A Unified Approach to Solvability and Stability of Multipoint BVPs for Langevin and Sturm–Liouville Equations with CH–Fractional Derivatives and Impulses via Coincidence Theory
Abstract
:1. Introduction
2. Preliminaries
- (a1)
- If solves , then ,
- (a2)
- ,
- (a3)
3. Solvability and Stability of (3)
- (A1)
- Assume that , , , , , , , , , .
- (A2)
- , s.t.
- (A3)
- , s.t.
- (A4)
- , , where , ,
4. Solvability and Stability of (1) and (2)
- (A′1)
- Assume that , , , , , , , , , .
- (A′2)
- , s.t.
- (A′3)
- , s.t.
- (A′4)
- , where , ,
- (A″1)
- Assume that , , , , , , , , , .
- (A″2)
- , s.t.
- (A″3)
- , s.t.
- (A″4)
- , where , , ,
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmadova, A.; Mahmudov, N.I. Langevin differential equations with general fractional orders and their applications to electric circuit theory. J. Computat. Appl. Math. 2021, 388, 113299. [Google Scholar] [CrossRef]
- Salem, A.; Alshehri, H.M.; Almaghamsi, L. Measure of noncompactness for an infinite system of fractional Langevin equation in a sequence space. Adv. Differ. Equ. 2021, 2021, 132. [Google Scholar] [CrossRef]
- Zhao, K.H. Stability of a nonlinear Langevin system of ML-type fractional derivative affected by time-varying delays and differential feedback control. Fractal Fract. 2022, 6, 725. [Google Scholar] [CrossRef]
- Zhao, K.H. Stability of a nonlinear fractional Langevin System with nonsingular exponential kernel and delay control. Discret. Dyn. Nat. Soc. 2022, 2022, 9169185. [Google Scholar] [CrossRef]
- Zhao, K.H. Stability of a nonlinear ML-nonsingular kernel fractional Langevin system with distributed lags and integral control. Axioms 2022, 11, 350. [Google Scholar] [CrossRef]
- Kumar, V.; Stamov, G.; Stamova, I. Controllability results for a class of piecewise nonlinear impulsive fractional dynamic systems. Appl. Math. Comput. 2022, 439, 127625. [Google Scholar] [CrossRef]
- Radhakrishnan, B.; Sathya, T. Controllability of Hilfer fractional Langevin dynamical system with impulse in an abstract weighted space. J. Optimiz. Theory Appl. 2022, 195, 265–281. [Google Scholar] [CrossRef]
- Venkatesan, G.; Pitchaikkannu, S.K. Trajectory controllability of nonlinear fractional Langevin systems. Int. J. Nonlin. Sci. Num. 2023, 24, 1079–1093. [Google Scholar] [CrossRef]
- Zhou, Z.B.; Yu, W.X. Studying stochastic resonance phenomenon in the fractional-order Lorenz-like chaotic System. Int. J. Bifurcat. Chaos 2022, 32, 2250154. [Google Scholar] [CrossRef]
- Yan, Z.; Guirao, J.L.G.; Saeed, T.; Chen, H.; Liu, X. Different stochastic resonances induced by multiplicative polynomial Trichotomous noise in a fractional order oscillator with time delay and fractional Gaussian noise. Fractal Fract. 2022, 6, 191. [Google Scholar] [CrossRef]
- Joo, S.; Jeon, J.H. Viscoelastic active diffusion governed by nonequilibrium fractional Langevin equations: Underdamped dynamics and ergodicity breaking. Chaos Soliton. Fract. 2023, 177, 114288. [Google Scholar] [CrossRef]
- Afarideh, A.; Saei, F.D.; Lakestani, M.; Saray, B.N. Pseudospectral method for solving fractional Sturm-Liouville problem using Chebyshev cardinal functions. Phys. Scr. 2021, 96, 125267. [Google Scholar] [CrossRef]
- Sadabad, M.; Akbarfam, A.J. An efficient numerical method for estimating eigenvalues and eigenfunctions of fractional Sturm-Liouville problems. Math. Comput. Simulat. 2021, 185, 547–569. [Google Scholar] [CrossRef]
