Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4324 KiB  
Article
Object Recognition of a GCP Design in UAS Imagery Using Deep Learning and Image Processing—Proof of Concept Study
by Denise Becker and Jörg Klonowski
Drones 2023, 7(2), 94; https://doi.org/10.3390/drones7020094 - 30 Jan 2023
Cited by 3 | Viewed by 2494
Abstract
Image-based unmanned aircraft systems (UASs) are used in a variety of geodetic applications. Precise 3D terrain surface mapping requires ground control points (GCPs) for scaling and (indirect) georeferencing. In image analysis software (e.g., Agisoft Metashape), the images can be generated to a 3D [...] Read more.
Image-based unmanned aircraft systems (UASs) are used in a variety of geodetic applications. Precise 3D terrain surface mapping requires ground control points (GCPs) for scaling and (indirect) georeferencing. In image analysis software (e.g., Agisoft Metashape), the images can be generated to a 3D point cloud using Structure-from-Motion (SfM). In general, the conventional GCP design for UAS flights is a checkerboard pattern, which is provided in the software and used for automatic marker detection in each image. When changing the pattern, manual work would be required by picking the GCP individually by hand. To increase the level of automation in the evaluation, this article aims to present a workflow that automatically detects a new edge-based GCP design pattern in the images, calculates their center points, and provides this information to the SfM software. Using the proposed workflow based on deep learning (DL) and image processing, the quality of the resulting 3D model can be equated to the result with GCP center points picked by human evaluator. Consequently, the workload can be accelerated with this approach. Full article
Show Figures

Figure 1

25 pages, 9068 KiB  
Article
Large-Scale Date Palm Tree Segmentation from Multiscale UAV-Based and Aerial Images Using Deep Vision Transformers
by Mohamed Barakat A. Gibril, Helmi Zulhaidi Mohd Shafri, Rami Al-Ruzouq, Abdallah Shanableh, Faten Nahas and Saeed Al Mansoori
Drones 2023, 7(2), 93; https://doi.org/10.3390/drones7020093 - 29 Jan 2023
Cited by 11 | Viewed by 3463
Abstract
The reliable and efficient large-scale mapping of date palm trees from remotely sensed data is crucial for developing palm tree inventories, continuous monitoring, vulnerability assessments, environmental control, and long-term management. Given the increasing availability of UAV images with limited spectral information, the high [...] Read more.
The reliable and efficient large-scale mapping of date palm trees from remotely sensed data is crucial for developing palm tree inventories, continuous monitoring, vulnerability assessments, environmental control, and long-term management. Given the increasing availability of UAV images with limited spectral information, the high intra-class variance of date palm trees, the variations in the spatial resolutions of the data, and the differences in image contexts and backgrounds, accurate mapping of date palm trees from very-high spatial resolution (VHSR) images can be challenging. This study aimed to investigate the reliability and the efficiency of various deep vision transformers in extracting date palm trees from multiscale and multisource VHSR images. Numerous vision transformers, including the Segformer, the Segmenter, the UperNet-Swin transformer, and the dense prediction transformer, with various levels of model complexity, were evaluated. The models were developed and evaluated using a set of comprehensive UAV-based and aerial images. The generalizability and the transferability of the deep vision transformers were evaluated and compared with various convolutional neural network-based (CNN) semantic segmentation models (including DeepLabV3+, PSPNet, FCN-ResNet-50, and DANet). The results of the examined deep vision transformers were generally comparable to several CNN-based models. The investigated deep vision transformers achieved satisfactory results in mapping date palm trees from the UAV images, with an mIoU ranging from 85% to 86.3% and an mF-score ranging from 91.62% to 92.44%. Among the evaluated models, the Segformer generated the highest segmentation results on the UAV-based and the multiscale testing datasets. The Segformer model, followed by the UperNet-Swin transformer, outperformed all of the evaluated CNN-based models in the multiscale testing dataset and in the additional unseen UAV testing dataset. In addition to delivering remarkable results in mapping date palm trees from versatile VHSR images, the Segformer model was among those with a small number of parameters and relatively low computing costs. Collectively, deep vision transformers could be used efficiently in developing and updating inventories of date palms and other tree species. Full article
Show Figures

Figure 1

32 pages, 10030 KiB  
Article
An Improved Probabilistic Roadmap Planning Method for Safe Indoor Flights of Unmanned Aerial Vehicles
by Qingeng Jin, Qingwu Hu, Pengcheng Zhao, Shaohua Wang and Mingyao Ai
Drones 2023, 7(2), 92; https://doi.org/10.3390/drones7020092 - 28 Jan 2023
Cited by 9 | Viewed by 2139
Abstract
Unmanned aerial vehicles (UAVs) have been widely used in industry and daily life, where safety is the primary consideration, resulting in their use in open outdoor environments, which are wider than complex indoor environments. However, the demand is growing for deploying UAVs indoors [...] Read more.
Unmanned aerial vehicles (UAVs) have been widely used in industry and daily life, where safety is the primary consideration, resulting in their use in open outdoor environments, which are wider than complex indoor environments. However, the demand is growing for deploying UAVs indoors for specific tasks such as inspection, supervision, transportation, and management. To broaden indoor applications while ensuring safety, the quadrotor is notable for its motion flexibility, particularly in the vertical direction. In this study, we developed an improved probabilistic roadmap (PRM) planning method for safe indoor flights based on the assumption of a quadrotor model UAV. First, to represent and model a 3D environment, we generated a reduced-dimensional map using a point cloud projection method. Second, to deploy UAV indoor missions and ensure safety, we improved the PRM planning method and obtained a collision-free flight path for the UAV. Lastly, to optimize the overall mission, we performed postprocessing optimization on the path, avoiding redundant flights. We conducted experiments to validate the effectiveness and efficiency of the proposed method on both desktop and onboard PC, in terms of path-finding success rate, planning time, and path length. The results showed that our method ensures safe indoor UAV flights while significantly improving computational efficiency. Full article
Show Figures

Figure 1

41 pages, 3112 KiB  
Review
Vision-Based Navigation Techniques for Unmanned Aerial Vehicles: Review and Challenges
by Muhammad Yeasir Arafat, Muhammad Morshed Alam and Sangman Moh
Drones 2023, 7(2), 89; https://doi.org/10.3390/drones7020089 - 27 Jan 2023
Cited by 41 | Viewed by 18420
Abstract
In recent years, unmanned aerial vehicles (UAVs), commonly known as drones, have gained increasing interest in both academia and industries. The evolution of UAV technologies, such as artificial intelligence, component miniaturization, and computer vision, has decreased their cost and increased availability for diverse [...] Read more.
In recent years, unmanned aerial vehicles (UAVs), commonly known as drones, have gained increasing interest in both academia and industries. The evolution of UAV technologies, such as artificial intelligence, component miniaturization, and computer vision, has decreased their cost and increased availability for diverse applications and services. Remarkably, the integration of computer vision with UAVs provides cutting-edge technology for visual navigation, localization, and obstacle avoidance, making them capable of autonomous operations. However, their limited capacity for autonomous navigation makes them unsuitable for global positioning system (GPS)-blind environments. Recently, vision-based approaches that use cheaper and more flexible visual sensors have shown considerable advantages in UAV navigation owing to the rapid development of computer vision. Visual localization and mapping, obstacle avoidance, and path planning are essential components of visual navigation. The goal of this study was to provide a comprehensive review of vision-based UAV navigation techniques. Existing techniques have been categorized and extensively reviewed with regard to their capabilities and characteristics. Then, they are qualitatively compared in terms of various aspects. We have also discussed open issues and research challenges in the design and implementation of vision-based navigation techniques for UAVs. Full article
(This article belongs to the Special Issue Recent Advances in UAV Navigation)
Show Figures

Figure 1

18 pages, 10028 KiB  
Article
Fast Marching Techniques for Teaming UAV’s Applications in Complex Terrain
by Santiago Garrido, Javier Muñoz, Blanca López, Fernando Quevedo, Concepción A. Monje and Luis Moreno
Drones 2023, 7(2), 84; https://doi.org/10.3390/drones7020084 - 25 Jan 2023
Cited by 2 | Viewed by 1774
Abstract
In this paper, we present a study on coverage missions carried out by UAV formations in 3D environments. These missions are designed to be applied in tracking and search and rescue missions, especially in the case of accidents. In this manner, the presented [...] Read more.
In this paper, we present a study on coverage missions carried out by UAV formations in 3D environments. These missions are designed to be applied in tracking and search and rescue missions, especially in the case of accidents. In this manner, the presented method focuses on the path planning stage, the objective of which is to compute a convenient trajectory to completely cover a certain area in a determined environment. The methodology followed uses a Gaussian mixture to approximate a probability of containment distribution along with the Fast Marching Square (FM2) as path planner. The Gaussians permit to define a zigzag trajectory that optimizes the path. Next, a first 2D geometric path perpendicular to the Voronoi diagram of the Gaussian distribution is calculated, obtained by skeletonization. To this path, the height above the ground is added plus the desired flight height to make it 3D. Finally, the FM2 method for formations is applied to make the path smooth and safe enough to be followed by UAVs. The simulation experiments show that the proposed method achieves good results for the zigzag path in terms of smoothness, safety and distance to cover the desired area through the formation of UAVs. Full article
Show Figures

Figure 1

20 pages, 7106 KiB  
Article
An Intelligent Fault Diagnosis Approach for Multirotor UAVs Based on Deep Neural Network of Multi-Resolution Transform Features
by Luttfi A. Al-Haddad and Alaa Abdulhady Jaber
Drones 2023, 7(2), 82; https://doi.org/10.3390/drones7020082 - 24 Jan 2023
Cited by 30 | Viewed by 3098
Abstract
As a modern technological trend, unmanned aerial vehicles (UAVs) are extensively employed in various applications. The core purpose of condition monitoring systems, proactive fault diagnosis, is essential in ensuring UAV safety in these applications. In this research, adaptive health monitoring systems perform blade [...] Read more.
As a modern technological trend, unmanned aerial vehicles (UAVs) are extensively employed in various applications. The core purpose of condition monitoring systems, proactive fault diagnosis, is essential in ensuring UAV safety in these applications. In this research, adaptive health monitoring systems perform blade balancing fault diagnosis and classification. There seems to be a bidirectional unpredictability within each, and this paper proposes a hybrid-based transformed discrete wavelet and a multi-hidden-layer deep neural network (DNN) scheme to compensate for it. Wide-scale, high-quality, and comprehensive soft-labeled data are extracted from a selected hovering quad-copter incorporated with an accelerometer sensor via experimental work. A data-driven intelligent diagnostic strategy was investigated. Statistical characteristics of non-stationary six-leveled multi-resolution analysis in three axes are acquired. Two important feature selection methods were adopted to minimize computing time and improve classification accuracy when progressed into an artificial intelligence (AI) model for fault diagnosis. The suggested approach offers exceptional potential: the fault detection system identifies and predicts faults accurately as the resulting 91% classification accuracy exceeds current state-of-the-art fault diagnosis strategies. The proposed model demonstrated operational applicability on any multirotor UAV of choice. Full article
Show Figures

Figure 1

16 pages, 1622 KiB  
Article
Leveraging UAVs to Enable Dynamic and Smart Aerial Infrastructure for ITS and Smart Cities: An Overview
by Michael C. Lucic, Omar Bouhamed, Hakim Ghazzai, Abdullah Khanfor and Yehia Massoud
Drones 2023, 7(2), 79; https://doi.org/10.3390/drones7020079 - 23 Jan 2023
Cited by 8 | Viewed by 2279
Abstract
Micro-unmanned aerial vehicles (UAVs), also known as drones, have been recognized as an emerging technology offering a plethora of applications touching various aspects of our lives, such as surveillance, agriculture, entertainment, and intelligent transportation systems (ITS). Furthermore, due to their low cost and [...] Read more.
Micro-unmanned aerial vehicles (UAVs), also known as drones, have been recognized as an emerging technology offering a plethora of applications touching various aspects of our lives, such as surveillance, agriculture, entertainment, and intelligent transportation systems (ITS). Furthermore, due to their low cost and ability to be fitted with transmitters, cameras, and other on-board sensors, UAVs can be seen as potential flying Internet-of-things (IoT) devices interconnecting with their environment and allowing for more mobile flexibility in the network. This paper overviews the beneficial applications that UAVs can offer to smart cities, and particularly to ITS, while highlighting the main challenges that can be encountered. Afterward, it proposes several potential solutions to organize the operation of UAV swarms, while addressing one of their main issues: their battery-limited capacity. Finally, open research areas that should be undertaken to strengthen the case for UAVs to become part of the smart infrastructure for futuristic cities are discussed. Full article
Show Figures

Figure 1

31 pages, 7826 KiB  
Article
Deep Learning Architecture for UAV Traffic-Density Prediction
by Abdulrahman Alharbi, Ivan Petrunin and Dimitrios Panagiotakopoulos
Drones 2023, 7(2), 78; https://doi.org/10.3390/drones7020078 - 22 Jan 2023
Cited by 5 | Viewed by 3069
Abstract
The research community has paid great attention to the prediction of air traffic flows. Nonetheless, research examining the prediction of air traffic patterns for unmanned aircraft traffic management (UTM) is relatively sparse at present. Thus, this paper proposes a one-dimensional convolutional neural network [...] Read more.
The research community has paid great attention to the prediction of air traffic flows. Nonetheless, research examining the prediction of air traffic patterns for unmanned aircraft traffic management (UTM) is relatively sparse at present. Thus, this paper proposes a one-dimensional convolutional neural network and encoder-decoder LSTM framework to integrate air traffic flow prediction with the intrinsic complexity metric. This adapted complexity metric takes into account the important differences between ATM and UTM operations, such as dynamic flow structures and airspace density. Additionally, the proposed methodology has been evaluated and verified in a simulation scenario environment, in which a drone delivery system that is considered essential in the delivery of COVID-19 sample tests, package delivery services from multiple post offices, an inspection of the railway infrastructure and fire-surveillance tasks. Moreover, the prediction model also considers the impacts of other significant factors, including emergency UTM operations, static no-fly zones (NFZs), and variations in weather conditions. The results show that the proposed model achieves the smallest RMSE value in all scenarios compared to other approaches. Specifically, the prediction error of the proposed model is 8.34% lower than the shallow neural network (on average) and 19.87% lower than the regression model on average. Full article
(This article belongs to the Special Issue AAM Integration: Strategic Insights and Goals)
Show Figures

Figure 1

20 pages, 6265 KiB  
Article
Estimating the Economic Viability of Advanced Air Mobility Use Cases: Towards the Slope of Enlightenment
by Jan Pertz, Malte Niklaß, Majed Swaid, Volker Gollnick, Sven Kopera, Kolin Schunck and Stephan Baur
Drones 2023, 7(2), 75; https://doi.org/10.3390/drones7020075 - 20 Jan 2023
Cited by 4 | Viewed by 2636
Abstract
While different vehicle configurations enter the AAM market, airlines declare different ticket fares for their operations. This research investigates the operating cost of an airline and the economic viability with the announced fare per km rates. For this purpose, three use cases in [...] Read more.
While different vehicle configurations enter the AAM market, airlines declare different ticket fares for their operations. This research investigates the operating cost of an airline and the economic viability with the announced fare per km rates. For this purpose, three use cases in the metropolitan area of Hamburg showcase representative applications of an AAM system, whereby a flight trajectory model calculates a flight time in each case. The direct operating cost are investigated for each use case individually and are sub-classified in five categories: fee, crew, maintenance, fuel and capital costs. Here, each use case has its own cost characteristics, in which different cost elements dominate. Additionally, a sensitivity analysis shows the effect of a variation of the flight cycles and load factor, that influences the costs as well as the airline business itself. Based on the occurring cost, a profit margin per available seat kilometer lead to a necessary fare per km, that an airline has to charge. Full article
(This article belongs to the Special Issue AAM Integration: Strategic Insights and Goals)
Show Figures

