A Feasible and Efficient Monitoring Method of Synthetic Fibers Released during Textile Washing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Monitoring and Fiber Collecting
2.2. Monitoring and Fiber Collecting
3. Results and Discussion
3.1. Amount of Found Particles
3.2. Length of Found Particles
3.3. Spectral Analysis
3.3.1. Material 1—New Polyester
3.3.2. Material 2—Aged Polyester
3.3.3. Materials 3 and 4—Polyester—Cotton Blend and Pure Cotton (Respectively)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dimassi, S.N.; Hahladakis, J.N.; Yahia, M.N.D.; Ahmad, M.I.; Sayadi, S.; Al-Ghouti, M.A. Degradation-fragmentation of marine plastic waste and their environmental implications: A critical review. Arab. J. Chem. 2022, 15, 104262. [Google Scholar] [CrossRef]
- Hahladakis, J.N.; Velis, C.A.; Weber, R.; Iacovidou, E.; Purnell, P. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. J. Hazard. Mater. 2018, 334, 179–199. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.S.; Elsamahy, T.; Koutra, E.; Kornaros, M.; El-Sheekh, M.; Abdelkarim, E.A.; Zhu, D.; Sun, J. Degradation of conventional plastic wastes in the environment: A review on current status of knowledge and future perspectives of disposal. Sci. Total Environ. 2021, 771, 144719. [Google Scholar] [CrossRef] [PubMed]
- Geyer, R.; Gavigan, J.; Jackson, A.M.; Saccomanno, V.R.; Suh, S.; Gleason, M.G. Quantity and fate of synthetic microfiber emissions from apparel washing in California and strategies for their reduction. Environ. Pollut. 2022, 298, 118835. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://plasticseurope.org/wp-content/uploads/2021/12/AF-Plastics-the-facts-2021_250122.pdf (accessed on 16 March 2023).
- Balasaraswathi, S.R.; Rathinamoorthy, R. Synthethic Textile and Microplastic Pollution: An analysis on Environmental and Health impact. In Sustainable Approaches in Textiles and Fashion; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1–20. ISBN 978-981-19-0529-2. [Google Scholar]
- Barrows, A.P.W.; Cathey, S.E.; Petersen, C.W. Marine environment microfiber contamination: Global patterns and the diversity of microparticle origins. Environ. Pollut. 2018, 237, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.europarl.europa.eu/RegData/etudes/BRIE/2019/633143/EPRS_BRI(2019)633143_EN.pdf (accessed on 16 March 2023).
- Sekudewicz, I.; Dąbrowska, A.M.; Syczewski, M.D. Microplastic pollution in surface water and sediments in the urban section of the Vistula River (Poland). Sci. Total Environ. 2021, 762, 143111. [Google Scholar] [CrossRef] [PubMed]
- Asensio-Montesinos, F.; Blaya-Valencia, G.; Corbí, H.; Beltrán-Sanahuja, A.; Sanz-Lázaro, C. Microplastic accumulation dynamics in two Mediterranean beaches with contrasting inputs. J. Sea Res. 2022, 188, 102269. [Google Scholar] [CrossRef]
- Weis, J.S.; De Falco, F. Microfibers: Environmental Problems and solutions. Microplastics 2022, 1, 626–639. [Google Scholar] [CrossRef]
- Carreras-Colom, E.; Cartes, J.E.; Constenla, M.; Welden, N.A.; Soler-Membrives, A.; Carrassón, M. An affordable method for monitoring plastic fibre ingestion in Nephrops norvegicus (Linnaeus, 1758) and implementation on wide temporal and geographical scale comparisons. Sci. Total Environ. 2022, 810, 152264. [Google Scholar] [CrossRef]
- Leslie, H.A.; Van Velzen, M.J.; Brandsma, S.H.; Vethaak, A.D.; Garcia-Vallejo, J.J.; Lamoree, M.H. Discovery and quantification of plastic particle pollution in human blood. Environ. Int. 2022, 163, 107199. [Google Scholar] [CrossRef]
- Rebelein, A.; Int-Veen, I.; Kammann, U.; Scharsack, J.P. Microplastic fibers—Underestimated threat to aquatic organisms? Sci. Total Environ. 2021, 777, 146045. [Google Scholar] [CrossRef]
