The Impact of the Tropical Sea Surface Temperature Variability on the Dynamical Processes and Ozone Layer in the Arctic Atmosphere
Abstract
:1. Introduction
2. Initial Data and Methods
3. Results
3.1. Analysis of Interannual Variability of Sea Surface Temperature in the Tropical Pacific and Total Column Ozone and Air Temperature in the Arctic Stratosphere
3.2. Analysis of Telecommunications and ENSO Impacts on the Stratosphere and Ozone Layer
3.3. Analysis of Residual Circulation, Brewer–Dobson Circulation and of Wave Activity Fluxes of Stratosphere
4. Discussion
5. Conclusions
- The El Niño phase leads to an increase in heat and mass fluxes into the stratosphere, which contributes to an increase in the SSW and a weakening of the PV. At the same time, it has been shown that during the CP El Niño, the SSW is stronger and occurs earlier than during the EP El Niño. As a result, the PV in the CP El Niño is weaker than in the EP El Niño.
- The circulation processes during the La Niña phase depend on the type of La Niña. With CP La Niña, there is no SSW, as a result of which the PV is stable. During the EP La Niña, powerful SSWs are observed, which lead to a weakening of the PV. Analysis of the duration of ENSO phases showed that the longer the duration of an ENSO event, the stronger its influence. For example, the longer the El Niño lasts, the more powerful the SSW and the increase in total ozone associated with it.
- The largest increase in ozone occurs during CP El Niño and EP La Niña. During these phases, the SSWs are the most powerful and occur in January, leading to the destruction of the PV, which leads to an increase in the BD circulation. During EP El Niño, the SSW occurs in February, so the PV is more stable than during CP El Niño and EP La Niña, and the ozone concentration increases later and not as much as during CP El Niño and EP La Niña. At CP La Niña, there are no SSWs, the PV is stable, so the BD circulation is weak, and the ozone concentration decreases to the state of the ozone hole.
- The largest intensification of the residual meridional circulation occurs at the El Niño phases of both types. At the EP La Niña phase, the residual meridional circulation in the Northern Hemisphere is intensified in February–March, while at CP La Niña, the residual circulation is not intensified. As for the wave activity flux, the greatest strengthening of the meridional and vertical components is observed at EP El Niño in February, also the wave activity flux strengthens at CP El Niño and EP La Niña, while at CP La Niña it weakens. Thus, the El Niño and EP La Niña phases contribute to the enhanced heat and mass transport through the residual circulation and wave activity flux, which contributes to the weakening of DWC and PV, strengthening of SSW and increase in total ozone.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Czaja, A. Ocean-atmosphere coupling in midlatitudes: Does it invigorate or damp the storm track? In Proceedings of the ECMWF Seminar on Seasonal Prediction, Reading, UK, 3–7 September 2012; pp. 35–46. [Google Scholar]
- Bjerknes, J. Atmospheric teleconnections from the equatorial Pacific. Mon. Weather Rev. 1969, 97, 163–172. [Google Scholar] [CrossRef]
- Liu, Z.; Alexander, M. Atmospheric bridge, oceanic tunnel, and global climatic teleconnections. Rev. Geophys. 2007, 45, RG2005. [Google Scholar] [CrossRef]
- Graf, H.-F.; Zanchettin, D. Central Pacific El Niño, the “subtropical bridge”, and Eurasian climate. J. Geophys. Res. 2012, 117, D01102. [Google Scholar] [CrossRef]
- Frauen, C.; Dommenget, D.; Tyrrell, N.; Rezny, M.; Wales, S. Analysis of the Nonlinearity of El Niño–Southern Oscillation Teleconnections. J. Clim. 2014, 27, 6225–6244. [Google Scholar] [CrossRef]
- Zheleznova, I.V.; Gushchina, D.Y. The response of global atmospheric circulation to two types of El Niño. Russ. Meteorol. Hydrol. 2015, 40, 170–179. [Google Scholar] [CrossRef]
- Zheleznova, I.V.; Gushchina, D.Y. Circulation anomalies in the atmospheric centers of action during the Eastern Pacific and Central Pacific El Niño. Russ. Meteorol. Hydrol. 2016, 41, 760–769. [Google Scholar] [CrossRef]
- Zhou, X.; Li, J.P.; Xie, F.; Chen, Q.L.; Ding, R.Q.; Zhang, W.X.; Li, Y. Does Extreme El Nino Have a Different Effect on the Stratosphere in Boreal Winter Than Its Moderate Counterpart? J. Geophys. Res. 2018, 123, 3071–3086. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, Q.; Wang, Z.; Xu, M.; Zhao, S.; Cheng, Z.; Feng, F. Longer duration of the weak stratospheric vortex during extreme El Niño events linked to spring Eurasian coldness. J. Geophys. Res. Atmos. 2020, 125, e2019JD032331. [Google Scholar] [CrossRef]
- Ashok, K.; Behera, S.K.; Rao, S.A.; Weng, H.; Yamagata, T. El Niño Modoki and its possible teleconnection. J. Geophys. Res. 2007, 112, C11007. [Google Scholar] [CrossRef]
- Capotondi, A.; Wittenberg, A.T.; Newman, M.; Di Lorenzo, E.; Yu, J.-Y.; Braconnot, P.; Cole, J.; Dewitte, B.; Giese, B.; Guilyardi, E.; et al. Understanding ENSO diversity. Bull. Am. Meteorol. Soc. 2015, 96, 921–938. [Google Scholar] [CrossRef]
- Timmermann, A.; An, S.-I.; Kug, J.-S.; Jin, F.-F.; Cai, W.; Capotondi, A.; Cobb, K.M.; Lengaigne, M.; McPhaden, M.J.; Stuecker, M.F.; et al. El Niño–Southern Oscillation complexity. Nature 2018, 559, 535–545. [Google Scholar] [CrossRef]
- Takahashi, K.; Dewitte, B. Strong and moderate nonlinear El Niño regimes. Clim. Dyn. 2016, 46, 1627–1645. [Google Scholar] [CrossRef]
- Yeh, S.-W.; Cai, W.; Min, S.-K.; McPhaden, M.J.; Dommenget, D.; Dewitte, B.; Collins, M.; Ashok, K.; An, S.I.; Yim, B.Y.; et al. ENSO atmospheric teleconnections and their response to greenhouse gas forcing. Rev. Geophys. 2018, 56, 185–206. [Google Scholar] [CrossRef]
- Taschetto, S.A.; Ummenhofer, C.C.; Stuecker, M.F.; Dommenget, D.; Ashok, K.; Rodrigues, R.R.; Yeh, S.-W. ENSO atmospheric teleconnections. In El Niño Southern Oscillation in a Changing Climate; McPhaden, M.J., Santoso, A., Cai, W., Eds.; AGU Monograph; American Geophysical Union: Washington, DC, USA, 2020. [Google Scholar]
- Calvo, N.; García-Herrera, R.; Garcia, R.R. The ENSO signal in the stratosphere. Ann. N. Y. Acad. Sci. 2008, 1146, 16–31. [Google Scholar] [CrossRef]
- Manzini, E. Atmospheric science: ENSO and the stratosphere. Nat. Geosci. 2009, 2, 749–750. [Google Scholar] [CrossRef]
- Domeisen, D.I.; Garfinkel, C.I.; Butler, A.H. The Teleconnection of El Niño Southern Oscillation to the Stratosphere. Rev. Geophys. 2019, 57, 5–47. [Google Scholar] [CrossRef]
- Jakovlev, A.R.; Smyshlyaev, S.P. Impact of the Southern Oscillation on Arctic Stratospheric Dynamics and Ozone Layer. Izv. Atmos. Ocean. Phys. 2019, 55, 86–99. [Google Scholar] [CrossRef]
- Pogoreltsev, A.I.; Savenkova, E.N.; Pertsev, N.N. Sudden Stratospheric Warmings: The Role of Normal Atmospheric Modes. Geomagn. Aeron. 2014, 54, 387–403. [Google Scholar] [CrossRef]
- Polvani, L.M.; Sun, L.; Butler, A.H.; Richter, J.H.; Deser, C. Distinguishing stratospheric sudden warmings from ENSO as key drivers of wintertime climate variability over the North Atlantic and Eurasia. J. Clim. 2017, 30, 1959–1969. [Google Scholar] [CrossRef]
- Baldwin, M.P.; Dunkerton, T.J. Propagation of the Arctic Oscillation from the stratosphere to the troposphere. J. Geophys. Res. 1999, 104, 430–937. [Google Scholar]
- Thompson, D.; Wallace, J. Observed linkages between Eurasian surface air temperature, the North Atlantic Oscillation, Arctic Sea level pressure and the stratospheric polar vortex. Geophys. Res. Lett. 1998, 25, 1297–1300. [Google Scholar] [CrossRef]
- Baldwin, M.P.; Dunkerton, T.J. Stratospheric harbingers of anomalous weather regimes. Science 2001, 294, 581–584. [Google Scholar] [CrossRef] [PubMed]
- Kuroda, K. Relationship between the Polar-Night Jet Oscillation and the Annular Mode. Geophys. Res. Lett. 2002, 29, 1240. [Google Scholar] [CrossRef]
- Li, Y.; Lau, N.-C. Influences of ENSO on stratospheric variability, and the descent of stratospheric perturbations into the lower troposphere. J. Clim. 2013, 26, 4725–4748. [Google Scholar] [CrossRef]
- Cheung, H.N.; Zhou, W.; Leung, M.Y.T.; Shun, C.M.; Lee, S.M.; Tong, H.W. A strong phase reversal of the Arctic Oscillation in midwinter 2015/2016: Role of the stratospheric polar vortex and tropospheric blocking. J. Geophys. Res. Atmos. 2016, 121, 13443–13457. [Google Scholar] [CrossRef]
- Manney, G.L.; Santee, M.L.; Rex, M.; Livesey, N.J.; Pitts, M.C.; Veefkind, P.; Nash, E.R.; Wohltmann, I.; Lehmann, R.; Froidevaux, L.; et al. Unprecedented Arctic ozone loss in 2011. Nature 2011, 478, 469. [Google Scholar] [CrossRef]
- Rao, J.; Garfinkel, C.I. Arctic Ozone Loss in March 2020 and Its Seasonal Prediction in CFSv2: A Comparative Study with the 1997 and 2011 Cases. J. Geophys. Res. Atmos. 2020, 125, e2020JD033524. [Google Scholar] [CrossRef]
- Garfinkel, C.I.; Hartmann, D.L. Different ENSO teleconnections and their effects on the stratospheric polar vortex. J. Geophys. Res. 2008, 113, D18114. [Google Scholar] [CrossRef]
- Baldwin, M.P.; O’Sullivan, D. Stratospheric effects of ENSO related tropospheric circulation anomalies. J. Clim. 1995, 8, 649–667. [Google Scholar] [CrossRef]
- Hoskins, B.J.; Karoly, D.J. The Steady Linear Response of a Spherical Atmosphere to Thermal and Orographic Forcing. J. Atmos. Sci. 1981, 38, 1179–1196. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Branstator, G.W.; Karoly, D.; Kumar, A.; Lau, N.-C.; Ropelewski, C. Progress during TOGA in unferstanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res. 1998, 103, 14291–14324. [Google Scholar] [CrossRef]
- Calvo, N.; Iza, M.; Hurwitz, M.M.; Manzini, E.; Peña-Ortiz, C.; Butler, A.H.; Cagnazzo, C.; Ineson, S.; Garfinkel, C.I. Northern Hemisphere stratospheric pathway of different El Niño flavors in CMIP5 models. J. Clim. 2017, 30, 4351–4371. [Google Scholar] [CrossRef]
- Garfinkel, C.I.; Hartmann, D.L. Effects of the El Niño Southern Oscillation and Quasi-Biennial Oscillation on polar temperatures in the stratosphere. J. Geophys. Res. 2007, 112, D19112. [Google Scholar] [CrossRef]
- Free, M.; Seidel, D.J. Observed El Niño—Southern Oscillation temperature signal in the stratosphere. J. Geophys. Res. 2009, 114, D23108. [Google Scholar] [CrossRef]
- Iza, M.; Calvo, N.; Manzini, E. The stratospheric pathway of La Niña. J. Clim. 2016, 29, 8899–8914. [Google Scholar] [CrossRef]
- Hurwitz, M.; Calvo, N.; Garfinkel, C.; Butler, A.; Ineson, S.; Cagnazzo, C.; Manzini, E.; Pena-Ortiz, C. Extra-tropical atmospheric response to ENSO in CMIP5 models. Clim. Dyn. 2014, 43, 3367–3375. [Google Scholar] [CrossRef]
- Xie, F.; Li, J.; Tian, W.; Feng, J.; Huo, Y. Signals of El Niño Modoki in the tropical tropopause layer and stratosphere. Atmos. Chem. Phys. 2012, 12, 5259–5273. [Google Scholar] [CrossRef]
- Garfinkel, C.I.; Hurwitz, M.M.; Waugh, D.W.; Butler, A.H. Are the teleconnections of central Pacific and eastern Pacific El Niño distinct in boreal wintertime? Clim. Dyn. 2012, 41, 1835–1852. [Google Scholar] [CrossRef]
- Weinberger, I.C.; White, I.; Oman, L. The Salience of Nonlinearities in the Boreal Winter Response to ENSO: Arctic Stratosphere and Europe. Clim. Dyn. 2019, 53, 4591–4610. [Google Scholar] [CrossRef]
- Kolennikova, M.; Gushchina, D. Revisiting the Contrasting Response of Polar Stratosphere to the Eastern and Central Pacific El Niños. Atmosphere 2022, 13, 682. [Google Scholar] [CrossRef]
- Xie, F.; Li, J.; Tian, W.; Zhang, J.; Sun, C. The relative impacts of El Nino Modoki, canonical El Nino, and QBO on tropical ozone changes since the 1980s. Environ. Res. Lett. 2014, 9, 064020. [Google Scholar] [CrossRef]
- Chandra, S.; Ziemke, J.R.; Min, W.; Read, W.G. Effects of 1997–1998 El Niño on tropospheric ozone and water vapor. Geophys. Res. Lett. 1998, 25, 3867–3870. [Google Scholar] [CrossRef]
- Cagnazzo, C.; Manzini, E.; Calvo, N.; Douglass, A.; Akiyoshi, H.; Bekki, S.; Chipperfield, M.; Dameris, M.; Deushi, M.; Fischer, A.M.; et al. Northern winter stratospheric temperature and ozone responses to ENSO inferred from an ensemble of chemistry climate models. Atmos. Chem. Phys. 2009, 9, 8935–8948. [Google Scholar] [CrossRef]
- Rieder, H.E.; Frossard, L.; Ribatet, M.; Staehelin, J.; Maeder, J.A.; Di Rocco, S.; Davison, A.C.; Peter, T.; Weihs, P.; Holawe, F. On the relationship between total ozone and atmospheric dynamics and chemistry at midlatitudes—Part 2: The effects of the El Niño/Southern Oscillation, volcanic eruptions and contributions of atmospheric dynamics and chemistry to long-term total ozone changes. Atmos. Chem. Phys. 2013, 13, 165–179. [Google Scholar] [CrossRef]
- Camp, C.; Roulston, M.; Yung, L. Temporal and spatial patterns of the interannual variability of total ozone in the tropics. J. Geophys. Res. 2013, 108, 4643. [Google Scholar] [CrossRef]
- Bonnimann, S.; Luterbacher, J.; Staehelin, J.; Svendby, T.M.; Hansen, G.; Svenøe, T. Extreme climate of the global troposphere and stratosphere 1940–1942 related to El Niño. Nature 2004, 431, 971–974. [Google Scholar] [CrossRef]
- Zhang, J.; Tian, W.; Wang, Z.; Xie, F.; Wang, F. The influence of ENSO on Northern mid-latitude ozone during the winter to spring transition. J. Clim. 2015, 28, 4774–4793. [Google Scholar] [CrossRef]
- Gettelman, A.; Randel, W.; Massie, S.; Wu, F. El Niño as a natural experiment for studying the tropical tropopause region. J. Clim. 2001, 14, 3375–3392. [Google Scholar] [CrossRef]
- Fusco, A.C.; Salby, M.L. Interannual variations of total ozone and their relationship to variations of planetary wave activity. J. Clim. 1999, 12, 1619–1629. [Google Scholar] [CrossRef]
- Randel, W.J.; Wu, F.; Stolarski, R. Changes in column ozone correlated with the stratospheric EP fux. J. Meteorol. Soc. Jpn. 2002, 80, 849–862. [Google Scholar] [CrossRef]
- Weber, M.; Dhomse, S.; Wittrock, F.; Richter, A.; Sinnhuber, B.-M.; Burrows, J.P. Dynamical control of NH and SH winter/spring total ozone from GOME observations in 1995–2002. Geophys. Res. Lett. 2003, 30, 1583. [Google Scholar] [CrossRef]
- Xie, F.; Li, J.; Tian, W.; Zhang, J. A connection from Arctic stratospheric ozone to El Niño-Southern oscillation. Environ. Res. Lett. 2016, 11, 124026. [Google Scholar] [CrossRef]
- Koval, A.V. Calculation of the Residual Mean Meridional Circulation According to the Middle and Upper Atmosphere Model. Uchonie Zap. RSHU 2019, 55, 25–32. (In Russian) [Google Scholar] [CrossRef]
- Brewer, A.W. Evidence for a world circulation provided by the measurements of helium and water vapor distribution in the stratosphere. Quart. J. Roy. Meteor. Soc. 1949, 75, 351–363. [Google Scholar] [CrossRef]
- Dobson, G.M.B. Origin and distribution of the polyatomic molecules in the atmosphere. Proc. R. Soc. Lond. Ser. A 1956, 236, 187–193. [Google Scholar]
- Shepherd, T.G. Transport in the middle atmosphere. J. Meteor. Soc. Jpn. 2007, 85B, 165–191. [Google Scholar] [CrossRef]
- Lubis, S.W.; Silverman, V.; Matthes, K.; Harnik, N.; Omrani, N.E.; Wahl, S. How Does Downward Planetary Wave Coupling Affect Polar Stratospheric Ozone in the Arctic Winter Stratosphere? Atmos. Chem. Phys. 2017, 17, 2437–2458. [Google Scholar] [CrossRef]
- de La Cámara, A.; Abalos, M.; Hitchcock, P.; Calvo, N.; Garcia, R.R. Response of Arctic ozone to sudden stratospheric warmings. Atmos. Chem. Phys. 2018, 18, 16499–16513. [Google Scholar] [CrossRef]
- Lubis, S.W.; Matthes, K.; Omrani, N.E.; Harnik, N.; Wahl, S. Influence of the Quasi-Biennial Oscillation and Sea Surface Temperature Variability on Downward Wave Coupling in the Northern Hemisphere. J. Atmos. Sci. 2016, 73, 1943–1965. [Google Scholar] [CrossRef]
- Silverman, V.; Harnik, N.; Matthes, K.; Lubis, S.W.; Wahl, S. Radiative effects of ozone waves on the Northern Hemisphere polar vortex and its modulation by the QBO. Atmos. Chem. Phys. 2018, 18, 6637–6659. [Google Scholar] [CrossRef]
- Silverman, V.; Lubis, S.W.; Harnik, N.; Matthes, K. A Synoptic View of the Onset of the Midlatitude QBO Signal. J. Atmos. Sci. 2021, 78, 3759–3780. [Google Scholar] [CrossRef]
- Richter, J.H.; Matthes, K.; Calvo, N.; Gray, L.J. Influence of the quasi-biennial oscillation and El Niño–Southern Oscillation on the frequency of sudden stratospheric warmings. J. Geophys. Res. 2011, 116, D2011. [Google Scholar] [CrossRef]
- Palmeiro, F.M.; García-Serrano, J.; Ruggieri, P.; Batté, L.; Gualdi, S. On the influence of ENSO on sudden stratospheric warmings. J. Geophys. Res. Atmos. 2023, 128, e2022JD037607. [Google Scholar] [CrossRef]
- Weather and Climate Change/Met Office. Available online: https://www.metoffice.gov.uk/hadobs/hadgem_sst/data/download.html (accessed on 20 March 2021).
- Kennedy, J. Uncertainties in Sea-Surface Temperature Measurements [Electronic Resource]; Met Office Hadley Centre, FitzRoy Road: Exeter, UK, 2008. Available online: https://icoads.noaa.gov/climar3/c3poster-pdfs/S1P1-Kennedy.pdf (accessed on 15 January 2024).
- Donlon, C.J.; Martin, M.; Stark, J.; Roberts-Jones, J.; Fiedler, E.; Wimmer, W. The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system. Remote Sens. Environ. 2011, 116, 140–158. [Google Scholar] [CrossRef]
- Smyshlyaev, S.P.; Pogoreltsev, A.I.; Drobashevskaya, E.A.; Galin, V.Y. Influence of wave activity on the conposition of the polar stratosphere. Geomagn. Aeron. 2016, 56, 95–109. [Google Scholar] [CrossRef]
- Butchart, N. The Brewer-Dobson circulation. Rev. Geophys. 2014, 52, 157–184. [Google Scholar] [CrossRef]
- Plumb, R.A. On the Three-Dimensional Propagation of Stationary Waves. J. Atmos. Sci. 1985, 42, 217–229. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suarez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.; Darmenov, A.; Bosilovich, M.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef]
- Jakovlev, A.R.; Smyshlyaev, S.P. The numerical simulations of global influence of ocean and El-Nino—La-Nina on structure and composition of atmosphere. Uchonie Zap. RSHU 2017, 49, 58–72. (In Russian) [Google Scholar]
- Jakovlev, A.R.; Smyshlyaev, S.P. Simulation of influence of ocean and El-Nino—Southern oscillation phenomenon on the structure and composition of the atmosphere. IOP Conf. Ser. Earth Environ. Sci. 2019, 386, 012021. [Google Scholar] [CrossRef]
- Jakovlev, A.R.; Smyshlyaev, S.P. Numerical Simulation of World Ocean Effects on Temperature and Ozone in the Lower and Middle Atmosphere. Russ. Meteorol. Hydrol. 2019, 44, 594–602. [Google Scholar] [CrossRef]
- Jakovlev, A.R.; Smyshlyaev, S.P.; Galin, V.Y. Interannual Variability and Trends in Sea Surface Temperature, Lower and Middle Atmosphere Temperature at Different Latitudes for 1980–2019. Atmosphere 2021, 12, 454. [Google Scholar] [CrossRef]
- Garcia-Herrera, R.; Calvo, N.; Garcia, R.R.; Giorgetta, M.A. Propagation of ENSO temperature signals into the middle atmosphere: A comparison of two general circulation models and ERA-40 reanalysis data. J. Geophys. Res. 2006, 111, D06101. [Google Scholar] [CrossRef]
- Sassi, F.; Kinnison, D.; Bolville, B.A.; Garcia, R.R.; Roble, R. Effect of El-Nino Southern Oscillation on the dynamical, thermal, and chemical structure of the middle atmosphere. J. Geophys. Res. 2004, 109, D17108. [Google Scholar] [CrossRef]
- Scott, R.; Polvani, L. Internal variability of the winter stratosphere. J. Atmos. Sci. 2006, 63, 2758–2778. [Google Scholar] [CrossRef]
- Karpechko, A.; Perlwitz, J.; Manzini, E. A model study of tropospheric impacts of the Arctic ozone depletion 2011. J. Geophys. Res. 2014, 119, 7999–8014. [Google Scholar] [CrossRef]
- Pogoreltsev, A.I.; Savenkova, E.N.; Aniskina, O.G.; Ermakova, T.S.; Chen, W.; Wei, K. Interannual and intraseasonal variability of stratospheric dynamics and stratosphere-troposphere coupling during northern winter. J. Atmos. Sol.-Terr. Phys. 2015, 136, 187–200. [Google Scholar] [CrossRef]
- Gushchina, D.; Kolennikova, M.; Dewitte, B.; Yeh, S.-W. On the relationship between ENSO diversity and the ENSO atmospheric teleconnection to high-latitudes. Int. J. Climatol. 2021, 42, 1303–1325. [Google Scholar] [CrossRef]
- Plumb, R.A. On the seasonal cycle of stratospheric planetary waves. Pure Appl. Geophys. 1989, 130, 233–242. [Google Scholar] [CrossRef]
- Rao, J.; Ren, R. Modeling study of the destructive interference between the tropical Indian Ocean and eastern Pacific in their forcing in the southern winter extratropical stratosphere during ENSO. Clim. Dyn. 2020, 54, 2249–2266. [Google Scholar] [CrossRef]
