Two-Dimensional Ferroelectrics: A Review on Applications and Devices
Abstract
:1. Introduction
2. Theoretical Background
3. FeRAM Devices
4. FeFET-Oxides/2D VdW
5. FTJ-Oxides/2D VdW
6. 2D VdW-2 Terminals Devices
7. FeFET-2D VdW-3 Terminals Devices
8. Optoelectronic Devices
9. Nonstandard Applications
9.1. Magnon Electronics
9.2. Surface Acoustic Waves
10. Conclusions
- (1)
- Combining 2D FE materials in FE/FM heterostructures, it is possible to overcome the difficulties in researching natural 2D multiferroic materials, which allow the electric manipulation of magnetic properties [112]. At the same time, this can lead to unknown interactions at the interface, and consequently, to new functionalities and technological devices.
- (2)
- Materials with 5d electrons are suitable for investigating the interaction between FE order and spin–orbit coupling [113], as they can exhibit strong spin–orbit coupling effects. Furthermore, the nonvolatile control of topological states, such as the transition from topological to trivial states induced by polarization, can be achieved in 2D systems where FE order and topological features are linked [114].
- (3)
- It is possible to observe unexpected phenomena when combining ferroic order with 2D topological insulators. It is well known that structural symmetry breaking is associated with the emergence of dipole polarization, meaning that combining FE and a topological phase could allow for the observation of Rashba splitting and potentially the control of spin vortex and valleytronics features [115].
- (4)
- Ke et al. [116] reported that by stacking 2D ferroelectric materials -InX (X = S, Se, Te), for example, where the polarization points out of the plane, it is possible to change the depolarization field and adjust the band gap. In this way, they claim that this creates ferroelectric metals with switchable polarization, high carrier mobility, and high electrical conductivity, controlling the metallic surface state by altering the number of layers or applying an external voltage. This work opens a new path to the smart design of electrocatalysts without transition metals, offering high-quality and voltage-switchable electrocatalysis.
Funding
Conflicts of Interest
References
- Valasek, J. Piezo-Electric and Allied Phenomena in Rochelle Salt. Phys. Rev. 1921, 17, 475–481. [Google Scholar] [CrossRef]
- Naber, R.C.G.; Tanase, C.; Blom, P.W.M.; Gelinck, G.H.; Marsman, A.W.; Touwslager, F.J.; Setayesh, S.; de Leeuw, D.M. High-performance solution-processed polymer ferroelectric field-effect transistors. Nat. Mater. 2005, 4, 243–248. [Google Scholar] [CrossRef]
- Muralt, P. Ferroelectric thin films for micro-sensors and actuators: A review. J. Micromech. Microeng. 2000, 10, 136. [Google Scholar] [CrossRef]
- Abe, S.; Joichi, T.; Uekusa, K.; Hara, H.; Masuda, S. Photonic integration based on a ferroelectric thin-film platform. Sci. Rep. 2019, 9, 16548. [Google Scholar] [CrossRef]
- Nalwa, H. Light-emitting diodes, lithium batteries and polymer devices. In Handbook of Advanced Electronic and Photonic Materials and Devices; Academic Press: Cambridge, MA, USA, 2001. [Google Scholar]
- Wang, H.; Liu, Z.R.; Yoong, H.Y.; Paudel, T.R.; Xiao, J.X.; Guo, R.; Lin, W.N.; Yang, P.; Wang, J.; Chow, G.M.; et al. Direct observation of room-temperature out-of-plane ferroelectricity and tunneling electroresistance at the two-dimensional limit. Nat. Commun. 2018, 9, 3319. [Google Scholar] [CrossRef]
- Müller, J.; Yurchuk, E.; Schlösser, T.; Paul, J.; Hoffmann, R.; Müller, S.; Martin, D.; Slesazeck, S.; Polakowski, P.; Sundqvist, J.; et al. Ferroelectricity in HfO2 enables nonvolatile data storage in 28 nm HKMG. In Proceedings of the 2012 Symposium on VLSI Technology (VLSIT), Honolulu, HI, USA, 12–14 June 2012; pp. 25–26. [Google Scholar] [CrossRef]
