Next Issue
Volume 5, December
Previous Issue
Volume 5, June
 
 

Quantum Rep., Volume 5, Issue 3 (September 2023) – 5 articles

Cover Story (view full-size image): In the highly orchestrated realm of DNA replication, mismatch repair stands out as an autonomous process, serving as an ideal subject for studying molecular recognition. The enzyme governing mismatch identification transitions through a series of conformational changes. One crucial change involves bifurcation, leading either to mismatch detection or to the validation of the pair. Intriguingly, this pivotal moment is governed by quantum mechanics; it is modeled as a transition from a high-energy quantum state to one of two lower-energy states. This quantum aspect introduces an inherent probability of error, but it also allows for the reduction in mistakes by channeling more energy into the transition, such as through the consumption of two ATP molecules. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
12 pages, 1854 KiB  
Review
Research Trends in Quantum Computers by Focusing on Qubits as Their Building Blocks
by Mohamad Taghi Dejpasand and Morteza Sasani Ghamsari
Quantum Rep. 2023, 5(3), 597-608; https://doi.org/10.3390/quantum5030039 - 13 Sep 2023
Cited by 3 | Viewed by 3387
Abstract
Quantum computing is a rapidly developing field that has the potential to revolutionize the way we process data. In this article, we will introduce quantum computers, their hardware and the challenges associated with their development. One of the key concepts in quantum computing [...] Read more.
Quantum computing is a rapidly developing field that has the potential to revolutionize the way we process data. In this article, we will introduce quantum computers, their hardware and the challenges associated with their development. One of the key concepts in quantum computing is the qubit, which is the basic unit of quantum information. We will discuss this concept in greater detail, exploring how qubits work and the unique properties that make them so powerful. There are currently three leading models of quantum computers: superconducting, ion trap, and neutral-atom qubits. We will compare these models, highlighting their respective advantages and limitations, and discuss the current state of research in each area. In addition to exploring the hardware of quantum computers, we will also introduce some of the innovative research projects related to qubits. Finally, we will examine the market around the quantum computing industry, outlining some of the fundamental challenges we may face. Full article
Show Figures

Figure 1

13 pages, 321 KiB  
Article
Personal Identity and Uncertainty in the Everett Interpretation of Quantum Mechanics
by Zhonghao Lu
Quantum Rep. 2023, 5(3), 584-596; https://doi.org/10.3390/quantum5030038 - 11 Sep 2023
Cited by 1 | Viewed by 1417
Abstract
The deterministic nature of EQM (the Everett Interpretation of Quantum Mechanics) seems to be inconsistent with the use of probability in EQM, giving rise to what is known as the “incoherence problem”. In this paper, I explore approaches to solve the incoherence problem [...] Read more.
The deterministic nature of EQM (the Everett Interpretation of Quantum Mechanics) seems to be inconsistent with the use of probability in EQM, giving rise to what is known as the “incoherence problem”. In this paper, I explore approaches to solve the incoherence problem of EQM via pre-measurement uncertainty. Previous discussions on the validity of pre-measurement uncertainty have leaned heavily on intricate aspects of the theory of semantics and reference, the embrace of either four-dimensionalism or three-dimensionalism of personhood, or the ontology of EQM. In this paper, I argue that, regardless of the adoption of three-dimensionalism or four-dimensionalism of personhood, the overlapping view or the divergence view of the ontology of EQM, the pre-measurement uncertainty approach to the incoherence problem of EQM can only achive success while contradicting fundamental principles of physicalism. I also use the divergence view of EQM as an example to illustrate my analyses. Full article
(This article belongs to the Special Issue The Many-Worlds Interpretation of Quantum Mechanics)
19 pages, 834 KiB  
Article
ATP-Dependent Mismatch Recognition in DNA Replication Mismatch Repair
by Nianqin Zhang and Yongjun Zhang
Quantum Rep. 2023, 5(3), 565-583; https://doi.org/10.3390/quantum5030037 - 21 Aug 2023
Viewed by 1843
Abstract
Mismatch repair is a critical step in DNA replication that occurs after base selection and proofreading, significantly increasing fidelity. However, the mechanism of mismatch recognition has not been established for any repair enzyme. Speculations in this area mainly focus on exploiting thermodynamic equilibrium [...] Read more.
Mismatch repair is a critical step in DNA replication that occurs after base selection and proofreading, significantly increasing fidelity. However, the mechanism of mismatch recognition has not been established for any repair enzyme. Speculations in this area mainly focus on exploiting thermodynamic equilibrium and free energy. Nevertheless, non-equilibrium processes may play a more significant role in enhancing mismatch recognition accuracy by utilizing adenosine triphosphate (ATP). This study aimed to investigate this possibility. Considering our limited knowledge of actual mismatch repair enzymes, we proposed a hypothetical enzyme that operates as a quantum system with three discrete energy levels. When the enzyme is raised to its highest energy level, a quantum transition occurs, leading to one of two low-energy levels representing potential recognition outcomes: a correct match or a mismatch. The probabilities of the two outcomes are exponentially different, determined by the energy gap between the two low energy levels. By flipping the energy gap, discrimination between mismatches and correct matches can be achieved. Within a framework that combines quantum mechanics with thermodynamics, we established a relationship between energy cost and the recognition error. Full article
(This article belongs to the Special Issue Recent Advances in Quantum Biology)
Show Figures