- Wu, P.; Li, J.; Lu, X.; Tang, Y.; Cai, Z. Release of tens of thousands of microfibers from discarded face masks under simulated environmental conditions. Sci. Total Environ. 2022, 806, 150458. [Google Scholar] [CrossRef] [PubMed]
- Vasiljević, S.; Vujić, M.; Agbaba, J.; Federici, S.; Ducoli, S.; Tomić, R.; Tubić, A. Efficiency of Coagulation/Flocculation for the Removal of Complex Mixture of Textile Fibers from Water. Processes 2023, 11, 820. [Google Scholar] [CrossRef]
- Kelly, M.R.; Lant, N.J.; Kurr, M.; Burgess, J.G. Importance of Water-Volume on the Release of Microplastic Fibers from Laundry. Environ. Sci. Technol. 2019, 53, 11735–11744. [Google Scholar] [CrossRef]
- Napper, I.E.; Thompson, R.C. Release of synthetic microplastic plastic fibres from domestic washing machines: Effects of fabric type and washing conditions. Mar. Pollut. Bull. 2016, 112, 39–45. [Google Scholar] [CrossRef]
- Volgare, M.; De Falco, F.; Avolio, R.; Castaldo, R.; Errico, M.E.; Gentile, G.; Ambrogi, V.; Cocca, M. Washing load influences the microplastic release from polyester fabrics by affecting wettability and mechanical stress. Sci. Rep. 2021, 11, 19479. [Google Scholar] [CrossRef] [PubMed]
- De Falco, F.; Cocca, M.; Avella, M.; Thompson, R.C. Microfiber Release to Water, Via Laundering, and to Air, via Everyday Use: A Comparison between Polyester Clothing with Differing Textile Parameters. Environ. Sci. Technol. 2020, 54, 3288–3296. [Google Scholar] [CrossRef] [PubMed]
- Hartline, N.L.; Bruce, N.J.; Karba, S.N.; Ruff, E.O.; Sonar, S.U.; Holden, P. Microfiber Masses Recovered from Conventional Machine Washing of New or Aged Garments. Environ. Sci. Technol. 2016, 50, 11532–11538. [Google Scholar] [CrossRef]
- Yadav, S.; Kataria, N.; Khyalia, P.; Rose, P.K.; Mukherjee, S.; Sabherwal, H.; Chai, W.S.; Rajendran, S.; Jiang, J.J.; Khoo, K.S. Recent analytical techniques, and potential eco-toxicological impacts of textile fibrous microplastics (FMPs) and associated contaminates: A review. Chemosphere 2023, 326, 138495. [Google Scholar] [CrossRef]
- Wu, M.; Yang, C.; Du, C.; Liu, H. Microplastics in waters and soils: Occurrence, analytical methods and ecotoxicological effects. Ecotoxicol. Environ. Saf. 2020, 202, 110910. [Google Scholar] [CrossRef]
- Käppler, A.; Fischer, D.; Oberbeckmann, S.; Schernewski, G.; Labrenz, M.; Eichhorn, K.J.; Voit, B. Analysis of environmental microplastics by vibrational microspectroscopy: FTIR, Raman or both? Anal. Bioanal. Chem. 2016, 408, 8377–8391. [Google Scholar] [CrossRef]
- Zarfl, C. Promising techniques and open challenges for microplastic identification and quantification in environmental matrices. Anal. Bioanal. Chem. 2019, 411, 3743–3756. [Google Scholar] [CrossRef] [PubMed]
- Periyasamy, A.P.; Tehrani-Bagha, A. A review on microplastic emmision from textile materials and its reduction techniques. Polym. Degrad. Stab. 2022, 199, 109901. [Google Scholar] [CrossRef]
- De Falco, F.; Cocca, M.; Guarino, V.; Gentile, G.; Ambrogi, V.; Ambrosio, L.; Avella, M. Novel finishing treatments of polyamide fabrics by electrofluidodynamic process to reduce microplastic release during washings. Polym. Degrad. Stab. 2019, 165, 110–116. [Google Scholar] [CrossRef]
- De Falco, F.; Gentile, G.; Avolio, R.; Errico, M.E.; Di Pace, E.; Ambrogi, V.; Avella, M.; Cocca, M. Pectin based finishing to mitigate the impact of microplastics released by polyamide fabrics. Carbohydr. Polym. 2018, 198, 175–180. [Google Scholar] [CrossRef] [PubMed]
- De Falco, F.; Gullo, M.P.; Gentile, G.; Di Pace, E.; Cocca, M.; Gelabert, L.; Brouta-Agnésa, M.; Rovira, A.; Escudero, R.; Villalba, R.; et al. Evaluation of microplastic release caused by textile washing processes of synthetic fabrics. Environ. Pollut. 2018, 236, 916–925. [Google Scholar] [CrossRef] [PubMed]
- Smith, B. Infrared Spectroscopy of Polymers, VIII: Polyesters and Rule of Three. Spectroscopy 2022, 37, 25–28. [Google Scholar] [CrossRef]
- Bhattacharya, S.S.; Chaudhari, S.B. Study on Structural, Mechanical and Functional Proprieties of Poltester Silica Nanocomposite Fabric. Int. J. Pure Appl. Sci. Technol. 2014, 21, 43–52. [Google Scholar]
- Bland, E.; Sheridan, K. Technical Research Report: Recycled Polyester within the Context of Fibre Fragmentation. The Microfiber Consortium: Bristol, UK, 2023. [Google Scholar]
- Dąbrowska, A. Raman Spectroscopy of Marine Microplastics—A short comprehensive compendium for the environmental scientists. Mar. Environ. Res. 2021, 168, 105313. [Google Scholar] [CrossRef]
- Kalogerakis, N.; Karkanorachaki, K.; Kalogerakis, G.C.; Triantafyllidi, E.I.; Gotsis, A.D.; Partsinevelos, P.; Fava, F. Microplastics Generation: Onset of Fragmentation of Polyethylene Films in Marine Environment Mesocosms. Front. Mar. Sci. 2017, 4, 84. [Google Scholar] [CrossRef]
- Peets, P.; Kaupmees, K.; Vahur, S.; Leito, I. Reflectance FT-IR spectroscopy as a viable option for textile fiber identification. Herit. Sci. 2019, 7, 93. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Lykaki, M.; Markiewicz, M.; Alrajoula, M.T.; Kraas, C.; Stolte, S. Environmental contamination by microplastics originating from textiles: Emission, transport, fate and toxicity. J. Hazard. Mater. 2022, 430, 128453. [Google Scholar] [CrossRef]
Duration [min.] | Water-Volume [L] | rpm | Temperature [°C] | |
---|---|---|---|---|
plain | ~59 | 40 | 59 | 40 |
with raised temperature | ~74 | 50 | 59 | 60 |
with the addition of the detergent | ~59 | 40 | 59 | 40 |
New Material Bag [100% Cotton, Woven] | Aged Shirt [70% Polyester, 30% Cotton, Woven] | Aged Fleece [Polyester, Knitted] | New Leggings [Polyester, Knitted] | |
---|---|---|---|---|
plain | alphaD4 | alphaC3 | alphaB2 | alphaA1 |
high-temperature | betaD4 | betaC3 | betaB2 | betaA1 |
detergent | gammaD4 | gammaC3 | gammaB2 | gammaA1 |
Vibrational Band Assignment | Wavenumber [cm−1] | Reference |
---|---|---|
C=O stretching (saturated esters) | 1750–1735 | [30] |
C=O stretching (aromatic esters) | 1730–1715 | [31] |
Aromatic ring vibration | 1409 | [31] |
Cα-C-O asymmetric stretching (aromatic esters) | 1310–1250 | [30] |
O-C′-C″ aromatic ester stretching | 1100 | [30] |
O=C-O-C′ stretching | 1021 | [31] |
C=C stretching | 967 | [31] |
C-H vibration in the aromatic ring | 869 | [32] |
Treatment Name | Filter Size [µm] | Material 1 | Material 2 | Material 3 | |||
---|---|---|---|---|---|---|---|
Mean | MFs/m2 | Mean | MFs/m2 | Mean | MFs/m2 | ||
alpha | 25 | 56.33 | 93,883.33 | 56.33 | 93,883.33 | 4.33 | 7216.67 |
100 | 33.33 | 55,550 | |||||
beta | 25 | 53.33 | 88,883.33 | 59.67 | 99,450 | 11 | 18,333.33 |
100 | 3.67 | 6116.67 | 3 | 5000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Świątek, O.; Dąbrowska, A. A Feasible and Efficient Monitoring Method of Synthetic Fibers Released during Textile Washing. Microplastics 2024, 3, 67-81. https://doi.org/10.3390/microplastics3010005
Świątek O, Dąbrowska A. A Feasible and Efficient Monitoring Method of Synthetic Fibers Released during Textile Washing. Microplastics. 2024; 3(1):67-81. https://doi.org/10.3390/microplastics3010005
Chicago/Turabian StyleŚwiątek, Oskar, and Agnieszka Dąbrowska. 2024. "A Feasible and Efficient Monitoring Method of Synthetic Fibers Released during Textile Washing" Microplastics 3, no. 1: 67-81. https://doi.org/10.3390/microplastics3010005