Advanced Integration of Microwave Kiln Technology in Enhancing the Lost-Wax Glass Casting Process: A Study on Methodological Innovations and Practical Implications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microwave Kiln
2.2. Casting Glass
2.3. Casting Refractory Gypsum
2.4. Lost-Wax Glass Casting
2.5. Experimental Procedures
3. Results and Discussion
3.1. The First Cast Glass Trial Firing
3.2. The Second Cast Glass Trial Firing
3.3. The Third Cast Glass Trial Firing
3.4. The Casting Glass Cooling
3.5. Finished 3D Glass Artwork
3.6. Comparison of a Microwave Kiln and a Conventional Kiln in 3D Glass Artworks
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salem, N.S.A.D.A. Innovative technological methods and techniques to revive the ancient Egyptian glass-making heritage. Int. J. Multidiscip. Stud. Herit. Res. 2018, 1, 32–38. [Google Scholar] [CrossRef]
- Chopinet, M.H. The history of glass. In Springer Handbook of Glass; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1–47. [Google Scholar] [CrossRef]
- Rich, J.C. The Materials and Methods of Sculpture; Dover Publications: New York, NY, USA, 1988. [Google Scholar]
- Elbaar, N.; Bennett, B.; Cook, J.; Mauro, J. Coalescence of glass art and glass science. Am. Ceram. Soc. Bull. 2020, 99, 30–35. [Google Scholar]
- Villegas-Broncano, M.A.; Durán-Suárez, J.A. Historical and technical insight into the human motifs in the glass sculpture. Arte Individuo Y Soc. 2021, 33, 589–604. [Google Scholar] [CrossRef]
- Villegas-Broncano, M.A.; Durán Suárez, J.A.; Sorroche Cruz, A. Antecedentes de la escultura del Studio Glass Movement en el vidrio artístico soplado del periodo 1800–1950. Arte Individuo Y Soc. 2017, 29, 9–22. [Google Scholar] [CrossRef]
- Petrie, K. Creative glass research-case studies from art and design. Glass Technol. -Eur. J. Glass Sci. Technol. Part A 2011, 52, 1–10. [Google Scholar]
- Melda, G.E.N.Ç. Mikrodalga Firin Ile Seramik Pişirim Uygulamalari. Sanat Yazıları. 2023, 48, 87–102. [Google Scholar]
- Kopparthy, V.L.; Crews, N.D. Microfab in a Microwave Oven: Simultaneous Patterning and Bonding of Glass Microfluidic Devices. J. Microelectromechanical Syst. 2018, 27, 434–439. [Google Scholar] [CrossRef]
- Brito, L.B.Q.; de Figueiredo Brito, G.; da Silva Morais, C.R. Alternative for Fine Pure Silica in Kiln-Casting Glass Molds. Mater. Lett. 2019, 252, 19–22. [Google Scholar] [CrossRef]
- Pattnaik, S.; Karunakar, D.B.; Jha, P.K. Developments in Investment Casting Process-A Review. J. Mater. Process. Technol. 2012, 212, 2332–2348. [Google Scholar] [CrossRef]
- Bottinga, Y.; Javoy, M. MORB degassing: Bubble growth and ascent. Chem. Geol. 1990, 81, 255–270. [Google Scholar] [CrossRef]
- Jackson, L.E.; Wadsworth, F.B.; Mitchell, J.; Rennie, C.; Llewellin, E.W.; Hess, K.U.; Dingwell, D.B. Bubble rise in molten glasses and silicate melts during heating and cooling cycles. J. Am. Ceram. Soc. 2022, 105, 7238–7253. [Google Scholar] [CrossRef] [PubMed]
- Masar, M.; Urbanek, P.; Skoda, D.; Hanulikova, B.; Kozakova, Z.; Machovsky, M.; Kuritka, I. Preparation and Characterization of Expanded g-C3N4 via Rapid Microwave-Assisted Synthesis. Diam. Relat. Mater. 2018, 83, 109–117. [Google Scholar] [CrossRef]
- Jansaengsuk, T.; Pattanapichai, S.; Poopanya, P.; Phimphakan, N.; Thongsri, J. Thermal Simulation of Microwave Kiln Based on Multiphysics. In Proceedings of the 2023 International Technical Conference on Circuits/Systems, Computers, and Communications (ITC-CSCC), Jeju, Republic of Korea, 25–28 June 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Lecanuet, G.; Rocca, E.; Hee, P.; Skaper, M.A.; Rapin, C. Mechanism of Alteration of the Surface of Lead Crystal Glass in Contact with Food: A Chemical Study of the Surface Layer. Appl. Surf. Sci. 2022, 580, 152281. [Google Scholar] [CrossRef]