- Karoly, D.J. Southern Hemisphere circulation features associated with El Ni-ño-Southern Oscillation events. J. Clim. 1989, 2, 1239–1252. [Google Scholar] [CrossRef]
- Smith, K.L.; Kushner, P.J. Linear interference and the initiation of extratropical stratosphere-troposphere interactions. J. Geophys. Res. 2012, 117, D13107. [Google Scholar] [CrossRef]
- Rao, J.; Ren, R. A decomposition of ENSO’s impacts on the northern winter stratosphere: Competing effect of SST forcing in the tropical Indian Ocean. Clim. Dyn. 2016, 46, 3689–3707. [Google Scholar] [CrossRef]
- Rao, J.; Garfinkel, C.I.; Ren, R. Modulation of the northern winter stratospheric El Niño-Southern Oscillation teleconnection by the PDO. J. Clim. 2019, 32, 5761–5783. [Google Scholar] [CrossRef]
- Ayarzagüena, B.; Ineson, S.; Dunstone, N.; Baldwin, M.; Scaife, A. Intraseasonal Effects of El Niño–Southern Oscillation on North Atlantic Climate. J. Clim. 2018, 31, 8861–8873. [Google Scholar] [CrossRef]
- Palmeiro, F.; Iza, M.; Barriopedro, D.; Calvo, N.; Garcнa-Herrera, R. The complex behavior of El Niсo winter 2015–2016. Geophys. Res. Lett. 2017, 44, 2902–2910. [Google Scholar] [CrossRef]
- Bell, C.J.; Gray, L.J.; Charlton-Perez, A.J.; Joshi, M.M.; Scaife, A.A. Stratospheric communication of El Niсo teleconnections to European winter. J. Clim. 2009, 22, 4083–4096. [Google Scholar] [CrossRef]
- Domeisen, D.I.V.; Butler, A.H.; Frцhlich, K.; Bittner, M.; Mьller, W.; Baehr, J. Seasonal predictability over Europe arising from El Niсo and stratospheric variability in the MPI-ESM Seasonal Prediction System. J. Clim. 2015, 28, 256–271. [Google Scholar] [CrossRef]
- Garfinkel, C.I.; Butler, A.H.; Waugh, D.W.; Hurwitz, M.M.; Polvani, L.M. Why might stratospheric sudden warmings occur with similar frequency in El Nino and La Nina winters. J. Geophys. Res. 2012, 117, D19106. [Google Scholar] [CrossRef]
- Taguchi, M.; Hartmann, D.L. Increased occurrence of stratospheric sudden warmings during El Niсo as simulated by WACCM. J. Clim. 2006, 19, 332. [Google Scholar] [CrossRef]
- Kinoshita, T.; Tomikawa, Y.; Sato, K. On the Three-Dimensional Residual Mean Circulation and Wave Activity Flux of the Primitive Equations. J. Meteorol. Soc. Jpn. 2010, 88, 373–394. [Google Scholar] [CrossRef]
Year | ENSO Phase | CP/EP | SST Anomaly (Duration of the Period with an SST Anomaly of More than 0.5 or −0.5, Months) | TO3 Anomaly 70–90 N January–March | T Anomaly 70–90 N 15–30 km January–March | ||||
---|---|---|---|---|---|---|---|---|---|
160 E–150 W | 170 W–120 W | 150 W–90 W | MERRA2 | ERA5 | MERRA2 | ERA5 | |||
1980 | El-Niño | EP | 0.3 | 0.5 (4) | 0.5 (4) | 15 | 4 | −0.9 | −0.5 |
1981 | Neutral | 0.1 | −0.3 | −0.1 | 13 | 3 | 0.7 | 1.0 | |
1982 | Neutral | −0.3 | −0.2 | −0.1 | 11 | 4 | −1.8 | −1.5 | |
1983 | El-Niño | EP | 0.5 (5) | 2.0 (13) | 2.2 (16) | −14 | −3 | 0.0 | 0.3 |
1984 | La-Niña | CP | −0.7 (12) | −0.5 (12) | −0.7 (3) | −1 | 0 | 0.7 | 0.8 |
1985 | La-Niña | EP | −0.7 (17) | −1.0 (14) | −1.0 (9) | 29 | 39 | 5.4 | 5.4 |
1986 | Neutral | −0.7 (3) | −0.4 | −0.4 | −12 | −19 | −1.1 | −1.0 | |
1987 | El-Niño | EP | 0.5 (5) | 1.1 (17) | 0.9 (16) | 39 | 43 | 7.4 | 7.3 |
1988 | El-Niño | EP | 0.7 (8) | 0.9 (17) | 1.1 (16) | 3 | 12 | −4.1 | −4.0 |
1989 | La-Niña | CP | −1.5 (16) | −1.5 (16) | −1.6 (15) | 12 | 8 | 1.6 | 1.7 |
1990 | Neutral | −0.3 | −0.3 | −0.3 | −26 | −33 | −4.9 | −4.6 | |
1991 | Neutral | 0.4 | −0.1 | 0.2 | 20 | 13 | 2.5 | 2.4 | |
1992 | El-Niño | CP/EP | 0.5 (7) | 1.0 (8) | 0.8 (9) | −18 | −12 | 2.7 | 2.9 |
1993 | Neutral | 0.1 | −0.2 | 0.0 | −42 | −30 | −3.3 | −3.0 | |
1994 | Neutral | 0.3 | 0.1 | 0.2 | −18 | −2 | −3.2 | −3.0 | |
1995 | El-Niño | CP | 0.7 (6) | 0.7 (6) | 0.8 (5) | −19 | 8 | −1.2 | −0.9 |
1996 | La-Niña | EP | −0.2 | −0.6 (6) | −0.6 (7) | −53 | −59 | −5.8 | −5.5 |
1997 | Neutral | −0.1 | −0.4 | −0.5 (4) | −53 | −42 | −11.0 | −10.3 | |
1998 | El-Niño | EP | 0.7 (8) | 2.0 (11) | 2.2 (13) | 5 | 1 | 1.4 | 1.4 |
1999 | La-Niña | CP | −1.0 (24) | −0.6 (25) | −0.7 (5) | 23 | 32 | 3.0 | 3.0 |
2000 | La-Niña | CP | −1.1 (24) | −1.1 (25) | −1.2 (12) | −46 | −51 | −6.2 | −6.3 |
2001 | La-Niña | EP/CP | −0.6 (6) | −0.7 (6) | −0.6 (4) | 32 | 30 | 3.7 | 3.4 |
2002 | Neutral | 0.1 | −0.3 | −0.5 (5) | 22 | 24 | 4.2 | 3.9 | |
2003 | El-Niño | CP | 0.7 (10) | 0.8 (10) | 0.9 (5) | 2 | −9 | 2.7 | 2.5 |
2004 | Neutral | 0.3 | 0.2 | 0.3 | 33 | 23 | 4.0 | 3.7 | |
2005 | El-Niño | CP | 0.6 (7) | 0.5 (6) | 0.4 | −24 | −28 | −3.0 | −3.3 |
2006 | La-Niña | EP | −0.1 | −0.7 (5) | −0.7 (6) | 41 | 34 | 5.2 | 4.8 |
2007 | El-Niño | EP | 0.5 (4) | 0.6 (5) | 0.7 (5) | −11 | −18 | −2.6 | −2.5 |
2008 | La-Niña | CP | −1.1 (11) | −1.1 (11) | −1.1 (12) | 1 | −8 | 1.6 | 1.7 |
2009 | La-Niña | CP | −0.6 (4) | −0.5 (5) | −0.5 (4) | 35 | 26 | 5.4 | 5.3 |
2010 | El-Niño | CP | 1.0 (9) | 1.0 (10) | 1.0 (11) | 34 | 28 | 4.8 | 4.7 |
2011 | La-Niña | CP | −1.4 (21) | −1.5 (12) | −1.5 (10) | −52 | −59 | −9.6 | −9.6 |
2012 | La-Niña | CP | −0.8 (21) | −0.8 (8) | −0.9 (5) | 15 | 6 | 1.8 | 1.6 |
2013 | Neutral | 0.2 | −0.1 | −0.6 (4) | 31 | 25 | 3.9 | 3.6 | |
2014 | Neutral | −0.1 | −0.2 | −0.2 | −14 | −17 | −0.6 | −0.7 | |
2015 | El-Niño | CP | 0.5 (19) | 0.5 (19) | 0.5 (3) | 14 | 22 | −1.9 | −2.0 |
2016 | El-Niño | EP | 1.2 (19) | 2.1 (19) | 2.0 (13) | −15 | −13 | 0.4 | 0.2 |
2017 | Neutral | −0.2 | −0.3 | −0.4 | 7 | 17 | 1.6 | 1.5 | |
2018 | La-Niña | EP | −0.2 | −0.7 (7) | −0.7 (8) | 8 | 14 | 3.1 | 2.9 |
2019 | El-Niño | CP | 0.6 (16) | 0.5 (9) | 0.6 (7) | 42 | 54 | 2.4 | 2.1 |
2020 | Neutral | 0.5 (16) | 0.1 | 0.3 | −70 | −68 | −9.3 | −9.3 |
Year | ENSO Phase | CP/EP | TO3 Anomaly 70–90 N January–March | T Anomaly 70–90 N 15–30 km January–March | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
January | February | March | January | February | March | ||||||
MERRA2 | ERA5 | MERRA2 | ERA5 | MERRA2 | ERA5 | ||||||
1980 | El-Niño | EP | −5 | −21 | 5 | −8 | 46 | 41 | −6.4 | −4.0 | 7.9 |
1981 | Neutral | −14 | −27 | 25 | 15 | 28 | 21 | −6.7 | 5.2 | 3.6 | |
1982 | Neutral | 12 | 3 | 10 | 4 | 12 | 6 | 0.8 | −2.0 | −4.1 | |
1983 | El-Niño | EP | −35 | −14 | −16 | −6 | 8 | 10 | −5.6 | 0.4 | 5.3 |
1984 | La-Niña | CP | −34 | −32 | −11 | −8 | 43 | 39 | −7.2 | −1.0 | 10.6 |
1985 | La-Niña | EP | 42 | 45 | 13 | 27 | 33 | 44 | 13.2 | 0.8 | 2.3 |
1986 | Neutral | −11 | −21 | −34 | −40 | 8 | 5 | −1.5 | −6.1 | 4.2 | |
1987 | El-Niño | EP | 15 | 18 | 74 | 83 | 26 | 28 | 7.3 | 13.6 | 1.5 |
1988 | El-Niño | EP | 1 | 25 | −22 | −18 | 30 | 31 | −3.6 | −12.5 | 3.5 |
1989 | La-Niña | CP | −35 | −35 | 14 | 2 | 58 | 56 | −9.1 | 3.0 | 10.8 |
1990 | Neutral | −22 | −29 | −12 | −21 | −44 | −48 | −6.3 | −1.1 | −7.1 | |
1991 | Neutral | 8 | −4 | 34 | 27 | 18 | 16 | 1.3 | 6.7 | −0.6 | |
1992 | El-Niño | CP/EP | −21 | −1 | −19 | −14 | −14 | −20 | 3.5 | 2.2 | 2.4 |
1993 | Neutral | −42 | −10 | −44 | −34 | −39 | −45 | −7.8 | −4.6 | 2.4 | |
1994 | Neutral | −5 | 22 | −29 | −8 | −20 | −19 | 3.6 | −7.9 | −5.3 | |
1995 | El-Niño | CP | 15 | 23 | −17 | 24 | −54 | −21 | 0.1 | 2.3 | −5.9 |
1996 | La-Niña | EP | −37 | −49 | −68 | −71 | −54 | −57 | −7.3 | −9.2 | −0.8 |
1997 | Neutral | −16 | 37 | −46 | −59 | −98 | −104 | −3.8 | −12.9 | −16.2 | |
1998 | El-Niño | EP | 11 | 3 | −2 | −1 | 5 | 0 | 5.7 | 0.1 | −1.6 |
1999 | La-Niña | CP | 12 | 31 | 11 | 21 | 46 | 45 | 3.9 | −2.4 | 7.4 |
2000 | La-Niña | CP | −53 | −51 | −49 | −59 | −34 | −44 | −8.7 | −8.2 | −1.6 |
2001 | La-Niña | EP/CP | −2 | −7 | 57 | 55 | 40 | 41 | −3.5 | 12.2 | 2.4 |
2002 | Neutral | 30 | 32 | 29 | 38 | 9 | 5 | 9.2 | 4.5 | −1.0 | |
2003 | El-Niño | CP | 6 | −5 | −4 | −16 | 2 | −5 | 5.7 | 1.4 | 1.1 |
2004 | Neutral | 57 | 51 | 35 | 22 | 6 | −3 | 14.4 | 4.1 | −6.5 | |
2005 | El-Niño | CP | −27 | −33 | −42 | −46 | −2 | −7 | −8.7 | −6.5 | 6.1 |
2006 | La-Niña | EP | 48 | 34 | 58 | 54 | 16 | 16 | 12.0 | 7.5 | −3.9 |
2007 | El-Niño | EP | 2 | −12 | −6 | −15 | −28 | −28 | −3.0 | −1.7 | −3.0 |
2008 | La-Niña | CP | −6 | −21 | −2 | −12 | 12 | 8 | −4.0 | 2.8 | 6.1 |
2009 | La-Niña | CP | 11 | −2 | 68 | 59 | 26 | 20 | 2.9 | 14.2 | −0.7 |
2010 | El-Niño | CP | 15 | 3 | 55 | 48 | 32 | 31 | 0.2 | 11.1 | 3.2 |
2011 | La-Niña | CP | −8 | −22 | −52 | −60 | −96 | −96 | −4.6 | −11.3 | −12.7 |
2012 | La-Niña | CP | 10 | −3 | 21 | 11 | 15 | 9 | 3.5 | 2.8 | −0.8 |
2013 | Neutral | 46 | 34 | 37 | 35 | 9 | 5 | 14.1 | 4.0 | −6.5 | |
2014 | Neutral | −6 | −18 | −24 | −27 | −13 | −7 | −3.8 | −1.1 | 3.0 | |
2015 | El-Niño | CP | 40 | 38 | 7 | 16 | −4 | 13 | 5.1 | −4.9 | −5.8 |
2016 | El-Niño | EP | −29 | −30 | −43 | −41 | 27 | 32 | −8.0 | −3.2 | 12.2 |
2017 | Neutral | 3 | 11 | 11 | 22 | 7 | 18 | −2.3 | 5.2 | 1.9 | |
2018 | La-Niña | EP | −25 | −19 | 15 | 23 | 32 | 38 | −4.9 | 8.4 | 5.8 |
2019 | El-Niño | CP | 77 | 87 | 32 | 46 | 17 | 29 | 16.3 | −0.5 | −8.7 |
2020 | Neutral | −29 | −31 | −71 | −68 | −109 | −105 | −6.3 | −11.0 | −10.7 |
Month | Total Ozone Column Anomaly on 70–90 N | Neutral | EP El-Niño | CP El-Niño | EP La-Niña | CP La-Niña |
---|---|---|---|---|---|---|
January–March | <−25 DU | 1990, 1993, 1997, 2020 4 years | 0 years | 2005 1 year | 1996 1 year | 2000, 2011 2 years |
>25 DU | 2004, 2013 2 years | 1987 1 year | 2010, 2019 2 years | 1985, 2006 2 years | 1999, 2009 2 years | |
January | <−25 DU | 1981 (ERA5), 1990 (ERA5), 1993 (MERRA2), 2020 4 Years | 1983 (MERRA2), 2016 2 years | 2005 1 year | 1996, 2018 (MERRA2) 2 years | 1984, 1989. 2000 3 years |
>25 DU | 1997 (ERA5), 2002, 2004, 2013 4 years | 1988 (ERA5) 1 year | 2015, 2019 2 years | 1985, 2006 2 years | 1999 (ERA5) 1 year | |
February | <−25 DU | 1986, 1993, 1994 (MERRA2), 1997, 2014, 2020 6 years | 2016 1 year | 2005 1 year | 1996 1 year | 2000, 2011 2 years |
>25 DU | 1981 (MERRA2), 1991, 2002, 2004 (MERRA2), 2013 5 years | 1987 1 year | 2010, 2019 2 years | 1985 (ERA5), 2006 2 years | 2009 1 year | |
March | <−25 DU | 1990, 1993, 1997, 2020 4 years | 2007 1 year | 1995 (MERRA2) 1 year | 1996 1 year | 2000, 2011 2 years |
>25 DU | 1981 (MERRA2) 1 year | 1980, 1987, 1988, 2016 4 years | 2010, 2019 (ERA5) 2 years | 1985, 2018 2 years | 1984, 1999, 2009 (MERRA2) 3 years |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jakovlev, A.R.; Smyshlyaev, S.P. The Impact of the Tropical Sea Surface Temperature Variability on the Dynamical Processes and Ozone Layer in the Arctic Atmosphere. Meteorology 2024, 3, 36-69. https://doi.org/10.3390/meteorology3010002
Jakovlev AR, Smyshlyaev SP. The Impact of the Tropical Sea Surface Temperature Variability on the Dynamical Processes and Ozone Layer in the Arctic Atmosphere. Meteorology. 2024; 3(1):36-69. https://doi.org/10.3390/meteorology3010002
Chicago/Turabian StyleJakovlev, Andrew R., and Sergei P. Smyshlyaev. 2024. "The Impact of the Tropical Sea Surface Temperature Variability on the Dynamical Processes and Ozone Layer in the Arctic Atmosphere" Meteorology 3, no. 1: 36-69. https://doi.org/10.3390/meteorology3010002