of Complex Systems, Hight School of Electrical and Energetics Engineering of Oran (ESGEE-Oran), Oran 31000, Algeria
2
Department of Mathematics, E. N. S of Mostaganem, Mostaganem 27000, Algeria
3
Engineering School (DEIM), Tuscia University, 01100 Viterbo, Italy
4
Laboratory of Mathematics and Its Applications (LAMAP), University of Oran1 Ahmed Ben Bella, Oran 31000, Algeria
*
Author to whom correspondence should be addressed.
Fractal Fract. 2022, 6(6), 326; https://doi.org/10.3390/fractalfract6060326
Submission received: 30 April 2022 / Revised: 30 May 2022 / Accepted: 6 June 2022 / Published: 12 June 2022

Abstract

:
In this paper, we study the existence of solutions for a multiplied system of fractional differential equations with nonlocal integro multi-point boundary conditions by using the p-Laplacian operator and the φ -Hilfer derivatives. The presented results are obtained by the fixed point theorems of Krasnoselskii. An illustrative example is presented at the end to show the applicability of the obtained results. To the best of our knowledge, this is the first time where such a problem is considered.

1. Introduction

As cited in [1,2,3,4,5,6,7], fractional calculus has recently become more significant in a variety of scientific disciplines. Fractional integrals and derivatives are currently defined in a variety of ways, ranging from the most well-known Riemann–Liouville and Caputo fractional derivatives to less well-known approaches. In [8], R. Hilfer introduced the fractional Hilfer derivative, which is a generalization of the Riemann–Liouville and Caputo derivatives.
Recently, new fractional differential results have been published, see [5,9]. In most of these published articles, Schauder, Krasnoselskii, Darbo, or Monch theories have been used to prove the existence of solutions to nonlinear fractional equations.
In [10,11] and the references within, certain features and uses of the Helfer derivative are discussed. Several authors have looked into prime value difficulties involving fractional Hilfer derivatives (see [9,12,13]). However, there are few publications in the literature on the boundary value problems of fractional Hilfer derivatives. The authors defined nonlocal value problems for derivatives of Helfer’s fractions in [14]. We refer to the publications in [15,16,17] for some recent work on boundary value problems using fractional Hilfer derivatives. Some writers have worked on fractional issue solutions using p-Laplacian operators. For example, [18,19,20,21,22,23] where the solutions to a nonlinear fractional equation with the p-Laplacian operator were examined. We will mention some more studies here for the reader’s convenience. We begin with the work of A. Devi, A. Kumar, D. Baleanu, and A. Khan [19], who used Caputo derivatives of distinct orders and the ψ p Laplacian operator to obtain stability conclusions for the following nonlinear FDEs:
c D r 1 ψ p c D r 2 u ( t ) i = 1 m v i ( t ) = w ( t , u ( t ) ) , t 0 , 1 ψ p c D r 2 u ( t ) i = 1 m v i ( t ) t = 0 = 0 , u ( 0 ) = i = 1 m v i ( 0 ) , u ( 1 ) = i = 1 m v i ( 1 ) , u j ( 0 ) = i = 1 m v i j ( 0 ) , for j = 2 , 3 , , n 1
where 0 < r 1 1 , n 1 < r 2 n , n 4 , and v i , w are continuous functions. c D r 1 and c D r 2 , in Caputo’s interpretation, represent the derivative of fractional order r 1 and r 2 , respectively, and ψ p ( z ) = z p 2 z denotes the p-Laplacian operator, which is equal to 1 p + 1 q = 1 , ψ p 1 = ψ q .
In the present research, we study the existence of solutions for the following multiplied system of the φ -Hilfer-type fractional differential equations order, with a p-Laplacian operator of the form:
H D a + α k 1 , β k 1 ; φ ψ p k H D a + α k 2 , β k 2 ; φ u k ( t ) = F k ( t , u 1 ( t ) , , u n ( t ) ) , t a , b , k = 1 , n ¯ , u k ( a ) = 0 , u k ( b ) = i = 1 n λ i u i ζ i k , a < ζ k < b , λ i 0 , + ψ p k H D a + α k 2 , β k 2 ; φ u k ( a ) = 0 , ψ p k H D a + α k 2 , β k 2 ; φ u k ( b ) = I a + ρ ; φ u k ζ , a < ζ < b ,
Here, we take H D a + α k 1 , β k 1 ; φ and H D a + α k 2 , β k 2 ; φ k = 1 , n ¯ , n N , n 2 , which are the φ -Hilfer fractional derivative of orders α k 1 and α k 2 with 1 < α k 1 , α k 2 < 2 and β k 1 , β k 2 2 parameters 0 β k 1 , β k 2 1 , and I 0 + ρ ; φ the left-handed φ -Riemann–Liouville fractional integral of order ρ with ρ > 0 , and ψ p k ( z ) = z p k 2 z denotes the p k -Laplacian operator, which is equal to 1 p k + 1 q k = 1 , ψ p k 1 = ψ q k , q k 2 m, and φ : a , b R is an increasing function such that φ ( t ) 0 , for all t a , b , and F k : a , b × R n R , ( k = 1 , n ¯ ) are given functions that will be “well-defined” later.