- Park, M.H.; Lee, Y.H.; Mikolajick, T.; Schroeder, U.; Hwang, C.S. Review and perspective on ferroelectric HfO2-based thin films for memory applications. MRS Commun. 2018, 8, 795–808. [Google Scholar] [CrossRef]
- Feder, J. Two dimensional ferroelectricity. Ferroelectrics 1976, 12, 71–83. [Google Scholar] [CrossRef]
- Belianinov, A.; He, Q.; Dziaugys, A.; Maksymovych, P.; Eliseev, E.; Borisevich, A.; Morozovska, A.; Banys, J.; Vysochanskii, Y.; Kalinin, S.V. CuInP2S6 Room Temperature Layered Ferroelectric. Nano Lett. 2015, 15, 3808–3814. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.; Liu, J.; Lin, H.; Wang, N.; Zhao, K.; Zhang, A.; Jin, F.; Zhong, Y.; Hu, X.; Duan, W.; et al. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science 2016, 353, 274–278. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; You, L.; Seyler, K.L.; Li, X.; Yu, P.; Lin, J.; Wang, X.; Zhou, J.; Wang, H.; He, H.; et al. Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat. Commun. 2016, 7, 12357. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Zhu, H.; Wang, Y.; Feng, W.; Hu, Y.; Dasgupta, A.; Han, Y.; Wang, Y.; Muller, D.A.; Martin, L.W.; et al. Intrinsic Two-Dimensional Ferroelectricity with Dipole Locking. Phys. Rev. Lett. 2018, 120, 227601. [Google Scholar] [CrossRef] [PubMed]
- Varotto, S.; Nessi, L.; Cecchi, S.; Slawinska, J.; Noel, P.; Petrò, S.; Fagiani, F.; Novati, A.; Cantoni, M.; Petti, D.; et al. Room-temperature ferroelectric switching of spin-to-charge conversion in germanium telluride. Nat. Electron. 2021, 4, 740–747. [Google Scholar] [CrossRef]
- Andersen, T.I.; Scuri, G.; Sushko, A.; Greve, K.D.; Sung, J.; Zhou, Y.; Wild, D.S.; Gelly, R.J.; Heo, H.; Bérubé, D.; et al. Excitons in a reconstructed moiré potential in twisted WSe2/WSe2 homobilayers. Nat. Mater. 2021, 20, 480–487. [Google Scholar] [CrossRef]
- Son, S.; Lee, Y.; Kim, J.H.; Kim, B.H.; Kim, C.; Na, W.; Ju, H.; Park, S.; Nag, A.; Zhou, K.J.; et al. Multiferroic-Enabled Magnetic-Excitons in 2D Quantum-Entangled Van der Waals Antiferromagnet NiI2. Adv. Mater. 2021, 34, 2109144. [Google Scholar] [CrossRef]
- Song, Q.; Occhialini, C.A.; Ilyas, E.E.B.; Amoroso, D.; Barone, P.; Kapeghian, J.; Watanabe, K.; Taniguchi, T.; Botana, A.S.; Picozzi, S.; et al. Evidence for a single-layer van der Waals multiferroic. Nature 2022, 602, 601–605. [Google Scholar] [CrossRef]
- You, Y.M.; Liao, W.Q.; Zhao, D.; Ye, H.Y.; Zhang, Y.; Zhou, Q.; Niu, X.; Wang, J.; Li, P.F.; Fu, D.W.; et al. An organic-inorganic perovskite ferroelectric with large piezoelectric response. Science 2017, 357, 306–309. [Google Scholar] [CrossRef]
- Liu, Z.; Deng, L.; Peng, B. Ferromagnetic and ferroelectric two-dimensional materials for memory application. Adv. Mater. 2021, 14, 1802–1813. [Google Scholar] [CrossRef]
- Abdolhosseinzadeh, S.; Jiang, X.; Zhang, H.; Qiu, J.; Zhang, C.J. Perspectives on solution processing of two-dimensional MXenes. Mater. Today 2021, 48, 214–240. [Google Scholar] [CrossRef]
- Luo, Z.D.; Yang, M.M.; Liu, Y.; Alexe, M. Emerging Opportunities for 2D Semiconductor/Ferroelectric Transistor-Structure Devices. Adv. Mater. 2021, 33, 2005620. [Google Scholar] [CrossRef]
- Wang, J.; Hu, W. Recent progress on integrating two-dimensional materials with ferroelectrics for memory devices and photodetectors. Chin. Phys. B 2017, 26, 037106. [Google Scholar] [CrossRef]
- Mermin, N.D.; Wagner, H. Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models. Phys. Rev. Lett. 1966, 17, 1133–1136. [Google Scholar] [CrossRef]