- Allahverdiev, B.; Tuna, H.; Yalcinkaya, Y. A completeness theorem for dissipative conformable fractional Sturm-Liouville operator in singular case. Filomat 2023, 36, 2461–2474. [Google Scholar] [CrossRef]
- Goel, E.; Pandey, R.K.; Yadav, S.; Agrawal, O.P. A numerical approximation for generalized fractional Sturm-Liouville problem with application. Math. Comput. Simul. 2023, 207, 417–436. [Google Scholar] [CrossRef]
- Kumar, N.; Mehra, M. Muntz-Legendre wavelet method for solving Sturm-Liouville fractional optimal control problem with error estimates. Math. Methods Appl. Sci. 2023, 46, 12505–12528. [Google Scholar] [CrossRef]
- Hadamard, J. Essai sur l’étude des fonctions données par leur développment de Taylor. J. Math. Pures Appl. 1892, 8, 101–186. [Google Scholar]
- Kilbas, A.A. Hadamard-type fractional calculus. J. Korean Math. Soc. 2001, 38, 1191–1204. [Google Scholar]
- Butzer, P.L.; Kilbas, A.A.; Trujillo, J.J. Compositions of Hadamard-type fractional integration operators and the semigroup property. J. Math. Anal. Appl. 2002, 269, 387–400. [Google Scholar] [CrossRef]
- Jarad, F.; Abdeljawad, T.; Baleanu, D. Caputo-type modification of the Hadamard fractional derivatives. Adv. Differ. Equ. 2012, 2012, 142. [Google Scholar] [CrossRef]
- Ahmad, B.; Ntouyas, S. A fully Hadamard type integral boundary value problem of a coupled system of fractional differential equations. Fract. Calc. Appl. Anal. 2014, 17, 348–360. [Google Scholar] [CrossRef]
- Wang, J.R.; Zhang, Y.R. On the concept and existence of solutions for fractional impulsive systems with Hadamard derivatives. Appl. Math. Lett. 2015, 39, 85–90. [Google Scholar] [CrossRef]
- Ahmad, B.; Ntouyas, S.K. On Hadamard fractional integro-differential boundary value problems. J. Appl. Math. Comput. 2015, 47, 119–131. [Google Scholar] [CrossRef]
- Aljoudi, S.; Ahmad, B.; Nieto, J.J.; Alsaedi, A. A coupled system of Hadamard type sequential fractional differential equations with coupled strip conditions. Chaos Soliton Fract. 2016, 91, 39–46. [Google Scholar] [CrossRef]
- Pei, K.; Wang, G.T.; Sun, Y.Y. Successive iterations and positive extremal solutions for a Hadamard type fractional integro-differential equations on infinite domain. Appl. Math. Comput. 2017, 312, 158–168. [Google Scholar] [CrossRef]
- Abbas, S.; Benchohra, M.; Lagreg, J.E.; Alsaedi, A.; Zhou, Y. Existence and Ulam stability for fractional differential equations of Hilfer-Hadamard type. Adv. Differ. Equ. 2017, 2017, 180. [Google Scholar] [CrossRef]
- Wang, G.T.; Pei, K.; Agarwal, R.P.; Zhang, L.; Ahmad, B. Nonlocal Hadamard fractional boundary value problem with Hadamard integral and discrete boundary conditions on a half-line. J. Comput. Appl. Math. 2018, 343, 230–239. [Google Scholar] [CrossRef]
- Zhao, K.H. Generalized UH-stability of a nonlinear fractional coupling (p1,p2)-Laplacian system concerned with nonsingular Atangana-Baleanu fractional calculus. J. Inequal. Appl. 2023, 2023, 96. [Google Scholar] [CrossRef]
- Aljoudi, S.; Ahmad, B.; Alsaedi, A. Existence and uniqueness results for a coupled system of Caputo-Hadamard fractional differential equations with nonlocal Hadamard type integral boundary conditions. Fractal Fract. 2020, 4, 13. [Google Scholar] [CrossRef]