2. Preliminaries

In this part, we introduce various notations and terminology for the φ -percent Hilfer Derivatives Calculus, as well as preliminary results that will be used in our proofs later on; see [24,25,26] for more information.
Let φ : a , b R be an increasing function with φ ( t ) 0 , for all t J , and let C ( a , b , R ) be the Banach space.
For all υ > 1 and s , t [ 0 , ) , t s , we denote φ υ ( t , s ) = ( φ ( t ) φ ( s ) ) υ .
Definition 1.
Let ( a , b ) , a < b percent be a finite or infinite interval of the half-axis 0 , and α > 0 . Furthermore, consider φ ( t ) a positive rising function on a , b , with a continuous derivative φ ( t ) on ( a , b ) . The φ-Riemann–Liouville fractional integral of a function u with respect to another function φ on a , b is defined by
I a + α ; φ u ( t ) = 1 Γ ( α ) t a φ ( s ) φ α 1 ( t , s ) u ( s ) d s ,
where Γ . is the Gamma function.
Definition 2.
Let n N and φ , u C n J percent be two functions such that φ is increasing and φ ( t ) 0 , for all t a , b . The left-sided φ-Riemann–Liouville fractional derivative of a function u of order α is defined by
D a + α ; φ u ( t ) = 1 φ ( t ) d d t n I a + n α ; φ u ( t ) = 1 Γ ( n α ) 1 φ ( t ) d d t n t a φ ( s ) φ n α 1 ( t , s ) u ( s ) d s ,
where n = α + 1 ,   α represents the integer part of the real number α .
Definition 3.
Let n 1 < α < n with n N , a , b be the interval such that a < b and φ , u C n a , b , R percent are two functions such that φ is increasing and φ ( t ) 0 , for all t a , b . The φ-Hilfer fractional derivative of a function u of order a and type 0 β 1 is defined by
H D a + α , β ; φ u ( t ) = I a + β ( n α ) ; φ 1 φ ( t ) d d t n I a + ( 1 β ) ( n α ) ; φ u ( t ) = I a + γ α ; φ D a + γ ; φ u ( t ) ,
where n = α + 1 , γ α = β n α .