- Liu, K.; Lu, J.; Picozzi, S.; Bellaiche, L.; Xiang, H. Intrinsic Origin of Enhancement of Ferroelectricity in SnTe Ultrathin Films. Phys. Rev. Lett. 2018, 121, 027601. [Google Scholar] [CrossRef]
- Zhang, J.; Song, X.; Wang, L.; Huang, W. Ultrathin two-dimensional hybrid perovskites toward flexible electronics and optoelectronics. Natl. Sci. Rev. 2021, 9, nwab129. [Google Scholar] [CrossRef]
- Lou, F.; Gu, T.; Ji, J.; Feng, J.; Xiang, H.; Stroppa, A. Tunable spin textures in polar antiferromagnetic hybrid organic–inorganic perovskites by electric and magnetic fields. npj Comput. Mater. 2020, 6, 114. [Google Scholar] [CrossRef]
- Kenzelmann, M.; Harris, A.B.; Jonas, S.; Broholm, C.; Schefer, J.; Kim, S.B.; Zhang, C.L.; Cheong, S.W.; Vajk, O.P.; Lynn, J.W. Magnetic Inversion Symmetry Breaking and Ferroelectricity in TbMnO3. Phys. Rev. Lett. 2005, 95, 087206. [Google Scholar] [CrossRef]
- Scott, J.F.; de Araujo, C.A.P. Ferroelectric Memories. Science 1989, 246, 1400–1405. [Google Scholar] [CrossRef]
- Moore, G.E. Cramming more components onto integrated circuits, Reprinted from Electronics, volume 38, number 8, April 19, 1965, pp.114 ff. IEEE Solid-State Circuits Soc. Newsl. 2006, 11, 33–35. [Google Scholar] [CrossRef]
- Waldrop, M.M. The chips are down for Moore’s law. Nature 2016, 530, 144–147. [Google Scholar] [CrossRef]
- Radamson, H.H.; Zhu, H.; Wu, Z.; He, X.; Lin, H.; Liu, J.; Xiang, J.; Kong, Z.; Xiong, W.; Li, J.; et al. State of the Art and Future Perspectives in Advanced CMOS Technology. Nanomaterials 2020, 10, 1555. [Google Scholar] [CrossRef]
- Nikonov, D.E.; Young, I.A. Benchmarking of Beyond-CMOS Exploratory Devices for Logic Integrated Circuits. IEEE J. Explor.-Solid-State Comput. Devices Circuits 2015, 1, 3–11. [Google Scholar] [CrossRef]
- International Roadmap for Devices and Systems, beyond CMOS and Emerging Materials Integration: 2022. Available online: https://irds.ieee.org/editions/2022/irds%E2%84%A2-2022-beyond-cmos-and-emerging-research-materials (accessed on 13 June 2023).
- Wang, Z.; Liu, X.; Zhou, X.; Yuan, Y.; Zhou, K.; Zhang, D.; Luo, H.; Sun, J. Reconfigurable Quasi-Nonvolatile Memory/Subthermionic FET Functions in Ferroelectric–2D Semiconductor vdW Architectures. Adv. Mater. 2022, 34, 2200032. [Google Scholar] [CrossRef]
- Müller, J.; Polakowski, P.; Mueller, S.; Mikolajick, T. Ferroelectric Hafnium Oxide Based Materials and Devices: Assessment of Current Status and Future Prospects. ECS J. Solid State Sci. Technol. 2015, 4, N30. [Google Scholar] [CrossRef]
- Böscke, T.S.; Müller, J.; Bräuhaus, D.; Schröder, U.; Böttger, U. Ferroelectricity in hafnium oxide: CMOS compatible ferroelectric field effect transistors. In Proceedings of the 2011 International Electron Devices Meeting, Washington, DC, USA, 5–7 December 2011; pp. 24.5.1–24.5.4. [Google Scholar] [CrossRef]
- Müller, J.; Böscke, T.S.; Müller, S.; Yurchuk, E.; Polakowski, P.; Paul, J.; Martin, D.; Schenk, T.; Khullar, K.; Kersch, A.; et al. Ferroelectric hafnium oxide: A CMOS-compatible and highly scalable approach to future ferroelectric memories. In Proceedings of the 2013 IEEE International Electron Devices Meeting, Washington, DC, USA, 9–11 December 2013; pp. 10.8.1–10.8.4. [Google Scholar] [CrossRef]
- Yurchuk, E.; Mueller, S.; Martin, D.; Slesazeck, S.; Schroeder, U.; Mikolajick, T.; Muller, J.; Paul, J.; Hoffmann, R.; Sundqvist, J.; et al. Origin of the endurance degradation in the novel HfO2-based 1T ferroelectric non-volatile memories. In Proceedings of the 2014 IEEE International Reliability Physics Symposium, Waikoloa, HI, USA, 1–5 June 2014; pp. 2E.5.1–2E.5.5. [Google Scholar]