- Zhao, K.H. Solvability and GUH-stability of a nonlinear CF-fractional coupled Laplacian equations. AIMS Math. 2023, 8, 13351–13367. [Google Scholar] [CrossRef]
- Zhao, K.H. Existence, Stability and simulation of a class of nonlinear fractional Langevin equations involving nonsingular Mittag-Leffler kernel. Fractal Fract. 2022, 6, 469. [Google Scholar] [CrossRef]
- Li, C.P.; Li, Z.Q. Stability and logarithmic decay of the solution to Hadamard-type fractional differential equation. J. Nolinear Sci. 2021, 31, 31. [Google Scholar] [CrossRef]
- Rao, S.; Ahmadini, A. Multiple positive solutions for system of mixed Hadamard fractional boundary value problems with (p1,p2)-Laplacian operator. AIMS Math. 2023, 8, 14767–14791. [Google Scholar] [CrossRef]
- Zhao, K.H. Existence and UH-stability of integral boundary problem for a class of nonlinear higher-order Hadamard fractional Langevin equation via Mittag-Leffler functions. Filomat 2023, 37, 1053–1063. [Google Scholar] [CrossRef]
- Zhao, K.H. Solvability, approximation and stability of periodic boundary value problem for a nonlinear Hadamard fractional differential equation with p-Laplacian. Axioms 2023, 12, 733. [Google Scholar] [CrossRef]
- Istafa, G.; Rehman, G.M.U. Numerical solutions of Hadamard fractional differential equations by generalized Legendre functions. Math. Methods Appl. Sci. 2022, 46, 6821–6842. [Google Scholar] [CrossRef]
- Zaky, M.A.; Hendy, A.S.; Suragan, D. Logarithmic Jacobi collocation method for Caputo-Hadamard fractional differential equations. Appl. Numer. Math. 2022, 181, 326–346. [Google Scholar] [CrossRef]
- Ortigueira, M.D.; Bohannan, G.W. Fractional scale calculus: Hadamard vs. Liouville. Fractal Fract. 2023, 7, 296. [Google Scholar] [CrossRef]
- Dhawan, K.; Vats, R.K.; Vijayakumar, V. Analysis of neutral fractional differential equation via the method of upper and lower solution. Qual. Theor. Dyn. Syst. 2023, 22, 93. [Google Scholar] [CrossRef]
- Ahmad, B.; Aljoudi, S. Investigation of a coupled system of Hilfer-Hadamard fractional differential equations with nonlocal coupled Hadamard fractional integral boundary conditions. Fractal Fract. 2023, 7, 178. [Google Scholar] [CrossRef]
- Ben Makhlouf, A.; Mchiri, L.; Mtiri, F. Existence, uniqueness, and averaging principle for Hadamard Ito-Doob stochastic delay fractional integral equations. Math. Methods Appl. Sci. 2023, 46, 14814–14827. [Google Scholar] [CrossRef]
- Vivek, D.; Kanagarajan, K.; Elsayed, E.M. Attractivity and Ulam-Hyers stability results for fractional delay differential equations. Filomat 2022, 36, 5707–5724. [Google Scholar] [CrossRef]
- Rhaima, M. Ulam-Hyers stability for an impulsive Caputo-Hadamard fractional neutral stochastic differential equations with infinite delay. Math. Comput. Simul. 2023, 210, 281–295. [Google Scholar] [CrossRef]
- Arfaoui, H.; Ben Makhlouf, A. Some results for a class of delayed fractional partial differential equations with Caputo-Hadamard derivative. Math. Methods Appl. Sci. 2023, 46, 9954–9965. [Google Scholar] [CrossRef]
- Hammou, A.; Hamani, S.; Henderson, J. Impulsive fractional differential equations with state-dependent delay involving the Caputo-Hadamard derivative. Filomat 2023, 37, 1581–1590. [Google Scholar] [CrossRef]
- Rafeeq, A.S.; Thabet, S.M.; Mohammed, M.O.; Kedim, I.; Vivas-Cortez, M. On Caputo-Hadamard fractional pantograph problem of two different orders with Dirichlet boundary conditions. Alex. Eng. J. 2024, 86, 386–398. [Google Scholar] [CrossRef]
- Bohner, M.; Domoshnitsky, A.; Litsyn, E.; Padhi, S.; Narayan Srivastava, S. Vallée-Poussin theorem for Hadamard fractional functional differential equations. Appl. Math. Sci. Eng. 2023, 31, 2259057. [Google Scholar] [CrossRef]
- Benchohra, M.; Bouriah, S.; Graef, J.R. Boundary value problems for nonlinear implicit Caputo-Hadamard-type fractional differential equations with impulses. Mediterr. J. Math. 2017, 14, 206. [Google Scholar] [CrossRef]
- Benchohra, M.; Bouriah, S.; Nieto, J.J. Existence of periodic solutions for nonlinear implicit Hadamard’s fractional differential equations. Rev. Real Acad. Cienc. Exactas Físicas Nat. Ser. Mat. 2018, 112, 25–35. [Google Scholar] [CrossRef]
- Riaz, U.; Zada, A.; Ali, Z.; Cui, Y.; Xu, J. Analysis of coupled systems of implicit impulsive fractional differential equations involving Hadamard derivatives. Adv. Differ. Equ. 2019, 2019, 226. [Google Scholar] [CrossRef]
- Van, H.N.; Ho, V. A survey on the initial value problems of fuzzy implicit fractional differential equations. Fuzzy Set. Syst. 2020, 400, 90–133. [Google Scholar]
- Zhao, K.H. Study on the stability and its simulation algorithm of a nonlinear impulsive ABC-fractional coupled system with a Laplacian operator via F-contractive mapping. Adv. Cont. Discr. Mod. 2024, 2024, 5. [Google Scholar] [CrossRef]
- Salim, A.; Benchohra, M.; Graef, J.R. Boundary value problem for fractional order generalized Hilfer-type fractional derivative with non-instantaneous impulses. Fractal Fract. 2021, 5, 1. [Google Scholar] [CrossRef]
- Abbas, M.; Feckan, M. Investigation of an implicit Hadamard fractional differential equation with Riemann-Stieltjes integral boundary condition. Math. Slovaca 2022, 72, 925–934. [Google Scholar] [CrossRef]
- Hammad, H.A.; Aydi, H.; Isik, H.; De la Sen, M. Existence and stability results for a coupled system of impulsive fractional differential equations with Hadamard fractional derivatives. AIMS Math. 2023, 8, 6913–6941. [Google Scholar] [CrossRef]
- Guo, L.M.; Riaz, U.; Zada, A.; Alam, M. On implicit coupled Hadamard fractional differential equations with generalized Hadamard fractional integro-differential boundary conditions. Fractal Fract. 2023, 7, 13. [Google Scholar] [CrossRef]
- Wu, Z.Q.; Muhammadhaji, A. Dynamics in a competitive Nicholson’s blowflies model with continuous time delays. Symmetry 2023, 15, 1495. [Google Scholar] [CrossRef]
- Zhao, K.H. Asymptotic stability of a periodic GA-predation system with infinite distributed lags on time scales. Int. J. Control 2023, in press. [Google Scholar] [CrossRef]
- Guo, K.; Ma, W.B. Existence of positive periodic solutions for a periodic predator-prey model with fear effect and general functional responses. Adv. Contin. Discret. Models 2023, 2023, 22. [Google Scholar] [CrossRef]
- Zhao, K.H. Existence and stability of a nonlinear distributed delayed periodic AG-ecosystem with competition on time scales. Axioms 2023, 12, 315. [Google Scholar] [CrossRef]
- Feltrin, G.; Sampedro, J.C.; Zanolin, F. Periodic solutions to superlinear indefinite planar systems: A topological degree approach. J. Differ. Equ. 2023, 363, 546–581. [Google Scholar] [CrossRef]
- Zhao, K.H. Global asymptotic stability for a classical controlled nonlinear periodic commensalism AG-ecosystem with distributed lags on time scales. Filomat 2023, 37, 9899–9911. [Google Scholar]