Auxiliary Lemma

Lemma 1.
Let α , ρ > 0 . Then, we have the following semigroup property given by
I a + α ; φ I a + ρ ; φ u ( t ) = I a + α + ρ ; φ u ( t ) , t > a .
Next, we present the φ-fractional integral and derivatives of a power function.
Proposition 1.
Let α 0 , σ > 0 and t > a . Then, φ-fractional integral and derivative of a power function are given by
1.
I a + α , φ φ σ 1 ( t , a ) ( t ) = Γ ( σ ) Γ ( α + σ ) φ σ + α 1 ( t , a ) .
2.
H D a + α , β ; φ φ σ 1 ( t , a ) ( t ) = Γ ( σ ) Γ ( σ α ) φ σ α 1 ( t , a ) , n 1 < α < n , σ > n .
Lemma 2.
If u C n ( [ a , b ] , R ) , n 1 < α < n , 0 β 1 and γ = α + β ( n α ) . Then
I a + α , φ ( H D a + α , β ; φ u ) ( t ) = u ( t ) k = 1 k = n φ γ k ( t , a ) Γ ( γ k + 1 ) φ [ n k ] I a + ( 1 β ) ( n α ) ; φ u ( a ) , t [ a , b ] ,
where φ [ n ] u ( t ) : = 1 ψ ( t ) d d t n u ( t ) .
Lemma 3.
Let u C n a , b and 0 < q < 1 , we have
I a + q ; φ u ( t 2 ) I a + q ; φ u ( t 1 ) 2 u Γ q + 1 φ q ( t 2 , t 1 ) .
Lemma 4
([27]). For the p-Laplacian operator ψ p , the following conditions hold true:
(1) 
If δ 1 , δ 2 ρ > 0 , 1 < p 2 , δ 1 δ 2 > 0 , then
ψ p ( δ 1 ) ψ p ( δ 2 ) p 1 ρ p 2 δ 1 δ 2 .
(2) 
If p > 2 , δ 1 , δ 2 ρ * > 0 , then
ψ p ( δ 1 ) ψ p ( δ 2 ) p 1 ρ * p 2 δ 1 δ 2 .
Lemma 5
([9]). For nonnegative a i , i = 1 , , k ,
k i = 1 a i q k q 1 k i = 1 a i q , q 1
Lemma 6
([28], Krasnosel’skii fixed point theorem). Let Δ be a closed, bounded, convex and nonempty subset of a Banach space X. Let Γ, Π be operators such that:
(i) Γ x + Π y Δ ,   x , y Δ .
(ii) Γ is compact and continuous.
(iii) Π is a contraction mapping.
Then there exists ξ Δ such that ξ = Γ ξ + Π ξ .
In this subsection, we consider now the multiplied system:
H D a + α k 1 , β k 1 ; φ ψ p k H D a + α k 2 , β k 2 ; φ u k ( t ) = f k ( t ) , t a , b , k = 1 , n ¯ u k ( a ) = 0 , u k ( b ) = n i = 1 λ i u i ζ i k , a < ζ i k < b , λ i 0 , + ψ p k H D a + α k 2 , β k 2 ; φ u k ( a ) = 0 , ψ p k H D a + α k 2 , β k 2 ; φ u k ( b ) = I a + ρ ; φ u k ζ , a < ζ < b ,
where f k : a , b R are continuous functions, and
a 0 , 1 < α k 1 , α k 2 < 2 , 0 β k 1 , β k 2 1 , k = 1 , n ¯ and γ k 1 = α k 1 + β k 1 ( 2 α k 1 ) , γ k 2 = α k 2 + β k 2 ( 2 α k 2 ) .
Lemma 7.
Let f k C ( a , b ) ( k = 1 , n ¯ ) , the existence solution of the multiplied system (3) is given by:
u k ( t ) = φ γ k 2 1 t , a φ γ k 2 1 b , a n i = 1 λ i u i ζ i k + 1 Γ ( α k 2 ) t a φ ( s ) φ α k 2 1 ( t , s ) × ψ q k 1 Γ ( α k 1 ) s a φ ( s ) φ α k 1 1 ( s , x ) f k ( z ) d z + ( I a + ρ ; φ u k ζ I a + α 1 ; φ f k ( b ) ) φ γ k 1 1 b , a φ γ k 1 1 s , a d s φ γ k 2 1 t , a Γ ( α k 2 ) φ γ k 2 1 b , a b a φ ( s ) φ α k 2 1 ( b , y ) × ψ q k 1 Γ ( α k 1 ) y a φ ( s ) φ α k 1 1 ( y , z ) f k ( z ) d z + ( I a + ρ ; φ u k ζ I a + α 1 ; φ f k ( b ) ) φ γ k 1 1 b , a φ γ k 1 1 y , a d y .
Proof. 
Assume u and v satisfies the system (3), and considering the first equation in the system (3). By applying the fractional integral operators I a + α 1 ; φ to (3) and using Lemma 2, we conclude that:
ψ p k H D a + α k 2 , β k 2 ; φ u k ( t ) = I a + α k 1 ; φ f k ( t ) + c 1 Γ γ k 1 1 φ γ k 1 2 t , a + c 2 Γ γ k 1 φ γ k 1 1 t , a ,
for some real constantes c 1 and c 2 . Now, using the first boundary condition (4)
ψ p k H D a + α k 2 , β k 2 ; φ u k ( a ) = 0 ,
in (3), we obtain
c 1 Γ γ k 1 1 φ γ k 1 2 a , a + c 2 Γ γ 1 φ γ k 1 1 a , a = 0 ,
where
φ γ k 1 1 a , a = 0 and φ γ k 1 2 t , a , t a ,
then c 1 = 0 . Using the second boundary condition
ψ p k H D a + α k 2 , β k 2 ; φ u k ( b ) = I a + ρ ; φ u k ζ
in (3), we have
I a + α k 1 ; φ f k ( b ) + c 2 Γ γ k 1 φ γ k 1 1 b , a = I a + ρ ; φ u k ζ ,
these imply that
c 2 = Γ γ k 1 φ γ k 1 1 b , a ( I a + ρ ; φ u k ζ I a + α k 1 ; φ f k ( b ) ) .
Substituting the value of c 2 in (5), we obtain
ψ p k H D a + α k 2 , β k 2 ; φ u k ( t ) = I a + α k 1 ; φ f k ( t ) + ( I a + ρ ; φ u k ζ I a + α k 1 ; φ f k ( b ) ) φ γ k 1 1 b , a φ γ k 1 1 t , a ,
thus, we have
H D a + α k 2 , β k 2 ; φ u k ( t ) = ψ q k I a + α k 1 ; φ f k ( t ) + ( I a + ρ ; φ u k ζ I a + α k 1 ; φ f k ( b ) ) φ γ k 1 1 b , a φ γ k 1 1 t , a ,
by applying the fractional integral operators I a + α k 2 ; φ to (6) and using Lemma 2, we obtain
u k ( t ) = I a + α k 2 ; φ ψ q k I a + α 1 ; φ f k ( t ) + ( I a + ρ ; φ u k ζ I a + α k 1 ; φ f k ( b ) ) φ γ k 1 1 b , a φ γ k 1 1 t , a + c 3 Γ γ k 2 1 φ γ k 2 2 t , a + c 4 Γ γ k 2 φ γ k 2 1 t , a
for some real constants c 3 and c 4 . Using the second boundary condition u ( a ) = 0 in (3), we obtain
c 3 Γ γ k 2 1 φ γ k 2 2 a , a + c 4 Γ γ k 2 φ γ 2 1 a , a = 0 ,
and we have
φ γ k 2 1 a , a = 0 , φ γ k 2 2 t , a , t a ,
which implies that c 3 = 0 . Now, substituting the value of c 3 in (7), we obtain
u k ( t ) = I a + α k 2 ; φ ψ q k I a + α k 1 ; φ f k ( t ) + ( I a + ρ ; φ u k ζ I a + α k 1 ; φ f k ( b ) ) φ γ k 1 1 b , a φ γ k 1 1 t , a + c 4 Γ γ k 2 φ γ k 2 1 t , a .
In view of condition u k ( b ) = n i = 1 λ i u i ζ i k in (3), we obtain
n i = 1 λ i u i ζ i k = I a + α 2 ; φ ψ q k I a + α k 1 ; φ f ( t ) + ( I a + ρ ; φ u ζ I a + α k 1 ; φ f ( b ) ) φ γ k 1 1 b , a φ γ k 1 1 t , a t b + c 4 Γ γ k 2 φ γ k 2 1 b , a ,
then
c 4 = Γ γ k 2 φ γ k 2 1 b , a n i = 1 λ i u i ζ i k Γ γ k 2 φ γ 2 1 b , a I a + α k 2 ; φ ψ q k I a + α k 1 ; φ f k ( t ) + ( I a + ρ ; φ u k ζ I a + α k 1 ; φ f k ( b ) ) φ γ k 1 1 b , a φ γ k 1 1 t , a t = b ,
substituting the value of c 4 in (8), we obtain
u k ( t ) = I a + α k 2 ; φ ψ q k I a + α k 1 ; φ f k ( t ) + ( I a + ρ ; φ u k ζ I a + α k 1 ; φ f k ( b ) ) φ γ k 1 1 b , a φ γ k 1 1 t , a φ γ k 2 1 t , a φ γ k 2 1 b , a I a + α k 2 ; φ ψ q k I a + α 1 ; φ f k ( b ) + ( I a + ρ ; φ u k ζ I a + α k 1 ; φ f k ( b ) ) φ γ k 1 1 b , a φ γ k 1 1 b , a t = b + φ γ k 2 1 t , a φ γ k 2 1 b , a n i = 1 λ i u i ζ i k .
The proof is finished. □

3. Main Results

We offer our primary results on the presence and stability of the above problem in this part. Let C = C ( a , b , R ) be the Banach space of all continuous mappings from a , b to R endowed with u C = sup t 0 , 1 u ( t ) is a Banach space. It is clear that the space X = C n is endowed with the norm
u 1 , , u n X = n i = 1 u i C .

3.1. The Existence Result

Now, we list the hypotheses:
( A 1 ) : There exist positive real constants N k > 0 , k = 1 , n , such that for all t a , b and u k , v k R ( k = 1 , n ) , we have
F k ( t , u 1 , , u n ) F k ( t , v 1 , , v n ) N k n i = 1 u i v i .
( A 2 ) : There exist positive real constants Υ i k > 0 , i , k = 1 , n , such that, for all t a , b , and u k R ( k = 1 , n ) , we have
F k ( t , u 1 , , u n ) i = 1 n Υ i k u i .
Now, we define the following quantities:
  • K = φ ( b ) φ ( a ) Δ k 2 K α k 1 N k Γ ( 1 + α k 1 ) + K ρ Γ ( 1 + ρ ) , k = 1 , n , B k 1 = 3 q k 2 K α k 2 Γ ( 1 + α k 2 ) 2 K α k 1 n i = 1 Υ i k Γ ( 1 + α k 1 ) q k 1 + K ρ Γ ρ + 1 q k 1 , k = 1 , n , B k 2 = 2 × 3 q k 2 Γ ( 1 + α k 2 ) 2 K α k 1 n i = 1 Υ i k Γ ( 1 + α k 1 ) q k 1 + K ρ Γ ρ + 1 q k 1 , k = 1 , n , B k 3 = q k 1 Δ k q k 2 K α k 2 Γ ( 1 + α k 2 ) 2 K α k 1 N k Γ ( 1 + α k 1 ) + K ρ Γ ( 1 + ρ ) + n i = 1 λ i , k = 1 , n .
Based on the above hypotheses, we present to the reader the following result. Now, consider the following operator T : X X by:
T ( u 1 , , u n ) ( t ) = ( T 1 ( u 1 , , u n ) ( t ) , T 2 ( u 1 , , u n ) ( t ) , , T n ( u 1 , , u n ) ( t ) ) ,
where
T k ( u 1 , , u n ) ( t ) = 1 Γ ( α k 2 ) t a φ ( s ) φ α k 2 1 ( t , s ) × ψ q k 1 Γ ( α k 1 ) s a φ ( s ) φ α k 1 1 ( s , z ) F ˜ u k ( z ) d z + ( I a + ρ ; φ u k ζ I a + α 1 ; φ F ˜ u k ( b ) ) φ γ k 1 1 b , a φ γ k 1 1 s , a d s + φ γ k 2 1 t , a φ γ k 2 1 b , a n i = 1 λ i u i ζ i k φ γ k 2 1 t , a Γ ( α k 2 ) φ γ k 2 1 b , a b a φ ( s ) φ α k 2 1 ( b , y ) × ψ q k 1 Γ ( α k 1 ) y a φ ( s ) φ α k 1 1 ( y , z ) F ˜ u k ( z ) d z + ( I a + ρ ; φ u k ζ I a + α 1 ; φ F ˜ u k ( b ) ) φ γ k 1 1 b , a φ γ k 1 1 y , a d y .
where
F ˜ u k ( t ) = F k ( t , u 1 , , u n ) .
Here, we divide the operator T ( u 1 , , u n ) ( t ) as follows:
T ( u 1 , , u n ) ( t ) = P 1 k ( u 1 , , u n ) ( t ) + P 2 k ( u 1 , , u n ) ( t ) , k = 1 , n ¯ .
where ( k = 1 , n ¯ )
P 1 k ( u 1 , , u n ) ( t ) = 1 Γ ( α k 2 ) t a φ ( s ) φ α k 2 1 ( t , s ) × ψ q k 1 Γ ( α k 1 ) s a φ ( s ) φ α k 1 1 ( s , z ) F ˜ u k ( z ) d z + ( I a + ρ ; φ u k ζ I a + α 1 ; φ F ˜ u k ( b ) ) φ γ k 1 1 b , a φ γ k 1 1 s , a d s
and
P 2 k ( u 1 , , u n ) ( t ) = φ γ k 2 1 t , a φ γ k 2 1 b , a n i = 1 λ i u i ζ i k φ γ k 2 1 t , a Γ ( α k 2 ) φ γ k 2 1 b , a b a φ ( s ) φ α k 2 1 ( b , y ) × ψ q k 1 Γ ( α k 1 ) y a φ ( s ) φ α k 1 1 ( y , z ) F ˜ u k ( z ) d z + ( I a + ρ ; φ u k ζ I a + α 1 ; φ F ˜ u k ( b ) ) φ γ k 1 1 b , a φ γ k 1 1 y , a d y .
Therefore,
T = P 11 , P 12 , , P 1 n + P 21 , P 22 , , P 2 n = P 1 + P 2 .
Our first result concerning the existence of solutions of the problem (1) for which we have used the fixed point theorem of Krasnoselskii’s is as follows
Theorem 1.
Let F k : [ a , b ] × R n R be continuous functions that satisfy conditions ( A 1 ) and ( A 2 ). If
n i = 1 λ i < 1 n ( n + 1 ) , and n k = 1 B k 3 < 1 .
Then, problem (1) admits at least one solution on a , b
Proof. 
The proof will be given in several steps. Let U r = { ( u 1 , , u n ) X , ( u 1 , , u n ) r } , so that
max k = 1 , n 1 2 ( n + 1 ) B k 1 q k 2 r
First step: We prove that
T ( u 1 , , u n ) ( t ) X r .
From (9), we obtain
T ( u 1 , , u n ) ( t ) X = n i = 1 T i ( u 1 , , u n ) ( t ) C , and T i ( u 1 , , u n ) ( t ) C sup t a , b P 1 i ( u 1 , , u n ) ( t ) + sup t a , b P 2 i ( u 1 , , u n ) ( t ) , i = 1 , n ¯ .
Let ( u 1 , , u n ) U r . by ψ q k ( z ) = z z q k 2 , and for Lemma 5, we have
P 1 k ( u 1 , , u n ) ( t ) 1 Γ ( α k 2 ) t a φ ( s ) φ α k 2 1 ( t , s ) × ψ q k 1 Γ ( α k 1 ) s a φ ( s ) φ α k 2 1 ( s , z ) F ˜ u k ( z ) d z + ( I a + ρ ; φ u k ζ I a + α 1 ; φ F ˜ u k ( b ) ) φ γ k 1 1 b , a φ γ k 1 1 s , a d s
K α k 2 Γ ( 1 + α k 2 ) 1 Γ ( α k 1 ) s a φ ( s ) φ α k 2 1 ( s , z ) F ˜ u k ( z ) d z + ( I a + ρ ; φ u k ζ I a + α 1 ; φ F ˜ u k ( b ) ) φ γ k 1 1 b , a φ γ k 1 1 s , a q k 1 3 q k 2 K α k 2 Γ ( 1 + α k 2 ) 1 Γ ( α k 1 ) s a φ ( s ) φ α k 2 1 ( s , z ) F ˜ u k ( z ) d z q k 1 + I a + ρ ; φ u k ζ q k 1 + I a + α 1 ; φ F ˜ u k ( b ) q k 1 3 q k 2 K α k 2 Γ ( 1 + α k 2 ) 2 K α k 1 n i = 1 Υ i k δ Γ ( 1 + α k 1 ) q k 1 + K ρ δ Γ ρ + 1 q k 1 3 q k 2 K α k 2 Γ ( 1 + α k 2 ) 2 K α k 1 n i = 1 Υ i k Γ ( 1 + α k 1 ) q k 1 + K ρ Γ ρ + 1 q k 1 δ q k 1 B k 1 r q k 1 ,
and
P 2 k ( u 1 , , u n ) ( t ) φ γ k 2 1 t , a φ γ k 2 1 b , a n i = 1 λ i u i ζ i k + φ γ k 2 1 t , a Γ ( α k 2 ) φ γ k 2 1 b , a b a φ ( s ) φ α k 2 1 ( b , y ) × ψ q k 1 Γ ( α k 1 ) y a φ ( s ) φ α k 1 1 ( y , z ) F ˜ u k ( z ) d z + ( I a + ρ ; φ u k ζ I a + α 1 ; φ F ˜ u k ( b ) ) φ γ k 1 1 b , a φ γ k 1 1 y , a d y n i = 1 λ i r + B k 1 r q k 1 ,
by (11), (12), and (14), we obtain
T ( u 1 , , u n ) ( t ) X n n i = 1 λ i r + 2 n k = 1 B k 1 r q k 1 r .
Second Step: P 2 is a contraction. P 2 = n k = 1 P 2 k
Let ( u 1 , , u n ) , ( v 1 , , v n ) U r , and we have the following estimate
P 2 k ( u 1 , , u n ) ( t ) P 2 k ( v 1 , , v n ) ( t ) n i = 1 λ i u i ζ i k v i ζ i k + K α k 2 Γ ( 1 + α k 2 ) × ψ q k 1 Γ ( α k 1 ) y a φ ( s ) φ α k 1 1 ( y , z ) F ˜ u k ( z ) d z + ( I a + ρ ; φ u k ζ I a + α 1 ; φ F ˜ u k ( b ) ) φ γ k 1 1 b , a φ γ k 1 1 y , a ψ q k 1 Γ ( α k 1 ) y a φ ( s ) φ α k 1 1 ( y , z ) F ˜ v k ( z ) d z + ( I a + ρ ; φ v k ζ I a + α 1 ; φ F ˜ v k ( b ) ) φ γ k 1 1 b , a φ γ k 1 1 y , a ,
by Lemma 4, we obtain
P 2 k ( u 1 , , u n ) ( t ) P 2 k ( v 1 , , v n ) ( t ) n i = 1 λ i u i ζ i k v i ζ i k + q k 1 Δ q k 2 K α k 2 Γ ( 1 + α k 2 ) × 2 K α k 1 Γ ( 1 + α k 1 ) F ˜ u k ( b ) F ˜ v k ( b ) + ( I a + ρ ; φ u k ζ I a + ρ ; φ v k ζ ) n i = 1 λ i u i v i + q k 1 Δ q k 2 K α k 2 Γ ( 1 + α k 2 ) 2 K α k 1 N k Γ ( 1 + α k 1 ) + K ρ Γ ( 1 + ρ ) n i = 1 u i v i q k 1 Δ k q k 2 K α k 2 Γ ( 1 + α k 2 ) 2 K α k 1 N k Γ ( 1 + α k 1 ) + K ρ Γ ( 1 + ρ ) + n i = 1 λ i n i = 1 u i v i B k 3 n i = 1 u i v i .
Therefore,
( P 2 ( u 1 , , u n ) ( t ) ( P 2 ( v 1 , , v n ) ( t ) n k = 1 B k 3 n i = 1 u i v i n i = 1 u i v i .
Since n k = 1 B k 3 < 1 , the operator P 2 is a contraction.
Third Step: P 1 is compact and continuous. P 1 = n k = 1 P 1 k
Since F k are a continuous functions, this implies that the operator P 1 is continuous on U r and by (14), we have
P 1 ( u 1 , , u n ) ( t ) n k = 1 B k 1 r q k .
Moreover, P 1 ( u 1 , , u n ) is uniformly bounded by (15).
Next, we show equicontinuity. Let ( u 1 , , u n ) U r . Let t 1 , t 2 [ a , b ] such that, t 1 < t 2 we have
P 1 k ( u 1 , , u n ) ( t 2 ) P 1 k ( u 1 , , u n ) ( t 1 ) = 1 Γ ( α k 2 ) t 2 a φ ( s ) φ α k 2 1 ( t 2 , s ) × ψ q k 1 Γ ( α k 1 ) s a φ ( s ) φ α k 1 1 ( s , x ) F ˜ u k ( z ) d z + ( I a + ρ ; φ u k ζ I a + α 1 ; φ F ˜ u k ( b ) ) φ γ k 1 1 b , a φ γ k 1 1 s , a d s t 1 a φ ( s ) φ α k 2 1 ( t 1 , s ) × ψ q k 1 Γ ( α k 1 ) s a φ ( s ) φ α k 1 1 ( s , x ) F ˜ u k ( z ) d z + ( I a + ρ ; φ u k ζ I a + α 1 ; φ F ˜ u k ( b ) ) φ γ k 1 1 b , a φ γ k 1 1 s , a d s 2 × 3 q k 2 Γ ( 1 + α k 2 ) 2 K α k 1 n i = 1 Υ i k Γ ( 1 + α k 1 ) q k 1 + K ρ Γ ρ + 1 q k 1 r q k 1 φ t 2 φ t 2 α k 2 B k 2 × r q k 1 φ t 2 φ t 2 α k 2 .
Therefore,
P 1 ( u 1 , , u n ) ( t 2 ) P 1 ( u 1 , , u n ) ( t 1 ) n k = 1 B k 2 × r q k φ t 2 φ t 2 α k 2 .
Consequently,
P 1 ( u 1 , , u n ) ( t 2 ) P 1 ( u 1 , , u n ) ( t 1 ) 0 , as t 1 t 2 .
This shows that P 1 U r is equicontinuous. Hence, by the Arzelià–Ascoli theorem, P 1 is completely continuous on U r . As a consequence of Krasnoselskii’s fixed point theorem, we conclude that it has a fixed point, which is a solution of (1). The proof of Theorem 1 is, thus, completely achieved. □

3.2. An Illustrative Example

Example 1.
Consider the coupled system for all t 0 , 1 ( n = 2 ) :
c D 0 + 1 2 ; t 2 ψ 2 c D 0 + 1 4 ; t 2 u ( t ) = 1 1 + t 2 u ( t ) 1 + u ( t ) 2 , c D 0 + 1 4 ; t 2 ψ 2 c D 0 + 1 2 ; t 2 v ( t ) = t 1 + e t v ( t ) 1 + v ( t ) 2 , u ( 0 ) = v ( 0 ) = 0 , ψ 2 c D 0 + 1 4 ; t 2 u ( t ) t = 0 = ψ p c D 0 + 1 2 ; t 2 v ( t ) t = 0 = 0 , u ( 1 ) = n i = 1 1 7 ( i ! ) u ζ i , v ( 1 ) = n i = 1 1 9 ( i ! ) v ζ i , ζ i 0 , 1 , ψ 2 c D 0 + 1 4 ; t 2 u ( t ) t = 1 = ψ p c D 0 + 1 2 ; t 2 v ( t ) t = 1 = 0
therefore,
K = 1 , N 1 = Υ 11 = 1 2 , and N 2 = Υ 12 = 1 4 .
Thus, the assumptions ( A 1 A 2 ) are satisfied, and Theorem 1 implies that (16) has a solution on [ 0 , 1 ] .

4. Conclusions

In this study, we have demonstrated the existence of solutions of a multiplied system of fractional differential equations with nonlocal integro multi-point boundary conditions by using the p-Laplacian operator and the φ -Hilfer derivatives. Using the fixed point theorem of Krasnoselskii, we have completed our work, with an example presented at the end to show the applicability of the obtained results.

Author Contributions

Conceptualization, H.B. and M.B.; methodology, H.B. and M.B; validation, M.H.C. and C.C.; formal analysis, M.H.C. and C.C.; investigation, H.B. and M.B.; writing—original draft preparation, H.B. and M.B.; writing—review and editing, H.B., M.B., M.H.C. and C.C; supervision, M.H.C. and C.C. funding acquisition, C.C. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Ahmad, B.; Alsaedi, A.; Ntouyas, S.K.; Tariboon, J. Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities; Springer: Cham, Switzerland, 2017. [Google Scholar]
  2. Beddani, H.; Beddani, M. Solvability for a differential systems via Phi-Caputo approach. J. Sci. Arts 2021, 3, 749–762. [Google Scholar] [CrossRef]
  3. Diethelm, K. The Analysis of Fractional Differential Equations, Lecture Notes in Mathematics; Springer: New York, NY, USA, 2010. [Google Scholar]
  4. Lakshmikantham, V.; Leela, S.; Devi, J.V. Theory of Fractional Dynamic Systems; Cambridge Scientific Publishers: Cambridge, UK, 2009. [Google Scholar]
  5. Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999. [Google Scholar]
  6. Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives; Gordon and Breach Science: Yverdon, Switzerland, 1993. [Google Scholar]
  7. Zhou, Y. Basic Theory of Fractional Differential Equations; World Scientific: Singapore, 2014. [Google Scholar]
  8. Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
  9. Furati, K.M.; Kassim, N.D.; Tatar, N.E. Existence and uniqueness for a problem involving Hilfer fractional derivative. Comput. Math. Appl. 2012, 64, 1616–1626. [Google Scholar] [CrossRef]
  10. Hilfer, R. Experimental evidence for fractional time evolution in glass forming materials. J. Chem. Phys. 2002, 284, 399–408. [Google Scholar] [CrossRef]
  11. Hilfer, R.; Luchko, Y.; Tomovski, Z. Operational method for the solution of fractional differential equations with generalized Riemann-Liouville fractional derivatives. Frac. Calc. Appl. Anal. 2009, 12, 299–318. [Google Scholar]
  12. Gu, H.; Trujillo, J.J. Existence of mild solution for evolution equation with Hilfer fractional derivative. Appl. Math. Comput. 2015, 257, 344–354. [Google Scholar] [CrossRef]
  13. Wang, J.; Zhang, Y. Nonlocal initial value problems for differential equations with Hilfer fractional derivative. Appl. Math. Comput. 2015, 266, 850–859. [Google Scholar] [CrossRef]
  14. Asawasamrit, S.; Kijjathanakorn, A.; Ntouyas, S.K.; Tariboon, J. Nonlocal boundary value problems for Hilfer fractional differential equations. Bull. Korean Math. Soc. 2018, 55, 1639–1657. [Google Scholar]
  15. Wongcharoen, A.; Ahmad, B.; Ntouyas, S.K.; Tariboon, J. Three-point boundary value problems for Langevin equation with Hilfer fractional derivative. Adv. Math. Phys. 2020, 2020, 9606428. [Google Scholar] [CrossRef]
  16. Wongcharoen, A.; Ntouyas, S.K.; Tariboon, J. Nonlocal boundary value problems for Hilfer type pantograph fractional differential equations and inclusions. Adv. Diff. Equ. 2020, 2020, 279. [Google Scholar] [CrossRef]
  17. Wongcharoen, A.; Ntouyas, S.K.; Tariboon, J. Boundary value problems for Hilfer fractional differential inclusions with nonlocal integral boundary conditions. Mathematics 2020, 8, 1905. [Google Scholar] [CrossRef]
  18. Beddani, H.; Beddani, M.; Dahmani, Z. Nonlinear Differential Problem with p-Laplacian and via Phi-Hilfer Approach: Solvability and Stability Analysis. Eur. J. Math. Anal. 2021, 1, 164–181. [Google Scholar] [CrossRef]
  19. Devi, A.; Kumar, A.; Baleanu, D.; Khan, A. On stability analysis and existence of positive solutions for a general non-linear fractional differential equations. Adv. Differ. Equ. 2020, 2020, 300. [Google Scholar] [CrossRef]
  20. Khan, A.; Syam, M.I.; Zada, A.; Khan, H. Stability analysis of nonlinear fractional differential equations with Caputo and Riemann–Liouville derivatives. Eur. Phys. J. Plus 2018, 133, 264. [Google Scholar] [CrossRef]
  21. Li, Y. Existence of positive solutions for fractional differential equation involving integral boundary conditions with p-Laplacian operator. Adv. Differ. Equ. 2017, 2017, 135. [Google Scholar] [CrossRef]
  22. Wang, Y. Existence and nonexistence of positive solutions for mixed fractional boundary value problem with parameter and p-Laplacian operator. J. Funct. Spaces 2018, 2018, 1462825. [Google Scholar] [CrossRef]
  23. Khan, H.; Abdeljawad, T.; Aslam, M.; Khan, R.A.; Khan, A. Existence of positive solution and Hyers-Ulam stability for a nonlinear singular-delay-fractional differential equation. Adv. Diff. Equ. 2019, 2019, 104. [Google Scholar] [CrossRef]
  24. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of the Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
  25. Seemab, A.; Alzabut, J.; Rehman, M.; Adjabi, Y.; Abdo, M.S. Langevin equation with nonlocal boundary conditions involving a φ-Caputo fractional operator. arXiv 2020, arXiv:2006.00391v1. [Google Scholar]
  26. Da, C.V.; Sousa, C.; de Oliveira, E.C. On the φ-Hilfer fractional derivative. Commun. Nonlinear Sci. Num. Simul. 2018, 60, 72–91. [Google Scholar]
  27. Khan, H.; Chen, W.; Sun, H. Analysis of positive solution and Hyers-Ulam stability for a class of singular fractional differential equations with p-Laplacian in Banach space. Math. Meth. App. Sci. 2018, 41, 3430–3440. [Google Scholar] [CrossRef]
  28. Krasnosel’skii, M.A. Two remarks on the method of successive approximations. UspekhiMat. Nauk 1955, 10, 123–127. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Beddani, H.; Beddani, M.; Cattani, C.; Hamdi Cherif, M. An Existence Study for a Multiplied System with p-Laplacian Involving φ-Hilfer Derivatives. Fractal Fract. 2022, 6, 326. https://doi.org/10.3390/fractalfract6060326

AMA Style

Beddani H, Beddani M, Cattani C, Hamdi Cherif M. An Existence Study for a Multiplied System with p-Laplacian Involving φ-Hilfer Derivatives. Fractal and Fractional. 2022; 6(6):326. https://doi.org/10.3390/fractalfract6060326

Chicago/Turabian Style

Beddani, Hamid, Moustafa Beddani, Carlo Cattani, and Mountassir Hamdi Cherif. 2022. "An Existence Study for a Multiplied System with p-Laplacian Involving φ-Hilfer Derivatives" Fractal and Fractional 6, no. 6: 326. https://doi.org/10.3390/fractalfract6060326

Article Metrics

Back to TopTop