Figure 1

19 pages, 1756 KiB  
Article
Optical Dromions for Spatiotemporal Fractional Nonlinear System in Quantum Mechanics
by Ihsan A. Khoso, Nek Muhammad Katbar and Urooj Akram
Quantum Rep. 2023, 5(3), 546-564; https://doi.org/10.3390/quantum5030036 - 18 Jul 2023
Viewed by 1266
Abstract
In physics, mathematics, and other disciplines, new integrable equations have been found using the P-test. Novel insights and discoveries in several domains have resulted from this. Whether a solution is oscillatory, decaying, or expanding exponentially can be observed by using the AEM [...] Read more.
In physics, mathematics, and other disciplines, new integrable equations have been found using the P-test. Novel insights and discoveries in several domains have resulted from this. Whether a solution is oscillatory, decaying, or expanding exponentially can be observed by using the AEM approach. In this work, we examined the integrability of the triple nonlinear fractional Schrödinger equation (TNFSE) via the Painlevé test (P-test) and a number of optical solitary wave solutions such as bright dromions (solitons), hyperbolic, singular, periodic, domain wall, doubly periodic, trigonometric, dark singular, plane-wave solution, combined optical solitons, rational solutions, etc., via the auxiliary equation mapping (AEM) technique. In mathematical physics and in engineering sciences, this equation plays a very important role. Moreover, the graphical representation (3D, 2D, and contour) of the obtained optical solitary-wave solutions will facilitate the understanding of the physical phenomenon of this system. The computational work and conclusions indicate that the suggested approaches are efficient and productive. Full article
Show Figures

Figure 1

20 pages, 782 KiB  
Article
Control Landscape of Measurement-Assisted Transition Probability for a Three-Level Quantum System with Dynamical Symmetry
by Maria Elovenkova and Alexander Pechen
Quantum Rep. 2023, 5(3), 526-545; https://doi.org/10.3390/quantum5030035 - 13 Jul 2023
Cited by 2 | Viewed by 1458
Abstract
Quantum systems with dynamical symmetries have conserved quantities that are preserved under coherent control. Therefore, such systems cannot be completely controlled by means of only coherent control. In particular, for such systems, the maximum transition probability between some pairs of states over all [...] Read more.
Quantum systems with dynamical symmetries have conserved quantities that are preserved under coherent control. Therefore, such systems cannot be completely controlled by means of only coherent control. In particular, for such systems, the maximum transition probability between some pairs of states over all coherent controls can be less than one. However, incoherent control can break this dynamical symmetry and increase the maximum attainable transition probability. The simplest example of such a situation occurs in a three-level quantum system with dynamical symmetry, for which the maximum probability of transition between the ground and intermediate states using only coherent control is 1/2, whereas it is about 0.687 using coherent control assisted by incoherent control implemented through the non-selective measurement of the ground state, as was previously analytically computed. In this work, we study and completely characterize all critical points of the kinematic quantum control landscape for this measurement-assisted transition probability, which is considered as a function of the kinematic control parameters (Euler angles). The measurement-driven control used in this work is different from both quantum feedback and Zeno-type control. We show that all critical points are global maxima, global minima, saddle points or second-order traps. For comparison, we study the transition probability between the ground and highest excited states, as well as the case when both these transition probabilities are assisted by incoherent control implemented through the measurement of the intermediate state. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop