Focus Update in Biomolecules

A special issue of Biomolecules (ISSN 2218-273X).

Deadline for manuscript submissions: closed (30 December 2013) | Viewed by 74388

Special Issue Editor


E-Mail Website
Guest Editor
Department of Genetics, Evolution & Environment and Institute of Healthy Ageing, University College London, London, UK
Interests: gene regulation; genomics; transcriptomics; non-coding RNAs; genome function and evolution; fission yeast; cellular quiescence and ageing
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biomolecules is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

746 KiB  
Article
Analysis of Guanine Oxidation Products in Double-Stranded DNA and Proposed Guanine Oxidation Pathways in Single-Stranded, Double-Stranded or Quadruplex DNA
by Masayuki Morikawa, Katsuhito Kino, Takanori Oyoshi, Masayo Suzuki, Takanobu Kobayashi and Hiroshi Miyazawa
Biomolecules 2014, 4(1), 140-159; https://doi.org/10.3390/biom4010140 - 10 Feb 2014
Cited by 34 | Viewed by 8755
Abstract
Guanine is the most easily oxidized among the four DNA bases, and some guanine-rich sequences can form quadruplex structures. In a previous study using 6-mer DNA d(TGGGGT), which is the shortest oligomer capable of forming quadruplex structures, we demonstrated that guanine oxidation products [...] Read more.
Guanine is the most easily oxidized among the four DNA bases, and some guanine-rich sequences can form quadruplex structures. In a previous study using 6-mer DNA d(TGGGGT), which is the shortest oligomer capable of forming quadruplex structures, we demonstrated that guanine oxidation products of quadruplex DNA differ from those of single-stranded DNA. Therefore, the hotooxidation products of double-stranded DNA (dsDNA) may also differ from that of quadruplex or single-stranded DNA, with the difference likely explaining the influence of DNA structures on guanine oxidation pathways. In this study, the guanine oxidation products of the dsDNA d(TGGGGT)/d(ACCCCA) were analyzed using HPLC and electrospray ionization-mass spectrometry (ESI-MS). As a result, the oxidation products in this dsDNA were identified as 2,5-diamino-4H-imidazol-4-one (Iz), 8-oxo-7,8-dihydroguanine (8oxoG), dehydroguanidinohydantoin (Ghox), and guanidinohydantoin (Gh). The major oxidation products in dsDNA were consistent with a combination of each major oxidation product observed in single-stranded and quadruplex DNA. We previously reported that the kinds of the oxidation products in single-stranded or quadruplex DNA depend on the ease of deprotonation of the guanine radical cation (G•+) at the N1 proton. Similarly, this mechanism was also involved in dsDNA. Deprotonation in dsDNA is easier than in quadruplex DNA and more difficult in single-stranded DNA, which can explain the formation of the four oxidation products in dsDNA. Full article
(This article belongs to the Special Issue Focus Update in Biomolecules)
Show Figures

Graphical abstract

778 KiB  
Article
Structural Evidence for the Tetrameric Assembly of Chemokine CCL11 and the Glycosaminoglycan Arixtra™
by Andrew B. Dykstra, Matt D. Sweeney and Julie A. Leary
Biomolecules 2013, 3(4), 905-922; https://doi.org/10.3390/biom3040905 - 6 Nov 2013
Cited by 4 | Viewed by 7607
Abstract
Understanding chemokine interactions with glycosaminoglycans (GAG) is critical as these interactions have been linked to a number of inflammatory medical conditions, such as arthritis and asthma. To better characterize in vivo protein function, comprehensive knowledge of multimeric species, formed by chemokines under native [...] Read more.
Understanding chemokine interactions with glycosaminoglycans (GAG) is critical as these interactions have been linked to a number of inflammatory medical conditions, such as arthritis and asthma. To better characterize in vivo protein function, comprehensive knowledge of multimeric species, formed by chemokines under native conditions, is necessary. Herein is the first report of a tetrameric assembly of the human chemokine CCL11, which was shown bound to the GAG Arixtra™. Isothermal titration calorimetry data indicated that CCL11 interacts with Arixtra, and ion mobility mass spectrometry (IM-MS) was used to identify ions corresponding to the CCL11 tetrameric species bound to Arixtra. Collisional cross sections (CCS) of the CCL11 tetramer-Arixtra noncovalent complex were compared to theoretical CCS values calculated using a preliminary structure of the complex deduced using X-ray crystallography. Experimental CCS values were in agreement with theoretical values, strengthening the IM-MS evidence for the formation of the noncovalent complex. Tandem mass spectrometry data of the complex indicated that the tetramer-GAG complex dissociates into a monomer and a trimer-GAG species, suggesting that two CC-like dimers are bridged by Arixtra. As development of chemokine inhibitors is of utmost importance to treatment of medical inflammatory conditions, these results provide vital insights into chemokine-GAG interactions. Full article
(This article belongs to the Special Issue Focus Update in Biomolecules)
Show Figures

Graphical abstract

Review

Jump to: Research

863 KiB  
Review
Re-Configuration of Sphingolipid Metabolism by Oncogenic Transformation
by Anthony S. Don, Xin Y. Lim and Timothy A. Couttas
Biomolecules 2014, 4(1), 315-353; https://doi.org/10.3390/biom4010315 - 14 Mar 2014
Cited by 35 | Viewed by 13140
Abstract
The sphingolipids are one of the major lipid families in eukaryotes, incorporating a diverse array of structural variants that exert a powerful influence over cell fate and physiology. Increased expression of sphingosine kinase 1 (SPHK1), which catalyses the synthesis of the pro-survival, pro-angiogenic [...] Read more.
The sphingolipids are one of the major lipid families in eukaryotes, incorporating a diverse array of structural variants that exert a powerful influence over cell fate and physiology. Increased expression of sphingosine kinase 1 (SPHK1), which catalyses the synthesis of the pro-survival, pro-angiogenic metabolite sphingosine 1-phosphate (S1P), is well established as a hallmark of multiple cancers. Metabolic alterations that reduce levels of the pro-apoptotic lipid ceramide, particularly its glucosylation by glucosylceramide synthase (GCS), have frequently been associated with cancer drug resistance. However, the simple notion that the balance between ceramide and S1P, often referred to as the sphingolipid rheostat, dictates cell survival contrasts with recent studies showing that highly potent and selective SPHK1 inhibitors do not affect cancer cell proliferation or survival, and studies demonstrating higher ceramide levels in some metastatic cancers. Recent reports have implicated other sphingolipid metabolic enzymes such as acid sphingomyelinase (ASM) more strongly in cancer pathogenesis, and highlight lysosomal sphingolipid metabolism as a possible weak point for therapeutic targeting in cancer. This review describes the evidence implicating different sphingolipid metabolic enzymes and their products in cancer pathogenesis, and suggests how newer systems-level approaches may improve our overall understanding of how oncogenic transformation reconfigures sphingolipid metabolism. Full article
(This article belongs to the Special Issue Focus Update in Biomolecules)
Show Figures

Figure 1

1017 KiB  
Review
Structure and Function of the Bi-Directional Bacterial Flagellar Motor
by Yusuke V. Morimoto and Tohru Minamino
Biomolecules 2014, 4(1), 217-234; https://doi.org/10.3390/biom4010217 - 18 Feb 2014
Cited by 100 | Viewed by 21152
Abstract
The bacterial flagellum is a locomotive organelle that propels the bacterial cell body in liquid environments. The flagellum is a supramolecular complex composed of about 30 different proteins and consists of at least three parts: a rotary motor, a universal joint, and a [...] Read more.
The bacterial flagellum is a locomotive organelle that propels the bacterial cell body in liquid environments. The flagellum is a supramolecular complex composed of about 30 different proteins and consists of at least three parts: a rotary motor, a universal joint, and a helical filament. The flagellar motor of Escherichia coli and Salmonella enterica is powered by an inward-directed electrochemical potential difference of protons across the cytoplasmic membrane. The flagellar motor consists of a rotor made of FliF, FliG, FliM and FliN and a dozen stators consisting of MotA and MotB. FliG, FliM and FliN also act as a molecular switch, enabling the motor to spin in both counterclockwise and clockwise directions. Each stator is anchored to the peptidoglycan layer through the C-terminal periplasmic domain of MotB and acts as a proton channel to couple the proton flow through the channel with torque generation. Highly conserved charged residues at the rotor–stator interface are required not only for torque generation but also for stator assembly around the rotor. In this review, we will summarize our current understanding of the structure and function of the proton-driven bacterial flagellar motor. Full article
(This article belongs to the Special Issue Focus Update in Biomolecules)
Show Figures

Graphical abstract

569 KiB  
Review
Long Noncoding RNAs in Imprinting and X Chromosome Inactivation
by Joseph M. Autuoro, Stephan P. Pirnie and Gordon G. Carmichael
Biomolecules 2014, 4(1), 76-100; https://doi.org/10.3390/biom4010076 - 7 Jan 2014
Cited by 56 | Viewed by 11535
Abstract
The field of long noncoding RNA (lncRNA) research has been rapidly advancing in recent years. Technological advancements and deep-sequencing of the transcriptome have facilitated the identification of numerous new lncRNAs, many with unusual properties, however, the function of most of these molecules is [...] Read more.
The field of long noncoding RNA (lncRNA) research has been rapidly advancing in recent years. Technological advancements and deep-sequencing of the transcriptome have facilitated the identification of numerous new lncRNAs, many with unusual properties, however, the function of most of these molecules is still largely unknown. Some evidence suggests that several of these lncRNAs may regulate their own transcription in cis, and that of nearby genes, by recruiting remodeling factors to local chromatin. Notably, lncRNAs are known to exist at many imprinted gene clusters. Genomic imprinting is a complex and highly regulated process resulting in the monoallelic silencing of certain genes, based on the parent-of-origin of the allele. It is thought that lncRNAs may regulate many imprinted loci, however, the mechanism by which they exert such influence is poorly understood. This review will discuss what is known about the lncRNAs of major imprinted loci, and the roles they play in the regulation of imprinting. Full article
(This article belongs to the Special Issue Focus Update in Biomolecules)
Show Figures

Figure 1

1075 KiB  
Review
Control of Cell Differentiation by Mitochondria, Typically Evidenced in Dictyostelium Development
by Yasuo Maeda and Junji Chida
Biomolecules 2013, 3(4), 943-966; https://doi.org/10.3390/biom3040943 - 11 Nov 2013
Cited by 19 | Viewed by 11087
Abstract
In eukaryotic cells, mitochondria are self-reproducing organelles with their own DNA and they play a central role in adenosine triphosphate (ATP) synthesis by respiration. Increasing evidence indicates that mitochondria also have critical and multiple functions in the initiation of cell differentiation, cell-type determination, [...] Read more.
In eukaryotic cells, mitochondria are self-reproducing organelles with their own DNA and they play a central role in adenosine triphosphate (ATP) synthesis by respiration. Increasing evidence indicates that mitochondria also have critical and multiple functions in the initiation of cell differentiation, cell-type determination, cell movement, and pattern formation. This has been most strikingly realized in development of the cellular slime mold Dictyostelium. For example, the expression of the mitochondrial ribosomal protein S4 (mt-rps4) gene is required for the initial differentiation. The Dictyostelium homologue (Dd-TRAP1) of TRAP-1 (tumor necrosis receptor-associated protein 1), a mitochondrial molecular chaperone belonging to the Hsp90 family, allows the prompt transition of cells from growth to differentiation through a novel prestarvation factor (PSF-3) in growth medium. Moreover, a cell-type-specific organelle named a prespore-specific vacuole (PSV) is constructed by mitochondrial transformation with the help of the Golgi complex. Mitochondria are also closely involved in a variety of cellular activities including CN-resistant respiration and apoptosis. These mitochondrial functions are reviewed in this article, with special emphasis on the regulation of Dictyostelium development. Full article
(This article belongs to the Special Issue Focus Update in Biomolecules)
Show Figures

Graphical abstract

Back to TopTop