- Oikonomopoulou, F.; Bristogianni, T.; Barou, L.; Veer, F.A.; Nijsse, R. The Potential of Cast Glass in Structural Applications. Lessons Learned from Large-Scale Castings and State-of-the Art Load-Bearing Cast Glass in Architecture. J. Build. Eng. 2018, 20, 213–234. [Google Scholar] [CrossRef]
- Damen, W.; Oikonomopoulou, F.; Bristogianni, T.; Turrin, M. Topologically optimized cast glass: A new design approach for loadbearing monolithic glass components of reduced annealing time. Glass Struct. Eng. 2022, 7, 267–291. [Google Scholar] [CrossRef]
- Beveridge, P.; Doménech, I.; Miró, E.P. Warm Glass: A Complete Guide to Kiln-Forming Techniques: Fusing, Slumping, Casting; Lark Books: Asheville, NC, USA, 2005. [Google Scholar]
- Fields, M. Sculptor’s Casting Materials: Complete Review of Materials Available. Sculpt. Rev. 2022, 71, 49–54. [Google Scholar] [CrossRef]
- Taylor, P.R. An Illustrated History of Lost Wax Casting. In Proceedings of the 17th Annual BICTA Conference, Stratford-Upon-Avon, UK, 1–7 September 1983; pp. 4–7. [Google Scholar]
- Kotzin, E.L. Metalcasting & Molding Processes; American Foundrymen’s Society: Schaumburg, IL, USA, 1981. [Google Scholar]
- Frellsen, A. Pate de Verre Process. Master’s Thesis, Rochester Institute of Technology, 1987. Available online: https://repository.rit.edu/theses (accessed on 1 March 2024).
- Kurkjian, C.R.; Prindle, W.R. Perspectives on the history of glass composition. J. Am. Ceram. Soc. 1998, 81, 795–813. [Google Scholar] [CrossRef]
- Fernández Navarro, J.M. El Vidrio, 3rd ed.; CSIC: Serrano, Spain, 2003. [Google Scholar]
- García-Heras, M.; Navarro, J.M.F.; Broncano, M.Á.V. Historia del Vidrio: Desarrollo Formal, Tecnológico y Científico; CYAN: Madrid, Sapin, 2012. [Google Scholar]
- Verità, M.; James, L.; Freestone, I.; Henderson, J.; Nenna, M.D.; Schibille, N. Glossary of Mosaic Glass Terms. Humanities 2009, 1273, 678001. [Google Scholar]
Mold Shaping | Glass Weight | Heating Duration | Kiln Temperature |
---|---|---|---|
Shell-shaped mold | 30 g | 15/min | 650.6 °C |
Mountain-shaped mold | 60 g | 30/min | 550 °C |
Leaf-shaped mold | 219 g | 30/min | 275.8 °C |
Mold Shaping | Glass Weight | Heating Duration | Kiln Temperature |
---|---|---|---|
Mountain-shaped mold | 60 g | 15/min | 681.3 °C |
Leaf-shaped mold | 219 g | 20/min | 500 °C |
Mold Shaping | Glass Weight | Heating Duration | Kiln Temperature |
---|---|---|---|
Leaf-shaped mold | 219 g | 15/min | 771.7 °C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, S.-C.; Kao, M.-S.; Hwang, J.-J. Advanced Integration of Microwave Kiln Technology in Enhancing the Lost-Wax Glass Casting Process: A Study on Methodological Innovations and Practical Implications. J. Compos. Sci. 2024, 8, 168. https://doi.org/10.3390/jcs8050168
Cheng S-C, Kao M-S, Hwang J-J. Advanced Integration of Microwave Kiln Technology in Enhancing the Lost-Wax Glass Casting Process: A Study on Methodological Innovations and Practical Implications. Journal of Composites Science. 2024; 8(5):168. https://doi.org/10.3390/jcs8050168
Chicago/Turabian StyleCheng, Shu-Chen, Ming-Shan Kao, and Jiunn-Jer Hwang. 2024. "Advanced Integration of Microwave Kiln Technology in Enhancing the Lost-Wax Glass Casting Process: A Study on Methodological Innovations and Practical Implications" Journal of Composites Science 8, no. 5: 168. https://doi.org/10.3390/jcs8050168