- Tan, A.J.; Liao, Y.H.; Wang, L.C.; Shanker, N.; Bae, J.H.; Hu, C.; Salahuddin, S. Ferroelectric HfO2 Memory Transistors With High-k Interfacial Layer and Write Endurance Exceeding 1010 Cycles. IEEE Electron Device Lett. 2021, 42, 994–997. [Google Scholar] [CrossRef]
- Lemme, M.C.; Akinwande, D.; Huyghebaert, C.; Stampfer, C. 2D materials for future heterogeneous electronics. Nat. Commun. 2022, 13, 1392. [Google Scholar] [CrossRef]
- Ivanov, S.A.; Sarkar, T.; Fortalnova, E.A.; Politova, E.D.; Stefanovich, S.Y.; Safronenko, M.G.; Nordblad, P.; Mathieu, R. Composition dependence of the multifunctional properties of Nd-doped Bi4Ti3O12 ceramics. J. Mater. Sci. Mater. Electron. 2017, 28, 7692–7707. [Google Scholar] [CrossRef]
- Du, J.; Xie, D.; Zhang, Q.; Zhong, H.; Meng, F.; Fu, X.; Sun, Q.; Ni, H.; Li, T.; Guo, E.-j.; et al. A robust neuromorphic vision sensor with optical control of ferroelectric switching. Nano Energy 2021, 89, 106439. [Google Scholar] [CrossRef]
- Puebla, S.; Pucher, T.; Rouco, V.; Sanchez-Santolino, G.; Xie, Y.; Zamora, V.; Cuellar, F.A.; Mompean, F.J.; Leon, C.; Island, J.O.; et al. Combining Freestanding Ferroelectric Perovskite Oxides with Two-Dimensional Semiconductors for High Performance Transistors. Nano Lett. 2022, 22, 7457–7466. [Google Scholar] [CrossRef]
- Hiroyuki, Y.; Vincent, G.; Stéphane, F.; Sören, B.; Maya, M.; Alexandre, G.; Stéphane, X.; Julie, G.; Eric, J.; Cécile, C.; et al. Giant Electroresistance of Super-tetragonal BiFeO3-Based Ferroelectric Tunnel Junctions. ACS Nano 2013, 7, 5385–5390. [Google Scholar]
- Wang, J.; Neaton, J.B.; Zheng, H.; Nagarajan, V.; Ogale, S.B.; Liu, B.; Viehland, D.; Vaithyanathan, V.; Schlom, D.G.; Waghmare, U.V.; et al. Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures. Science 2003, 299, 1719–1722. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Luo, X.; Han, L.; Zhang, Z.; Zhang, R.; Olin, H.; Yang, Y. Structure, Performance, and Application of BiFeO3 Nanomaterials. Nano-Micro Lett. 2020, 12, 81. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Sharma, P.; Lipatov, A.; Lee, H.; Lee, J.W.; Zhuravlev, M.Y.; Paudel, T.R.; Genenko, Y.A.; Eom, C.B.; Tsymbal, E.Y.; et al. Polarization-Mediated Modulation of Electronic and Transport Properties of Hybrid MoS2–BaTiO3–SrRuO3 Tunnel Junctions. Nano Lett. 2017, 17, 922–927. [Google Scholar] [CrossRef]
- Fei, Z.; Zhao, W.; Palomaki, T.A.; Sun, B.; Miller, M.K.; Zhao, Z.; Yan, J.; Xu, X.; Cobden, D.H. Ferroelectric switching of a two-dimensional metal. Nature 2018, 560, 336–339. [Google Scholar] [CrossRef]
- Shuoguo, Y.; Xin, L.; Lit, C.H.; Chengcheng, X.; Yawei, D.; Maohai, X.; Jianhua, H. Room-temperature ferroelectricity in MoTe2 down to the atomic monolayer limit. Nat. Commun. 2019, 10, 1775. [Google Scholar] [CrossRef]
- Lu, Y.; Fucai, L.; Hongsen, L.; Hu, Y.; Shuang, Z.; Lei, C.; Yang, Z.; Qundong, F.; Guoliang, Y.; Shuai, D.; et al. In-Plane Ferroelectricity in Thin Flakes of Van der Waals Hybrid Perovskite. Adv. Mater. 2018, 30, 1803249. [Google Scholar] [CrossRef]
- Zheng, C.; Yu, L.; Zhu, L.; Collins, J.L.; Kim, D.; Lou, Y.; Xu, C.; Li, M.; Wei, Z.; Zhang, Y.; et al. Room temperature in-plane ferroelectricity in van der Waals In2Se3. Sci. Adv. 2018, 4, eaar7720. [Google Scholar] [CrossRef]
- Wang, H.; Lu, W.; Hou, S.; Yu, B.; Zhou, Z.; Xue, Y.; Guo, R.; Wang, S.; Zeng, K.; Yan, X. A 2D-SnSe film with ferroelectricity and its bio-realistic synapse application. Nanoscale 2020, 12, 21913–21922. [Google Scholar] [CrossRef]
- Kwon, K.C.; Zhang, Y.; Wang, L.; Yu, W.; Wang, X.; Park, I.H.; Choi, H.S.; Ma, T.; Zhu, Z.; Tian, B.; et al. In-Plane Ferroelectric Tin Monosulfide and Its Application in a Ferroelectric Analog Synaptic Device. ACS Nano 2020, 14, 7628–7638. [Google Scholar] [CrossRef]
- Hu, Z.; Li, Q.; Li, M.; Wang, Q.; Zhu, Y.; Liu, X.; Zhao, X.; Liu, Y.; Dong, S. Ferroelectric memristor based on Pt/BiFeO3/Nb-doped SrTiO3 heterostructure. Appl. Phys. Lett. 2013, 102, 102901. [Google Scholar] [CrossRef]
- Kim, S.; Heo, K.; Lee, S.; Seo, S.; Kim, H.; Cho, J.; Lee, H.; Lee, K.B.; Park, J.H. Ferroelectric polymer-based artificial synapse for neuromorphic computing. Nanoscale Horiz. 2021, 6, 139–147. [Google Scholar] [CrossRef]
- Chen, L.; Pam, M.E.; Li, S.; Ang, K.W. Ferroelectric memory based on two-dimensional materials for neuromorphic computing. Neuromorphic Comput. Eng. 2022, 2, 022001. [Google Scholar] [CrossRef]
- Tian, B.; Liu, L.; Yan, M.; Wang, J.; Zhao, Q.; Zhong, N.; Xiang, P.; Sun, L.; Peng, H.; Shen, H.; et al. A Robust Artificial Synapse Based on Organic Ferroelectric Polymer. Adv. Electron. Mater. 2019, 5, 1800600. [Google Scholar] [CrossRef]
- Chen, Y.H.; Cheng, C.Y.; Chen, S.Y.; Rodriguez, J.S.D.; Liao, H.T.; Watanabe, K.; Taniguchi, T.; Chen, C.W.; Sankar, R.; Chou, F.C.; et al. Oxidized-monolayer tunneling barrier for strong Fermi-level depinning in layered InSe transistors. npj 2D Mater. Appl. 2019, 3, 49. [Google Scholar] [CrossRef]
- Wang, L.; Wang, X.; Zhang, Y.; Li, R.; Ma, T.; Leng, K.; Chen, Z.; Abdelwahab, I.; Loh, K.P. Exploring Ferroelectric Switching in α-In2Se3 for Neuromorphic Computing. Adv. Funct. Mater. 2020, 30, 2004609. [Google Scholar] [CrossRef]
- Ding, W.; Zhu, J.; Wang, Z.; Gao, Y.; Xiao, D.; Gu, Y.; Zhang, Z.; Zhu, W. Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials. Nat. Commun. 2017, 8, 14956. [Google Scholar] [CrossRef]
- Yu, Z.; Wu, D.; Zhu, Y.; Cho, Y.; He, Q.; Yang, X.; Herrera, K.; Chu, Z.; Han, Y.; Downer, M.C.; et al. Out-of-Plane Piezoelectricity and Ferroelectricity in Layered α-In2Se3 Nanoflakes. Nano Lett. 2017, 17, 5508–5513. [Google Scholar] [CrossRef]
- Xue, F.; He, X.; Retamal, J.R.D.; Han, A.; Zhang, J.; Liu, Z.; Huang, J.K.; Hu, W.; Tung, V.; He, J.H.; et al. Gate-Tunable and Multidirection-Switchable Memristive Phenomena in a Van Der Waals Ferroelectric. Adv. Mater. 2019, 31, 1901300. [Google Scholar] [CrossRef]
- Si, M.; Saha, A.K.; Gao, S.; Qiu, G.; Qin, J.; Duan, Y.; Jian, J.; Niu, C.; Wang, H.; Wu, W.; et al. A ferroelectric semiconductor field-effect transistor. Nat. Electron. 2019, 2, 580–586. [Google Scholar] [CrossRef]
- Island, J.O.; Blanter, S.I.; Buscema, M.; van der Zant, H.S.J.; Castellanos-Gomez, A. Gate Controlled Photocurrent Generation Mechanisms in High-Gain In2Se3 Phototransistors. Nano Lett. 2015, 15, 7853–7858. [Google Scholar] [CrossRef]
- Yang, J.Y.; Yeom, M.J.; Park, Y.; Heo, J.; Yoo, G. Ferroelectric α-In2Se3 Wrapped-Gate β-Ga2O3 Field-Effect Transistors for Dynamic Threshold Voltage Control. Adv. Electron. Mater. 2021, 7, 2100306. [Google Scholar] [CrossRef]
- Liu, X.; Wu, G.; Zeng, J.; Bai, C.; Li, W.; Wang, J.; Chu, J. Two-dimensional α-In2Se3-based ferroelectric semiconductor junction for reconfigurable photodetectors. Appl. Phys. Lett. 2023, 122, 193101. [Google Scholar] [CrossRef]
- Li, B.; Li, S.; Wang, H.; Chen, L.; Liu, L.; Feng, X.; Li, Y.; Chen, J.; Gong, X.; Ang, K.W. An Electronic Synapse Based on 2D Ferroelectric CuInP2S6. Adv. Electron. Mater. 2020, 6, 2000760. [Google Scholar] [CrossRef]
- Li, X.; Chen, X.; Deng, W.; Li, S.; An, B.; Chu, F.; Wu, Y.; Liu, F.; Zhang, Y. An all-two-dimensional Fe-FET retinomorphic sensor based on the novel gate dielectric In2Se3−xOx. Nanoscale 2023, 15, 10705–10714. [Google Scholar] [CrossRef]
- Das, S.; Sebastian, A.; Pop, E.; McClellan, C.J.; Franklin, A.D.; Grasser, T.; Knobloch, T.; Illarionov, Y.; Penumatcha, A.V.; Appenzeller, J.; et al. Transistors based on two-dimensional materials for future integrated circuits. Nat. Electron. 2021, 4, 786–799. [Google Scholar] [CrossRef]
- Dang, Z.; Guo, F.; Duan, H.; Zhao, Q.; Fu, Y.; Jie, W.; Jin, K.; Hao, J. Black Phosphorus/Ferroelectric P(VDF-TrFE) Field-Effect Transistors with High Mobility for Energy-Efficient Artificial Synapse in High-Accuracy Neuromorphic Computing. Nano Lett. 2023, 23, 6752–6759. [Google Scholar] [CrossRef]
- Dang, Z.; Guo, F.; Wu, Z.; Jin, K.; Hao, J. Interface Engineering and Device Applications of 2D Ultrathin Film/Ferroelectric Copolymer P(VDF-TrFE). Adv. Phys. Res. 2023, 2, 2200038. [Google Scholar] [CrossRef]
- Kim, S.; Dong, Y.; Hossain, M.M.; Gorman, S.; Towfeeq, I.; Gajula, D.; Childress, A.; Rao, A.M.; Koley, G. Piezoresistive Graphene/P(VDF-TrFE) Heterostructure Based Highly Sensitive and Flexible Pressure Sensor. ACS Appl. Mater. Interfaces 2019, 11, 16006–16017. [Google Scholar] [CrossRef]
- Li, E.; Wu, X.; Chen, Q.; Wu, S.; He, L.; Yu, R.; Hu, Y.; Chen, H.; Guo, T. Nanoscale channel organic ferroelectric synaptic transistor array for high recognition accuracy neuromorphic computing. Nano Energy 2021, 85, 106010. [Google Scholar] [CrossRef]
- Jin, L.; Wang, H.; Cao, R.; Khan, K.; Tareen, A.K.; Wageh, S.; Al-Ghamdi, A.A.; Li, S.; Li, D.; Zhang, Y.; et al. The rise of 2D materials/ferroelectrics for next generation photonics and optoelectronics devices. APL Mater. 2022, 10, 060903. [Google Scholar] [CrossRef]
- Qiu, D.Y.; da Jornada, F.H.; Louie, S.G. Optical Spectrum of MoS2: Many-Body Effects and Diversity of Exciton States. Phys. Rev. Lett. 2013, 111, 216805. [Google Scholar] [CrossRef]
- He, K.; Kumar, N.; Zhao, L.; Wang, Z.; Mak, K.F.; Zhao, H.; Shan, J. Tightly Bound Excitons in Monolayer WSe2. Phys. Rev. Lett. 2014, 113, 026803. [Google Scholar] [CrossRef]
- Xia, F.; Wang, H.; Xiao, D.; Dubey, M.; Ramasubramaniam, A. Two-dimensional material nanophotonics. Nat. Photonics 2014, 8, 899–907. [Google Scholar] [CrossRef]
- Wang, X.; Cui, Y.; Li, T.; Lei, M.; Li, J.; Wei, Z. Recent Advances in the Functional 2D Photonic and Optoelectronic Devices. Adv. Opt. Mater. 2019, 7, 1801274. [Google Scholar] [CrossRef]
- Mak, K.F.; Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics 2016, 10, 216–226. [Google Scholar] [CrossRef]
- Qiu, Q.; Huang, Z. Photodetectors of 2D Materials from Ultraviolet to Terahertz Waves. Adv. Mater. 2021, 33, 2008126. [Google Scholar] [CrossRef]
- Fu, J.; Qiu, M.; Bao, W.; Zhang, H. Frontiers in Electronic and Optoelectronic Devices Based on 2D Materials. Adv. Electron. Mater. 2021, 7, 2100444. [Google Scholar] [CrossRef]
- Guan, H.; Hong, J.; Wang, X.; Ming, J.; Zhang, Z.; Liang, A.; Han, X.; Dong, J.; Qiu, W.; Chen, Z.; et al. Broadband, High-Sensitivity Graphene Photodetector Based on Ferroelectric Polarization of Lithium Niobate. Adv. Opt. Mater. 2021, 9, 2100245. [Google Scholar] [CrossRef]
- Sun, Y.; Niu, G.; Ren, W.; Meng, X.; Zhao, J.; Luo, W.; Ye, Z.G.; Xie, Y.H. Hybrid System Combining Two-Dimensional Materials and Ferroelectrics and Its Application in Photodetection. ACS Nano 2021, 15, 10982–11013. [Google Scholar] [CrossRef]
- Guo, J.; Liu, Y.; Lin, Y.; Tian, Y.; Zhang, J.; Gong, T.; Cheng, T.; Huang, W.; Zhang, X. Simulation of tuning graphene plasmonic behaviors by ferroelectric domains for self-driven infrared photodetector applications. Nanoscale 2019, 11, 20868–20875. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, H.; Hu, G.; Li, S.; Su, H.; Zhang, J. Graphene Based Surface Plasmon Polariton Modulator Controlled by Ferroelectric Domains in Lithium Niobate. Sci. Rep. 2015, 5, 18258. [Google Scholar] [CrossRef]
- Lee, Y.T.; Hwang, D.K.; Choi, W.K. High-performance black phosphorus top-gate ferroelectric transistor for nonvolatile memory applications. J. Korean Phys. Soc. 2016, 69, 1347–1351. [Google Scholar] [CrossRef]
- Xie, L.; Chen, X.; Dong, Z.; Yu, Q.; Zhao, X.; Yuan, G.; Zeng, Z.; Wang, Y.; Zhang, K. Nonvolatile Photoelectric Memory Induced by Interfacial Charge at a Ferroelectric PZT-Gated Black Phosphorus Transistor. Adv. Electron. Mater. 2019, 5, 1900458. [Google Scholar] [CrossRef]
- Yan, J.M.; Ying, J.S.; Yan, M.Y.; Wang, Z.C.; Li, S.S.; Chen, T.W.; Gao, G.Y.; Liao, F.; Luo, H.S.; Zhang, T.; et al. Optoelectronic Coincidence Detection with Two-Dimensional Bi2O2Se Ferroelectric Field-Effect Transistors. Adv. Funct. Mater. 2021, 31, 2103982. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, H.; Yao, X.; Li, Z.; Zhou, C.; Zhang, X.; Chen, P.; Fu, L.; Zhou, X.; Wang, J.; et al. Ultrasensitive Mid-wavelength Infrared Photodetection Based on a Single InAs Nanowire. ACS Nano 2019, 13, 3492–3499. [Google Scholar] [CrossRef]
- Wang, X.; Wang, P.; Wang, J.; Hu, W.; Zhou, X.; Guo, N.; Huang, H.; Sun, S.; Shen, H.; Lin, T.; et al. Ultrasensitive and Broadband MoS2 Photodetector Driven by Ferroelectrics. Adv Mater. 2015, 27, 6575–6581. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Wu, L.; Wang, A.; Liu, H.; Ma, R.; Wu, K.; Chen, J.; Zhou, Z.; Tian, Y.; Yang, H.; et al. Ferroelectric-Gated InSe Photodetectors with High On/Off Ratios and Photoresponsivity. Nano Lett. 2020, 20, 6666–6673. [Google Scholar] [CrossRef] [PubMed]
- Wu, M. Two-Dimensional van der Waals Ferroelectrics: Scientific and Technological Opportunities. ACS Nano 2021, 15, 9229–9237. [Google Scholar] [CrossRef]
- Li, P.; Chaturvedi, A.; Zhou, H.; Zhang, G.; Li, Q.; Xue, J.; Zhou, Z.; Wang, S.; Zhou, K.; Weng, Y.; et al. Electrostatic Coupling in MoS2/CuInP2S6 Ferroelectric vdW Heterostructures. Adv. Funct. Mater. 2022, 32, 2201359. [Google Scholar] [CrossRef]
- Hill, N.A. Why Are There so Few Magnetic Ferroelectrics? J. Phys. Chem. B 2000, 104, 6694–6709. [Google Scholar] [CrossRef]
- Eerenstein, W.; Mathur, N.D.; Scott, J.F. Multiferroic and magnetoelectric materials. Nature 2006, 442, 759–765. [Google Scholar] [CrossRef]
- Ramesh, R.; Spaldin, N.A. Multiferroics: Progress and prospects in thin films. Nat. Mater. 2007, 6, 21–29. [Google Scholar] [CrossRef]
- Beckman, S.P.; Wang, X.; Rabe, K.M.; Vanderbilt, D. Ideal barriers to polarization reversal and domain-wall motion in strained ferroelectric thin films. Phys. Rev. B 2009, 79, 144124. [Google Scholar] [CrossRef]
- Khitun, A.; Wang, K.L. Non-volatile magnonic logic circuits engineering. J. Appl. Phys. 2011, 110, 034306. [Google Scholar] [CrossRef]
- Manipatruni, S.; Nikonov, D.E.; Lin, C.C.; Gosavi, T.A.; Liu, H.; Prasad, B.; Huang, Y.L.; Bonturim, E.; Ramesh, R.; Young, I.A. Scalable energy-efficient magnetoelectric spin–orbit logic. Nature 2019, 565, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Kuzmenko, A.M.; Szaller, D.; Kain, T.; Dziom, V.; Weymann, L.; Shuvaev, A.; Pimenov, A.; Mukhin, A.A.; Ivanov, V.Y.; Gudim, I.A.; et al. Switching of Magnons by Electric and Magnetic Fields in Multiferroic Borates. Phys. Rev. Lett. 2018, 120, 027203. [Google Scholar] [CrossRef] [PubMed]
- Mai, T.T.; Garrity, K.F.; McCreary, A.; Argo, J.; Simpson, J.R.; Doan-Nguyen, V.; Aguilar, R.V.; Walker, A.R.H. Magnon-phonon hybridization in 2D antiferromagnet MnPSe3. Sci. Adv. 2021, 7, eabj3106. [Google Scholar] [CrossRef]
- Wang, X.; Shang, Z.; Zhang, C.; Kang, J.; Liu, T.; Wang, X.; Chen, S.; Liu, H.; Tang, W.; Zeng, Y.J.; et al. Electrical and magnetic anisotropies in van der Waals multiferroic CuCrP2S6. Nat. Commun. 2023, 14, 840. [Google Scholar] [CrossRef]
- Xu, B.; Li, S.; Jiang, K.; Yin, J.; Liu, Z.; Cheng, Y.; Zhong, W. Switching of the magnetic anisotropy via strain in two dimensional multiferroic materials: CrSX (X = Cl, Br, I). Appl. Phys. Lett. 2020, 116, 052403. [Google Scholar] [CrossRef]
- Balandin, A.A.; Nika, D.L. Phononics in low-dimensional materials. Mater. Today 2012, 15, 266–275. [Google Scholar] [CrossRef]
- Delsing, P.; Cleland, A.N.; Schuetz, M.J.A.; Knörzer, J.; Giedke, G.; Cirac, J.I.; Srinivasan, K.; Wu, M.; Balram, K.C.; Bäuerle, C.; et al. The 2019 surface acoustic waves roadmap. J. Phys. D Appl. Phys. 2019, 52, 353001. [Google Scholar] [CrossRef]
- Wang, J.Q.; Zhang, Z.D.; Yu, S.Y.; Ge, H.; Liu, K.F.; Wu, T.; Sun, X.C.; Liu, L.; Chen, H.Y.; He, C.; et al. Extended topological valley-locked surface acoustic waves. Nat. Commun. 2022, 13, 1324. [Google Scholar] [CrossRef]
- Sukhachov, P.O.; Rostami, H. Acoustogalvanic Effect in Dirac and Weyl Semimetals. Phys. Rev. Lett. 2020, 124, 126602. [Google Scholar] [CrossRef] [PubMed]
- Sonowal, K.; Boev, D.V.; Kalameitsev, A.V.; Kovalev, V.M.; Savenko, I.G. Valley spin-acoustic resonance in MoS2 monolayers. Phys. Rev. B 2022, 106, 155426. [Google Scholar] [CrossRef]
- Kawada, T.; Kawaguchi, M.; Funato, T.; Kohno, H.; Hayashi, M. Acoustic spin Hall effect in strong spin-orbit metals. Sci. Adv. 2021, 7, eabd9697. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Wu, E.; Feng, Z.; Zhang, R.; Xie, Y.; Yu, Y.; Zhang, R.; Li, Q.; Liu, J.; Pang, W.; et al. Acoustically enhanced photodetection by a black phosphorus–MoS2 van der Waals heterojunction p–n diode. Nanoscale 2018, 10, 10148–10153. [Google Scholar] [CrossRef]
- Datta, K.; Li, Z.; Lyu, Z.; Deotare, P.B. Piezoelectric Modulation of Excitonic Properties in Monolayer WSe2 under Strong Dielectric Screening. ACS Nano 2021, 15, 12334–12341. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; O’Hara, A.; Zhang, Y.Y.; Du, S.; Pantelides, S.T. Designing strong and tunable magnetoelectric coupling in 2D trilayer heterostructures. 2D Mater. 2022, 10, 015007. [Google Scholar] [CrossRef]
- Zhang, M.; Guo, H.M.; Lv, J.; Wu, H.S. Electronic and magnetic properties of 5d transition metal substitution doping monolayer antimonene: Within GGA and GGA + U framework. Appl. Surf. Sci. 2020, 508, 145197. [Google Scholar] [CrossRef]
- Zhang, J.J.; Zhu, D.; Yakobson, B.I. Heterobilayer with Ferroelectric Switching of Topological State. Nano Lett. 2021, 21, 785–790. [Google Scholar] [CrossRef]
- Vitale, S.A. Valleytronics in 2D Materials. In Beyond-CMOS; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2023; Chapter 6; pp. 209–250. [Google Scholar] [CrossRef]
- Ke, C.; Huang, J.; Liu, S. Two-dimensional ferroelectric metal for electrocatalysis. Mater. Horiz. 2021, 8, 3387–3393. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Luca, G.M.; Rubano, A. Two-Dimensional Ferroelectrics: A Review on Applications and Devices. Solids 2024, 5, 45-65. https://doi.org/10.3390/solids5010004
De Luca GM, Rubano A. Two-Dimensional Ferroelectrics: A Review on Applications and Devices. Solids. 2024; 5(1):45-65. https://doi.org/10.3390/solids5010004
Chicago/Turabian StyleDe Luca, Gabriella Maria, and Andrea Rubano. 2024. "Two-Dimensional Ferroelectrics: A Review on Applications and Devices" Solids 5, no. 1: 45-65. https://doi.org/10.3390/solids5010004