- Lyu, Y.; Tan, X.L.; Yang, X.; Li, Y. Controllability of nonlinear discrete systems with degeneracy. Acta Math. Appl. Sin. Engl. Ser. 2023, 39, 293–305. [Google Scholar] [CrossRef]
- Zhao, K.H. Local exponential stability of four almost-periodic positive solutions for a classic Ayala-Gilpin competitive ecosystem provided with varying-lags and control terms. Int. J. Control 2023, 96, 1922–1934. [Google Scholar] [CrossRef]
- Taie, R.O.A.; Bakhit, D.A.M. Existence and uniqueness criterion of a periodic solution for a third-order neutral differential equation with multiple delay. Bound. Value Probl. 2023, 2023, 25. [Google Scholar] [CrossRef]
- Zhao, K.H. Local exponential stability of several almost periodic positive solutions for a classical controlled GA-predation ecosystem possessed distributed delays. Appl. Math. Comput. 2023, 437, 127540. [Google Scholar] [CrossRef]
- Wang, J.R.; Wang, B.; Miao, Y.W.; Yu, X.C. Existence and multiplicity of positive periodic solutions to a class of Lienard equations with repulsive singularities. J. Fix. Point Theory A 2022, 24, 64. [Google Scholar] [CrossRef]
- Zhao, K.H. Coincidence theory of a nonlinear periodic Sturm-Liouville system and its applications. Axioms 2022, 11, 726. [Google Scholar] [CrossRef]
- Salim, A.; Benchohra, M.; Lazreg, J.E. On implicit k-generalized ψ-Hilfer fractional differential coupled systems with periodic conditions. Qual. Theor. Dyn. Syst. 2023, 22, 75. [Google Scholar] [CrossRef]
- Iatime, K.; Guedda, L.; Djebali, S. System of fractional boundary value problems at resonance. Fract. Calc. Appl. Anal. 2023, 26, 1359–1383. [Google Scholar] [CrossRef]
- Salem, A.; Almaghamsi, L. Solvability of sequential fractional differential equation at resonance. Mathematics 2023, 11, 1044. [Google Scholar] [CrossRef]
- Domoshnitsky, A.; Srivastava, S.N.; Padhi, S. Existence of solutions for a higher order Riemann-Liouville fractional differential equation by Mawhin’s coincidence degree theory. Math. Methods Appl. Sci. 2023, 46, 12018–12034. [Google Scholar] [CrossRef]
- Imaga, O.S.; Iyase, S.A.; Ogunniyi, P.O. Existence results for an m-point mixed fractional-order problem at resonance on the half-Line. Axioms 2022, 11, 630. [Google Scholar] [CrossRef]
- Gaines, R.E.; Mawhin, J.L. Coincidence Degree and Nonlinear Differetial Equitions; Springer: Berlin/Heidelberg, Germany, 1977. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, K.; Liu, J.; Lv, X. A Unified Approach to Solvability and Stability of Multipoint BVPs for Langevin and Sturm–Liouville Equations with CH–Fractional Derivatives and Impulses via Coincidence Theory. Fractal Fract. 2024, 8, 111. https://doi.org/10.3390/fractalfract8020111
Zhao K, Liu J, Lv X. A Unified Approach to Solvability and Stability of Multipoint BVPs for Langevin and Sturm–Liouville Equations with CH–Fractional Derivatives and Impulses via Coincidence Theory. Fractal and Fractional. 2024; 8(2):111. https://doi.org/10.3390/fractalfract8020111
Chicago/Turabian StyleZhao, Kaihong, Juqing Liu, and Xiaojun Lv. 2024. "A Unified Approach to Solvability and Stability of Multipoint BVPs for Langevin and Sturm–Liouville Equations with CH–Fractional Derivatives and Impulses via Coincidence Theory" Fractal and Fractional 8, no. 2: 111. https://doi.org/10.3390/fractalfract8020111