Figure 1

26 pages, 16651 KiB  
Article
Oxpecker: A Tethered UAV for Inspection of Stone-Mine Pillars
by Bernardo Martinez Rocamora, Jr., Rogério R. Lima, Kieren Samarakoon, Jeremy Rathjen, Jason N. Gross and Guilherme A. S. Pereira
Drones 2023, 7(2), 73; https://doi.org/10.3390/drones7020073 - 19 Jan 2023
Cited by 11 | Viewed by 3945
Abstract
This paper presents a state-of-the-art tethered unmanned aerial vehicle (TUAV) for structural integrity assessment of underground stone mine pillars. The TUAV, powered by its tether, works in tandem with an unmanned ground vehicle (UGV) that hosts the TUAV batteries, a self-leveled landing platform, [...] Read more.
This paper presents a state-of-the-art tethered unmanned aerial vehicle (TUAV) for structural integrity assessment of underground stone mine pillars. The TUAV, powered by its tether, works in tandem with an unmanned ground vehicle (UGV) that hosts the TUAV batteries, a self-leveled landing platform, and the tether management system. The UGV and the TUAV were named Rhino and Oxpecker, respectively, given that the TUAV stays landed on the UGV while the ensemble moves inside a mine. The mission of Oxpecker is to create, using a LiDAR sensor, 3D maps of the mine pillars to support time-lapse hazard mapping and time-dependent pillar degradation analysis. Given the height of the pillars (7–12 m), this task cannot be executed by Rhino alone. This paper describes the drone’s hardware and software. The hardware includes the tether management system, designed to control the tension of the tether, and the tether perception system, which provides information that can be used for localization and landing in global navigation satellite systems (GNSS)-denied environments. The vehicle’s software is based on a state machine that controls the several phases of a mission (i.e., takeoff, inspection, and landing) by coordinating drone motion with the tethering system. The paper also describes and evaluates our approach for tether-based landing and autonomous 3D mapping of pillars. We show experiments that illustrate and validate our system in laboratories and underground mines. Full article
(This article belongs to the Special Issue Drones in the Wild)
Show Figures

Figure 1

20 pages, 1312 KiB  
Article
Cooperative Truck–Drone Delivery Path Optimization under Urban Traffic Restriction
by Ying-Ying Weng, Rong-Yu Wu and Yu-Jun Zheng
Drones 2023, 7(1), 59; https://doi.org/10.3390/drones7010059 - 14 Jan 2023
Cited by 6 | Viewed by 2834
Abstract
In the traditional express delivery sector, trucks are the most available and efficient transportation mode in urban areas. However, due to the pressures of traffic congestion and air pollution problems, many cities have implemented strict measures to restrict trucks’ access to many zones [...] Read more.
In the traditional express delivery sector, trucks are the most available and efficient transportation mode in urban areas. However, due to the pressures of traffic congestion and air pollution problems, many cities have implemented strict measures to restrict trucks’ access to many zones during specified time periods, which has caused significant effects on the business of the industry. Due to their advantages, which include high speed, flexibility, and environmental friendliness, drones have great potential for being combined with trucks for efficient delivery in restricted traffic zones. In this paper, we propose a cooperative truck and drone delivery path optimization problem, in which a truck carrying cargo travels along the outer boundary of the restricted traffic zone to send and receive a drone, and the drone is responsible for delivering the cargo to customers. The objective of the problem is to minimize the completion time of all delivery tasks. To efficiently solve this problem, we propose a hybrid metaheuristic optimization algorithm to cooperatively optimize the outer path of the truck and the inner path of the drone. We conduct experiments on a set of test instances; the results demonstrate that the proposed algorithm exhibits a competitive performance compared to other selected popular optimization algorithms. Full article
(This article belongs to the Special Issue Cooperation of Drones and Other Manned/Unmanned Systems)
Show Figures

Figure 1

34 pages, 1115 KiB  
Article
Autonomous Unmanned Aerial Vehicles in Bushfire Management: Challenges and Opportunities
by Shouthiri Partheepan, Farzad Sanati and Jahan Hassan
Drones 2023, 7(1), 47; https://doi.org/10.3390/drones7010047 - 10 Jan 2023
Cited by 20 | Viewed by 9120
Abstract
The intensity and frequency of bushfires have increased significantly, destroying property and living species in recent years. Presently, unmanned aerial vehicle (UAV) technology advancements are becoming increasingly popular in bushfire management systems because of their fundamental characteristics, such as manoeuvrability, autonomy, ease of [...] Read more.
The intensity and frequency of bushfires have increased significantly, destroying property and living species in recent years. Presently, unmanned aerial vehicle (UAV) technology advancements are becoming increasingly popular in bushfire management systems because of their fundamental characteristics, such as manoeuvrability, autonomy, ease of deployment, and low cost. UAVs with remote-sensing capabilities are used with artificial intelligence, machine learning, and deep-learning algorithms to detect fire regions, make predictions, make decisions, and optimize fire-monitoring tasks. Moreover, UAVs equipped with various advanced sensors, including LIDAR, visual, infrared (IR), and monocular cameras, have been used to monitor bushfires due to their potential to provide new approaches and research opportunities. This review focuses on the use of UAVs in bushfire management for fire detection, fire prediction, autonomous navigation, obstacle avoidance, and search and rescue to improve the accuracy of fire prediction and minimize their impacts on people and nature. The objective of this paper is to provide valuable information on various UAV-based bushfire management systems and machine-learning approaches to predict and effectively respond to bushfires in inaccessible areas using intelligent autonomous UAVs. This paper aims to assemble information about the use of UAVs in bushfire management and to examine the benefits and limitations of existing techniques of UAVs related to bushfire handling. However, we conclude that, despite the potential benefits of UAVs for bushfire management, there are shortcomings in accuracy, and solutions need to be optimized for effective bushfire management. Full article
(This article belongs to the Section Drones in Agriculture and Forestry)
Show Figures

Figure 1

26 pages, 8913 KiB  
Article
Small Fixed-Wing UAV Radar Cross-Section Signature Investigation and Detection and Classification of Distance Estimation Using Realistic Parameters of a Commercial Anti-Drone System
by Ioannis K. Kapoulas, Antonios Hatziefremidis, A. K. Baldoukas, Evangelos S. Valamontes and J. C. Statharas
Drones 2023, 7(1), 39; https://doi.org/10.3390/drones7010039 - 6 Jan 2023
Cited by 6 | Viewed by 7068
Abstract
Various types of small drones constitute a modern threat for infrastructure and hardware, as well as for humans; thus, special-purpose radar has been developed in the last years in order to identify such drones. When studying the radar signatures, we observed that the [...] Read more.
Various types of small drones constitute a modern threat for infrastructure and hardware, as well as for humans; thus, special-purpose radar has been developed in the last years in order to identify such drones. When studying the radar signatures, we observed that the majority of the scientific studies refer to multirotor aerial vehicles; there is a significant gap regarding small, fixed-wing Unmanned Aerial Vehicles (UAVs). Driven by the security principle, we conducted a series of Radar Cross Section (RCS) simulations on the Euclid fixed-wing UAV, which has a wingspan of 2 m and is being developed by our University. The purpose of this study is to partially fill the gap that exists regarding the RCS signatures and identification distances of fixed-wing UAVs of the same wingspan as the Euclid. The software used for the simulations was POFACETS (v.4.1). Two different scenarios were carried out. In scenario A, the RCS of the Euclid fixed-wing UAV, with a 2 m wingspan, was analytically studied. Robin radar systems’ Elvira Anti Drone System is the simulated radar, operating at 8.7 to 9.65 GHz; θ angle is set at 85° for this scenario. Scenario B studies the Euclid RCS within the broader 3 to 16 Ghz spectrum at the same θ = 85° angle. The results indicated that the Euclid UAV presents a mean RCS value (σ ¯) of −17.62 dBsm for scenario A, and a mean RCS value (σ ¯) of −22.77 dBsm for scenario B. These values are much smaller than the values of a typical commercial quadcopter, such as DJI Inspire 1, which presents −9.75 dBsm and −13.92 dBsm for the same exact scenarios, respectively. As calculated in the study, the Euclid UAV can penetrate up to a distance of 1784 m close to the Elvira Anti Drone System, while the DJI Inspire 1 will be detected at 2768 m. This finding is of great importance, as the obviously larger fixed-wing Euclid UAV will be detected about one kilometer closer to the anti-drone system. Full article
Show Figures

Figure 1

19 pages, 3065 KiB  
Article
Visual-Inertial Odometry Using High Flying Altitude Drone Datasets
by Anand George, Niko Koivumäki, Teemu Hakala, Juha Suomalainen and Eija Honkavaara
Drones 2023, 7(1), 36; https://doi.org/10.3390/drones7010036 - 4 Jan 2023
Cited by 6 | Viewed by 6284
Abstract
Positioning of unoccupied aerial systems (UAS, drones) is predominantly based on Global Navigation Satellite Systems (GNSS). Due to potential signal disruptions, redundant positioning systems are needed for reliable operation. The objective of this study was to implement and assess a redundant positioning system [...] Read more.
Positioning of unoccupied aerial systems (UAS, drones) is predominantly based on Global Navigation Satellite Systems (GNSS). Due to potential signal disruptions, redundant positioning systems are needed for reliable operation. The objective of this study was to implement and assess a redundant positioning system for high flying altitude drone operation based on visual-inertial odometry (VIO). A new sensor suite with stereo cameras and an inertial measurement unit (IMU) was developed, and a state-of-the-art VIO algorithm, VINS-Fusion, was used for localisation. Empirical testing of the system was carried out at flying altitudes of 40–100 m, which cover the common flight altitude range of outdoor drone operations. The performance of various implementations was studied, including stereo-visual-odometry (stereo-VO), monocular-visual-inertial-odometry (mono-VIO) and stereo-visual-inertial-odometry (stereo-VIO). The stereo-VIO provided the best results; the flight altitude of 40–60 m was the most optimal for the stereo baseline of 30 cm. The best positioning accuracy was 2.186 m for a 800 m-long trajectory. The performance of the stereo-VO degraded with the increasing flight altitude due to the degrading base-to-height ratio. The mono-VIO provided acceptable results, although it did not reach the performance level of the stereo-VIO. This work presented new hardware and research results on localisation algorithms for high flying altitude drones that are of great importance since the use of autonomous drones and beyond visual line-of-sight flying are increasing and will require redundant positioning solutions that compensate for potential disruptions in GNSS positioning. The data collected in this study are published for analysis and further studies. Full article
(This article belongs to the Special Issue Resilient UAV Autonomy and Remote Sensing)
Show Figures

Figure 1

17 pages, 2492 KiB  
Article
Water Chlorophyll a Estimation Using UAV-Based Multispectral Data and Machine Learning
by Xiyong Zhao, Yanzhou Li, Yongli Chen, Xi Qiao and Wanqiang Qian
Drones 2023, 7(1), 2; https://doi.org/10.3390/drones7010002 - 21 Dec 2022
Cited by 6 | Viewed by 2905
Abstract
Chlorophyll a (chl-a) concentration is an important parameter for evaluating the degree of water eutrophication. Monitoring it accurately through remote sensing is thus of great significance for early warnings of water eutrophication, and the inversion of water quality from UAV images has attracted [...] Read more.
Chlorophyll a (chl-a) concentration is an important parameter for evaluating the degree of water eutrophication. Monitoring it accurately through remote sensing is thus of great significance for early warnings of water eutrophication, and the inversion of water quality from UAV images has attracted more and more attention. In this study, a regression method to estimate chl-a was proposed; it used a small multispectral UAV to collect data and took the vegetation indices as intermediate variables. For this purpose, ten monitoring points were selected in Erhai Lake, China, and two months of monitoring and data collection were conducted during a cyanobacterial bloom period. Finally, 155 sets of valid data were obtained. The imaging data were obtained using a multispectral UAV, water samples were collected from the lake, and the chl-a concentration was obtained in the laboratory. Then, the images were preprocessed to extract the information from different wavebands. The univariate regression of each vegetation index and the regression using band information were used for comparative analysis. Four machine learning algorithms were used to build the model: support vector machine (SVM), random forest (RF), extreme learning machine (ELM), and convolutional neural network (CNN). The results showed that the effect of estimating the chl-a concentration via multiple regression using vegetation indices was generally better than that via regression with a single vegetation index and original band information. The CNN model obtained the best results (R2 = 0.7917, RMSE = 8.7660, and MRE = 0.2461). This study showed the reliability of using multiple regression based on vegetation indices to estimate the chl-a of surface water. Full article
(This article belongs to the Special Issue Yield Prediction Using Data from Unmanned Aerial Vehicles)
Show Figures

Figure 1

23 pages, 6249 KiB  
Review
Independent Control Spraying System for UAV-Based Precise Variable Sprayer: A Review
by Adhitya Saiful Hanif, Xiongzhe Han and Seung-Hwa Yu
Drones 2022, 6(12), 383; https://doi.org/10.3390/drones6120383 - 28 Nov 2022
Cited by 21 | Viewed by 10800
Abstract
Pesticides are essential for removing plant pests and sustaining good yields on agricultural land. Excessive use has detrimental repercussions, such as the depletion of soil fertility and the proliferation of immune insect species, such as Nilaparvata lunges and Nezara viridula. Unmanned aerial [...] Read more.
Pesticides are essential for removing plant pests and sustaining good yields on agricultural land. Excessive use has detrimental repercussions, such as the depletion of soil fertility and the proliferation of immune insect species, such as Nilaparvata lunges and Nezara viridula. Unmanned aerial vehicle (UAV) variable-rate spraying offers a precise and adaptable alternative strategy for overcoming these challenges. This study explores research trends in the application of semi-automatic approaches and land-specific platforms for precision spraying. The employment of an autonomous control system, together with a selection of hardware such as microcontrollers, sensors, pumps, and nozzles, yields the performance necessary to accomplish spraying precision, UAV performance efficacy, and flexibility in meeting plant pesticide requirements. This paper discusses the implications of ongoing and developing research. The comparison of hardware, control system approaches, and data acquisition from the parameters of each study is presented to facilitate future research. Future research is incentivized to continue the precision performance of the variable rate development by combining it with cropland mapping to determine the need for pesticides, although strict limits on the amount of spraying make it difficult to achieve the same, even though the quality is very beneficial. Full article
(This article belongs to the Special Issue Advances of UAV in Precision Agriculture)
Show Figures

Figure 1

14 pages, 2738 KiB  
Article
Vegetation Cover Estimation in Semi-Arid Shrublands after Prescribed Burning: Field-Ground and Drone Image Comparison
by Antonio J. Pérez-Luque, María Eugenia Ramos-Font, Mauro J. Tognetti Barbieri, Carlos Tarragona Pérez, Guillermo Calvo Renta and Ana Belén Robles Cruz
Drones 2022, 6(11), 370; https://doi.org/10.3390/drones6110370 - 21 Nov 2022
Cited by 2 | Viewed by 2975
Abstract
The use of drones for vegetation monitoring allows the acquisition of large amounts of high spatial resolution data in a simple and fast way. In this study, we evaluated the accuracy of vegetation cover estimation by drones in Mediterranean semi-arid shrublands (Sierra de [...] Read more.
The use of drones for vegetation monitoring allows the acquisition of large amounts of high spatial resolution data in a simple and fast way. In this study, we evaluated the accuracy of vegetation cover estimation by drones in Mediterranean semi-arid shrublands (Sierra de Filabres; Almería; southern Spain) after prescribed burns (2 years). We compared drone-based vegetation cover estimates with those based on traditional vegetation sampling in ninety-six 1 m2 plots. We explored how this accuracy varies in different types of coverage (low-, moderate- and high-cover shrublands, and high-cover alfa grass steppe); as well as with diversity, plant richness, and topographic slope. The coverage estimated using a drone was strongly correlated with that obtained by vegetation sampling (R2 = 0.81). This estimate varied between cover classes, with the error rate being higher in low-cover shrublands, and lower in high-cover alfa grass steppe (normalized RMSE 33% vs. 9%). Diversity and slope did not affect the accuracy of the cover estimates, while errors were larger in plots with greater richness. These results suggest that in semi-arid environments, the drone might underestimate vegetation cover in low-cover shrublands. Full article
(This article belongs to the Special Issue Drones for Biodiversity Conservation)
Show Figures

Figure 1

21 pages, 1079 KiB  
Review
Development Status and Key Technologies of Plant Protection UAVs in China: A Review
by Peng Hu, Ruirui Zhang, Jiaxuan Yang and Liping Chen
Drones 2022, 6(11), 354; https://doi.org/10.3390/drones6110354 - 15 Nov 2022
Cited by 20 | Viewed by 3427
Abstract
Plant protection unmanned aerial vehicles (UAVs) play a crucial role in agricultural aviation services. In recent years, plant protection UAVs, which improve the accuracy and eco-friendliness of agricultural techniques, have been used to overcome the shortcomings of traditional agricultural operations. First, this paper [...] Read more.
Plant protection unmanned aerial vehicles (UAVs) play a crucial role in agricultural aviation services. In recent years, plant protection UAVs, which improve the accuracy and eco-friendliness of agricultural techniques, have been used to overcome the shortcomings of traditional agricultural operations. First, this paper introduces the development scale, main types, and operation scenarios of China’s plant protection UAVs. Subsequently, the key technologies of plant protection UAVs, such as precision autonomous flight control, pesticide spraying, drift control, and spraying quality measurement technologies, are reviewed. Next, the emergent technologies of plant protection UAVs are studied and analyzed with a focus on better spray effects, calculation models of droplet drift, controllable droplet size atomization technology, droplet drift detection technology, and droplet deposition quality detection technology in the application of plant protection UAVs. Moreover, the technologies of plant protection UAV application are summarized and future research prospects are presented, offering ideas for follow-up research on the key technologies of plant protection UAVs and encouraging agricultural production management to move toward better efficiency, eco-friendliness, and accuracy. Full article
(This article belongs to the Special Issue Recent Advances in Crop Protection Using UAV and UGV)
Show Figures

Figure 1

14 pages, 3717 KiB  
Article
GGT-YOLO: A Novel Object Detection Algorithm for Drone-Based Maritime Cruising
by Yongshuai Li, Haiwen Yuan, Yanfeng Wang and Changshi Xiao
Drones 2022, 6(11), 335; https://doi.org/10.3390/drones6110335 - 31 Oct 2022
Cited by 17 | Viewed by 3440
Abstract
Drones play an important role in the development of remote sensing and intelligent surveillance. Due to limited onboard computational resources, drone-based object detection still faces challenges in actual applications. By studying the balance between detection accuracy and computational cost, we propose a novel [...] Read more.
Drones play an important role in the development of remote sensing and intelligent surveillance. Due to limited onboard computational resources, drone-based object detection still faces challenges in actual applications. By studying the balance between detection accuracy and computational cost, we propose a novel object detection algorithm for drone cruising in large-scale maritime scenarios. Transformer is introduced to enhance the feature extraction part and is beneficial to small or occluded object detection. Meanwhile, the computational cost of the algorithm is reduced by replacing the convolution operations with simpler linear transformations. To illustrate the performance of the algorithm, a specialized dataset composed of thousands of images collected by drones in maritime scenarios is given, and quantitative and comparative experiments are conducted. By comparison with other derivatives, the detection precision of the algorithm is increased by 1.4%, the recall is increased by 2.6% and the average precision is increased by 1.9%, while the parameters and floating-point operations are reduced by 11.6% and 7.3%, respectively. These improvements are thought to contribute to the application of drones in maritime and other remote sensing fields. Full article
Show Figures

Figure 1

12 pages, 3897 KiB  
Article
Parameter Optimization and Impacts on Oilseed Rape (Brassica napus) Seeds Aerial Seeding Based on Unmanned Agricultural Aerial System
by Songchao Zhang, Meng Huang, Chen Cai, Hua Sun, Xiaohui Cheng, Jian Fu, Qingsong Xing and Xinyu Xue
Drones 2022, 6(10), 303; https://doi.org/10.3390/drones6100303 - 17 Oct 2022
Viewed by 1391
Abstract
Aerial seeding based on the unmanned agricultural aerial system (UAAS) improves the seeding efficiency of oilseed rape (OSR) seeds, and solves the problem of OSR planting in mountainous areas where it is inconvenient to use ground seeding machines. Therefore, the UAAS has been [...] Read more.
Aerial seeding based on the unmanned agricultural aerial system (UAAS) improves the seeding efficiency of oilseed rape (OSR) seeds, and solves the problem of OSR planting in mountainous areas where it is inconvenient to use ground seeding machines. Therefore, the UAAS has been applied in aerial seeding to a certain degree in China. The effective broadcast seeding width (EBSW), broadcast seeding density (BSD) and broadcast seeding uniformity (BSU) are the important indexes that affect the aerial seeding efficiency and quality of OSR seeds. In order to investigate the effects of flight speed (FS) and flight height (FH) on EBSW, BSD and BSU, and to achieve the optimized parameter combinations of UAAS T30 on aerial seeding application, three levels of FS (4.0 m/s, 5.0 m/s and 6.0 m/s) and three levels of FH (2.0 m, 3.0 m and 4.0 m) experiments were carried out in the field with 6.0 kg seeds per ha. The results demonstrated that the EBSW was not constant as the FS and FH changed. In general, the EBSW showed a change trend of first increasing and then decreasing as the FH increased under the same FS, and showed a trend of decreasing as FS increased under the same FH. The EBSWs were over 3.0 m in the nine treatments, in which the maximum was 5.44 m (T1, 4.0 m/s, 2.0 m) while the minimum was 3.2 m (T9, 6.0 m/s, 4.0 m). The BSD showed a negative change correlation as the FS changed under the same FH, and the BSD decreased as the FH increased under 4.0 m/s FS, while it first increased and then decreased under the FS of 5.0 m/s and 6.0 m/s. The maximum BSD value was 140.12 seeds/m2 (T1, 4.0 m/s, 2.0 m), while the minimum was 40.17 seeds/m2 (T9, 6.0 m/s, 4.0 m). There was no obvious change in the trend of the BSU evaluated by the coefficients of variation (CV): the minimum CV was 13.01% (T6, 6.0 m/s, 3.0 m) and the maximum was 64.48% (T3, 6.0 m/s, 2.0 m). The statistical analyses showed that the FH had significant impacts on the EBSWs (0.01 < p-value < 0.05), the FS and the interaction between FH and FS both had extremely significant impacts on EBSWs (p-value < 0.01). The FH had extremely significant impacts on BSD (p-value < 0.01), the FS had no impacts on BSD (p-value > 0.05), and the interaction between FH and FS had significant impacts on BSD (0.01 < p-value < 0.05). There were no significant differences in the broadcast sowing uniformity (BSU) among the treatments. Taking the EBSW, BSD and BSU into consideration, the parameter combination of T5 (T9, 5.0 m/s, 3.0 m) was selected for aerial seeding. The OSR seed germination rate was over 36 plants/m2 (33 days) on average, which satisfied the requirements of OSR planting agronomy. This study provided some technical support for UAAS application in aerial seeding. Full article
(This article belongs to the Special Issue Feature Papers for Drones in Agriculture and Forestry Section)
Show Figures

Figure 1

25 pages, 8647 KiB  
Article
Automatic Tuning and Turbulence Mitigation for Fixed-Wing UAV with Segmented Control Surfaces
by Abdul Sattar, Liuping Wang, Ayaz Ahmed Hoshu, Shahzeb Ansari, Haider-e Karar and Abdulghani Mohamed
Drones 2022, 6(10), 302; https://doi.org/10.3390/drones6100302 - 16 Oct 2022
Cited by 4 | Viewed by 2076
Abstract
Unlike bigger aircraft, the small fixed-wing unmanned aerial vehicles face significant stability challenges in a turbulent environment. To improve the flight performance, a fixed-wing UAV with segmented aileron control surfaces has been designed and deployed. A total of four ailerons are attached to [...] Read more.
Unlike bigger aircraft, the small fixed-wing unmanned aerial vehicles face significant stability challenges in a turbulent environment. To improve the flight performance, a fixed-wing UAV with segmented aileron control surfaces has been designed and deployed. A total of four ailerons are attached to the main wing and grouped into inner and outer aileron pairs. The controllers are automatically tuned by utilizing the frequency response data obtained via the frequency sampling filter and the relay with embedded integrator experiments. The hardware validation experiments are performed in the normal and turbulent flight environments under three configurations: inner aileron pair only, outer aileron pair only and collective actuation of all the aileron pairs. The error-threshold-based control is introduced to handle collective actuation of aileron pairs. The experiments have manifested that the collective usage of all aileron segments improves the roll attitude stability by a margin of 38.69% to 43.51% when compared to the independent actuation of aileron pairs in a turbulent atmosphere. Full article
(This article belongs to the Section Drone Design and Development)
Show Figures

Figure 1

21 pages, 2787 KiB  
Article
Monitoring and Cordoning Wildfires with an Autonomous Swarm of Unmanned Aerial Vehicles
by Fabrice Saffre, Hanno Hildmann, Hannu Karvonen and Timo Lind
Drones 2022, 6(10), 301; https://doi.org/10.3390/drones6100301 - 14 Oct 2022
Cited by 16 | Viewed by 4170
Abstract
Unmanned aerial vehicles, or drones, are already an integral part of the equipment used by firefighters to monitor wildfires. They are, however, still typically used only as remotely operated, mobile sensing platforms under direct real-time control of a human pilot. Meanwhile, a substantial [...] Read more.
Unmanned aerial vehicles, or drones, are already an integral part of the equipment used by firefighters to monitor wildfires. They are, however, still typically used only as remotely operated, mobile sensing platforms under direct real-time control of a human pilot. Meanwhile, a substantial body of literature exists that emphasises the potential of autonomous drone swarms in various situational awareness missions, including in the context of environmental protection. In this paper, we present the results of a systematic investigation by means of numerical methods i.e., Monte Carlo simulation. We report our insights into the influence of key parameters such as fire propagation dynamics, surface area under observation and swarm size over the performance of an autonomous drone force operating without human supervision. We limit the use of drones to perform passive sensing operations with the goal to provide real-time situational awareness to the fire fighters on the ground. Therefore, the objective is defined as being able to locate, and then establish a continuous perimeter (cordon) around, a simulated fire event to provide live data feeds such as e.g., video or infra-red. Special emphasis was put on exclusively using simple, robust and realistically implementable distributed decision functions capable of supporting the self-organisation of the swarm in the pursuit of the collective goal. Our results confirm the presence of strong nonlinear effects in the interaction between the aforementioned parameters, which can be closely approximated using an empirical law. These findings could inform the mobilisation of adequate resources on a case-by-case basis, depending on known mission characteristics and acceptable odds (chances of success). Full article
Show Figures

Figure 1

17 pages, 3034 KiB  
Article
Aerial Drone Surveys Reveal the Efficacy of a Protected Area Network for Marine Megafauna and the Value of Sea Turtles as Umbrella Species
by Liam C. D. Dickson, Stuart R. B. Negus, Christophe Eizaguirre, Kostas A. Katselidis and Gail Schofield
Drones 2022, 6(10), 291; https://doi.org/10.3390/drones6100291 - 7 Oct 2022
Cited by 7 | Viewed by 3026
Abstract
Quantifying the capacity of protected area networks to shield multiple marine megafauna with diverse life histories is complicated, as many species are wide-ranging, requiring varied monitoring approaches. Yet, such information is needed to identify and assess the potential use of umbrella species and [...] Read more.
Quantifying the capacity of protected area networks to shield multiple marine megafauna with diverse life histories is complicated, as many species are wide-ranging, requiring varied monitoring approaches. Yet, such information is needed to identify and assess the potential use of umbrella species and to plan how best to enhance conservation strategies. Here, we evaluated the effectiveness of part of the European Natura 2000 protected area network (western Greece) for marine megafauna and whether loggerhead sea turtles are viable umbrella species in this coastal region. We systematically surveyed inside and outside coastal marine protected areas (MPAs) at a regional scale using aerial drones (18,505 animal records) and combined them with distribution data from published datasets (tracking, sightings, strandings) of sea turtles, elasmobranchs, cetaceans and pinnipeds. MPAs covered 56% of the surveyed coastline (~1500 km). There was just a 22% overlap in the distributions of the four groups from aerial drone and other datasets, demonstrating the value of combining different approaches to improve records of coastal area use for effective management. All four taxonomic groups were more likely to be detected inside coastal MPAs than outside, confirming sufficient habitat diversity despite varied life history traits. Coastal habitats frequented by loggerhead turtles during breeding/non-breeding periods combined overlapped with 76% of areas used by the other three groups, supporting their potential use as an umbrella species. In conclusion, this study showed that aerial drones can be readily combined with other monitoring approaches in coastal areas to enhance the management of marine megafauna in protected area networks and to identify the efficacy of umbrella species. Full article
(This article belongs to the Special Issue Drones for Biodiversity Conservation)
Show Figures

Figure 1

20 pages, 3242 KiB  
Review
Comprehensive Review of UAV Detection, Security, and Communication Advancements to Prevent Threats
by Ghulam E. Mustafa Abro, Saiful Azrin B. M. Zulkifli, Rana Javed Masood, Vijanth Sagayan Asirvadam and Anis Laouiti
Drones 2022, 6(10), 284; https://doi.org/10.3390/drones6100284 - 1 Oct 2022
Cited by 36 | Viewed by 12068
Abstract
It has been observed that unmanned aerial vehicles (UAVs), also known as drones, have been used in a very different way over time. The advancements in key UAV areas include detection (including radio frequency and radar), classification (including micro, mini, close range, short [...] Read more.
It has been observed that unmanned aerial vehicles (UAVs), also known as drones, have been used in a very different way over time. The advancements in key UAV areas include detection (including radio frequency and radar), classification (including micro, mini, close range, short range, medium range, medium-range endurance, low-altitude deep penetration, low-altitude long endurance, and medium-altitude long endurance), tracking (including lateral tracking, vertical tracking, moving aerial pan with moving target, and moving aerial tilt with moving target), and so forth. Even with all of these improvements and advantages, security and privacy can still be ensured by researching a number of key aspects of an unmanned aerial vehicle, such as through the jamming of the control signals of a UAV and redirecting them for any high-assault activity. This review article will examine the privacy issues related to drone standards and regulations. The manuscript will also provide a comprehensive answer to these limitations. In addition to updated information on current legislation and the many classes that can be used to establish communication between a ground control room and an unmanned aerial vehicle, this article provides a basic overview of unmanned aerial vehicles. After reading this review, readers will understand the shortcomings, the most recent advancements, and the strategies for addressing security issues, assaults, and limitations. The open research areas described in this manuscript can be utilized to create novel methods for strengthening the security and privacy of an unmanned aerial vehicle. Full article
(This article belongs to the Special Issue Advances in UAV Detection, Classification and Tracking)
Show Figures

Figure 1

19 pages, 3415 KiB  
Article
Decentralized Sampled-Data Fuzzy Tracking Control for a Quadrotor UAV with Communication Delay
by Yong Hoon Jang, Tae Joon Han and Han Sol Kim
Drones 2022, 6(10), 280; https://doi.org/10.3390/drones6100280 - 27 Sep 2022
Cited by 7 | Viewed by 1734
Abstract
This study deals with the decentralized sampled-data fuzzy tracking control of a quadrotor unmanned aerial vehicle (UAV) considering the communication delay of the feedback signal. A decentralized Takagi–Sugeno (T–S) fuzzy approach is adopted to represent the quadrotor UAV as two subsystems: the position [...] Read more.
This study deals with the decentralized sampled-data fuzzy tracking control of a quadrotor unmanned aerial vehicle (UAV) considering the communication delay of the feedback signal. A decentralized Takagi–Sugeno (T–S) fuzzy approach is adopted to represent the quadrotor UAV as two subsystems: the position control system and the attitude control system. Unlike most previous studies, a novel decentralized controller considering the communication delay for the position control system is proposed. In addition, to minimize the increase in computational complexity, the Lyapunov–Krasovskii functional (LKF) is configured as the only state required for each subsystem. The design conditions guaranteeing the tracking performance of the quadrotor UAV are derived as linear matrix inequalities (LMIs) that are numerically solved. Lastly, the validity of the proposed design method is verified by comparing the results through simulation examples with and without communication delay. Full article
(This article belongs to the Section Drone Design and Development)
Show Figures

Figure 1

14 pages, 6516 KiB  
Article
Aerial Branch Sampling to Detect Forest Pathogens
by Ryan L. Perroy, Philip Meier, Eszter Collier, Marc A. Hughes, Eva Brill, Timo Sullivan, Thomas Baur, Nina Buchmann and Lisa M. Keith
Drones 2022, 6(10), 275; https://doi.org/10.3390/drones6100275 - 24 Sep 2022
Cited by 5 | Viewed by 2956
Abstract
Diagnostic testing to detect forest pathogens requires the collection of physical samples from affected trees, which can be challenging in remote or rugged environments. As an alternative to traditional ground-based sampling at breast height by field crews, we examined the feasibility of aerially [...] Read more.
Diagnostic testing to detect forest pathogens requires the collection of physical samples from affected trees, which can be challenging in remote or rugged environments. As an alternative to traditional ground-based sampling at breast height by field crews, we examined the feasibility of aerially sampling and testing material collected from upper canopy branches using a small unoccupied aerial system (sUAS). The pathogen of interest in this study is Ceratocystis lukuohia, the fungal pathogen responsible for Ceratocystis wilt of ‘ōhi‘a, a vascular wilt disease which has caused widespread mortality to ‘ōhi‘a in native forests across the state of Hawai‘i. To characterize the minimum branch diameter needed to successfully detect the pathogen of interest in infected trees, we tested 63 branch samples (0.8–9.6 cm in diameter) collected from felled trees inoculated with C.lukuohia on Hawai‘i Island. Subsequently, we aerially sampled branches from ten symptomatic ‘ōhi‘a (Metrosideros polymorpha) trees using two different branch sampling systems, the Flying Tree Top Sampler from ETH Zurich and the new Kūkūau branch sampler system introduced in this work, producing 29 branch samples with a maximum diameter of 4.2 cm and length of >2 m. We successfully detected the target fungal pathogen from the collected branches and found that branch diameter, leaf presence and condition, as well as wood moisture content are important factors in pathogen detection in sampled branches. None of the smallest branch samples (those <1 cm in diameter) tested positive for C.lukuohia, while 77% of the largest diameter branch samples (5–10 cm) produced positive results. The Kūkūau branch sampler system is capable of retrieving branches up to 7 cm diameter, providing important capacity for pathogenic research requiring larger diameter samples for successful diagnostic testing. Inconclusive and/or non-detection laboratory results were obtained from sample materials that were either too desiccated or from a branch with asymptomatic leaves, suggesting there is an optimal temporal window for sampling. Full article
(This article belongs to the Special Issue Drones for Biodiversity Conservation)
Show Figures

Figure 1

19 pages, 4609 KiB  
Article
A Framework for Soil Salinity Monitoring in Coastal Wetland Reclamation Areas Based on Combined Unmanned Aerial Vehicle (UAV) Data and Satellite Data
by Lijian Xie, Xiuli Feng, Chi Zhang, Yuyi Dong, Junjie Huang and Junkai Cheng
Drones 2022, 6(9), 257; https://doi.org/10.3390/drones6090257 - 16 Sep 2022
Cited by 10 | Viewed by 2217
Abstract
Soil salinization is one of the most important causes of land degradation and desertification, often threatening land management and sustainable agricultural development. Due to the low resolution of satellites, fine mapping of soil salinity cannot be completed, while high-resolution images from UAVs can [...] Read more.
Soil salinization is one of the most important causes of land degradation and desertification, often threatening land management and sustainable agricultural development. Due to the low resolution of satellites, fine mapping of soil salinity cannot be completed, while high-resolution images from UAVs can only achieve accurate mapping of soil salinity in a small area. Therefore, how to realize fine mapping of salinity on a large scale based on UAV and satellite data is an urgent problem to be solved. Therefore, in this paper, the most relevant spectral variables for soil salinity were firstly determined using Pearson correlation analysis, and then the optimal inversion model was established based on the screened variables. Secondly, the feasibility of correcting satellite data based on UAV data was determined using Pearson correlation analysis and spectral variation trends, and the correction of satellite data was completed using least squares-based polynomial curve fitting for both UAV data and satellite data. Finally, the reflectance received from the vegetated area did not directly reflect the surface reflectance condition, so we used the support vector machine classification method to divide the study area into two categories: bare land and vegetated area, and built a model based on the classification results to realize the advantages of complementing the accurate spectral information of UAV and large-scale satellite spectral data in the study areas. By comparing the modeling inversion results using only satellite data with the inversion results based on optimized satellite data, our method framework could effectively improve the accuracy of soil salinity inversion in large satellite areas by 6–19%. Our method can meet the needs of large-scale accurate mapping, and can provide the necessary means and reference for soil condition monitoring. Full article
(This article belongs to the Special Issue UAS in Smart Agriculture)
Show Figures

Figure 1

11 pages, 1416 KiB  
Communication
Evaluating Thermal and Color Sensors for Automating Detection of Penguins and Pinnipeds in Images Collected with an Unoccupied Aerial System
by Jefferson T. Hinke, Louise M. Giuseffi, Victoria R. Hermanson, Samuel M. Woodman and Douglas J. Krause
Drones 2022, 6(9), 255; https://doi.org/10.3390/drones6090255 - 15 Sep 2022
Cited by 7 | Viewed by 2015
Abstract
Estimating seabird and pinniped abundance is central to wildlife management and ecosystem monitoring in Antarctica. Unoccupied aerial systems (UAS) can collect images to support monitoring, but manual image analysis is often impractical. Automating target detection using deep learning techniques may improve data acquisition, [...] Read more.
Estimating seabird and pinniped abundance is central to wildlife management and ecosystem monitoring in Antarctica. Unoccupied aerial systems (UAS) can collect images to support monitoring, but manual image analysis is often impractical. Automating target detection using deep learning techniques may improve data acquisition, but different image sensors may affect target detectability and model performance. We compared the performance of automated detection models based on infrared (IR) or color (RGB) images and tested whether IR images, or training data that included annotations of non-target features, improved model performance. For this assessment, we collected paired IR and RGB images of nesting penguins (Pygoscelis spp.) and aggregations of Antarctic fur seals (Arctocephalus gazella) with a small UAS at Cape Shirreff, Livingston Island (60.79 °W, 62.46 °S). We trained seven independent classification models using the Video and Image Analytics for Marine Environments (VIAME) software and created an open-access R tool, vvipr, to standardize the assessment of VIAME-based model performance. We found that the IR images and the addition of non-target annotations had no clear benefits for model performance given the available data. Nonetheless, the generally high performance of the penguin models provided encouraging results for further improving automated image analysis from UAS surveys. Full article
(This article belongs to the Special Issue UAV Design and Applications in Antarctic Research)
Show Figures

Figure 1

11 pages, 13603 KiB  
Article
Investigating Errors Observed during UAV-Based Vertical Measurements Using Computational Fluid Dynamics
by Hayden Hedworth, Jeffrey Page, John Sohl and Tony Saad
Drones 2022, 6(9), 253; https://doi.org/10.3390/drones6090253 - 13 Sep 2022
Cited by 6 | Viewed by 3011
Abstract
Unmanned Aerial Vehicles (UAVs) are a popular platform for air quality measurements. For vertical measurements, rotary-wing UAVs are particularly well-suited. However, an important concern with rotary-wing UAVs is how the rotor-downwash affects measurement accuracy. Measurements from a recent field campaign showed notable discrepancies [...] Read more.
Unmanned Aerial Vehicles (UAVs) are a popular platform for air quality measurements. For vertical measurements, rotary-wing UAVs are particularly well-suited. However, an important concern with rotary-wing UAVs is how the rotor-downwash affects measurement accuracy. Measurements from a recent field campaign showed notable discrepancies between data from ascent and descent, which suggested the UAV downwash may be the cause. To investigate and explain these observed discrepancies, we use high-fidelity computational fluid dynamics (CFD) simulations to simulate a UAV during vertical flight. We use a tracer to model a gaseous pollutant and evaluate the impact of the rotor-downwash on the concentration around the UAV. Our results indicate that, when measuring in a gradient, UAV-based measurements were ∼50% greater than the expected concentration during descent, but they were accurate during ascent, regardless of the location of the sensor. These results provide an explanation for errors encountered during vertical measurements and provide insight for accurate data collection methods in future studies. Full article
(This article belongs to the Special Issue Unmanned Aerial Vehicles in Atmospheric Research)
Show Figures

Figure 1

15 pages, 459 KiB  
Article
Capacity Optimization of Next-Generation UAV Communication Involving Non-Orthogonal Multiple Access
by Mubashar Sarfraz, Muhammad Farhan Sohail, Sheraz Alam, Muhammad Javvad ur Rehman, Sajjad Ahmed Ghauri, Khaled Rabie, Hasan Abbas and Shuja Ansari
Drones 2022, 6(9), 234; https://doi.org/10.3390/drones6090234 - 2 Sep 2022
Cited by 11 | Viewed by 2101
Abstract
Unmanned air vehicle communication (UAV) systems have recently emerged as a quick, low-cost, and adaptable solution to numerous challenges in the next-generation wireless network. In particular, UAV systems have shown to be very useful in wireless communication applications with sudden traffic demands, network [...] Read more.
Unmanned air vehicle communication (UAV) systems have recently emerged as a quick, low-cost, and adaptable solution to numerous challenges in the next-generation wireless network. In particular, UAV systems have shown to be very useful in wireless communication applications with sudden traffic demands, network recovery, aerial relays, and edge computing. Meanwhile, non-orthogonal multiple access (NOMA) has been able to maximize the number of served users with the highest traffic capacity for future aerial systems in the literature. However, the study of joint optimization of UAV altitude, user pairing, and power allocation for the problem of capacity maximization requires further investigation. Thus, a capacity optimization problem for the NOMA aerial system is evaluated in this paper, considering the combination of convex and heuristic optimization techniques. The proposed algorithm is evaluated by using multiple heuristic techniques and deployment scenarios. The results prove the efficiency of the proposed NOMA scheme in comparison to the benchmark technique of orthogonal multiple access (OMA). Moreover, a comparative analysis of heuristic techniques for capacity optimization is also presented. Full article
(This article belongs to the Section Drone Communications)
Show Figures

Figure 1

34 pages, 13097 KiB  
Article
Coverage Path Planning Based on the Optimization Strategy of Multiple Solar Powered Unmanned Aerial Vehicles
by Wenxin Le, Zhentao Xue, Jian Chen and Zichao Zhang
Drones 2022, 6(8), 203; https://doi.org/10.3390/drones6080203 - 11 Aug 2022
Cited by 11 | Viewed by 2722
Abstract
In some specific conditions, UAVs are required to obtain comprehensive information of an area or to operate in the area in an all-round way. In this case, the coverage path planning (CPP) is required. This paper proposes a solution to solve the problem [...] Read more.
In some specific conditions, UAVs are required to obtain comprehensive information of an area or to operate in the area in an all-round way. In this case, the coverage path planning (CPP) is required. This paper proposes a solution to solve the problem of short endurance time in the coverage path planning (CPP) problem of multi-solar unmanned aerial vehicles (UAVs). Firstly, the energy flow efficiency based on the energy model is proposed to evaluate the energy utilization efficiency during the operation. Moreover, for the areas with and without obstacles, the coverage path optimization model is proposed based on the undirected graph search method. The constraint equation is defined to restrict the UAV from accessing the undirected graph according to certain rules. A mixed integer linear programming (MILP) model is proposed to determine the flight path of each UAV with the objective of minimizing operation time. Through the simulation experiment, compared with the Boustrophedon Cellular Decomposition method for coverage path planning, it is seen that the completion time is greatly improved. In addition, considering the impact of the attitude angle of the solar powered UAV when turning, the operation time and the total energy flow efficiency are defined as the optimization objective. The bi-objective model equation is established to solve the problem of the CPP. A large number of simulation experiments show that the optimization model in this paper selects different optimization objectives and applies to different shapes of areas to be covered, which has wide applicability and strong feasibility. Full article
(This article belongs to the Special Issue Recent Advances in Crop Protection Using UAV and UGV)
Show Figures

Figure 1

14 pages, 842 KiB  
Article
Energy Efficient Transmission Design for NOMA Backscatter-Aided UAV Networks with Imperfect CSI
by Saad AlJubayrin, Fahd N. Al-Wesabi, Hadeel Alsolai, Mesfer Al Duhayyim, Mohamed K. Nour, Wali Ullah Khan, Asad Mahmood, Khaled Rabie and Thokozani Shongwe
Drones 2022, 6(8), 190; https://doi.org/10.3390/drones6080190 - 28 Jul 2022
Cited by 9 | Viewed by 2327
Abstract
The recent combination of ambient backscatter communication (ABC) with non-orthogonal multiple access (NOMA) has shown great potential for connecting large-scale Internet of Things (IoT) in future unmanned aerial vehicle (UAV) networks. The basic idea of ABC is to provide battery-free transmission by harvesting [...] Read more.
The recent combination of ambient backscatter communication (ABC) with non-orthogonal multiple access (NOMA) has shown great potential for connecting large-scale Internet of Things (IoT) in future unmanned aerial vehicle (UAV) networks. The basic idea of ABC is to provide battery-free transmission by harvesting the energy of existing RF signals of WiFi, TV towers, and cellular base stations/UAV. ABC uses smart sensor tags to modulate and reflect data among wireless devices. On the other side, NOMA makes possible the communication of more than one IoT on the same frequency. In this work, we provide an energy efficient transmission design ABC-aided UAV network using NOMA. This work aims to optimize the power consumption of a UAV system while ensuring the minimum data rate of IoT. Specifically, the transmit power of UAVs and the reflection coefficient of the ABC system are simultaneously optimized under the assumption of imperfect channel state information (CSI). Due to co-channel interference among UAVs, imperfect CSI, and NOMA interference, the joint optimization problem is formulated as non-convex, which involves high complexity and makes it hard to obtain the optimal solution. Thus, it is first transformed and then solved by a sub-gradient method with low complexity. In addition, a conventional NOMA UAV framework is also studied for comparison without involving ABC. Numerical results demonstrate the benefits of using ABC in a NOMA UAV network compared to the conventional UAV framework. Full article
(This article belongs to the Section Drone Communications)
Show Figures

Figure 1

32 pages, 12554 KiB  
Article
MCO Plan: Efficient Coverage Mission for Multiple Micro Aerial Vehicles Modeled as Agents
by Liseth Viviana Campo, Agapito Ledezma and Juan Carlos Corrales
Drones 2022, 6(7), 181; https://doi.org/10.3390/drones6070181 - 21 Jul 2022
Cited by 3 | Viewed by 2065
Abstract
Micro aerial vehicle (MAV) fleets have gained essential recognition in the decision schemes for precision agriculture, disaster management, and other coverage missions. However, they have some challenges in becoming massively deployed. One of them is resource management in restricted workspaces. This paper proposes [...] Read more.
Micro aerial vehicle (MAV) fleets have gained essential recognition in the decision schemes for precision agriculture, disaster management, and other coverage missions. However, they have some challenges in becoming massively deployed. One of them is resource management in restricted workspaces. This paper proposes a plan to balance resources when considering the practical use of MAVs and workspace in daily chores. The coverage mission plan is based on five stages: world abstraction, area partitioning, role allocation, task generation, and task allocation. The tasks are allocated according to agent roles, Master, Coordinator, or Operator (MCO), which describe their flight autonomy, connectivity, and decision skill. These roles are engaged with the partitioning based on the Voronoi-tessellation but extended to heterogeneous polygons. The advantages of the MCO Plan were evident compared with conventional Boustrophedon decomposition and clustering by K-means. The MCO plan achieved a balanced magnitude and trend of heterogeneity between both methods, involving MAVs with few or intermediate resources. The resulting efficiency was tested in the GAMA platform, with gained energy between 2% and 10% in the mission end. In addition, the MCO plan improved mission times while the connectivity was effectively held, even more, if the Firefly algorithm generated coverage paths. Full article
(This article belongs to the Special Issue Intelligent Coordination of UAV Swarm Systems)
Show Figures

Figure 1

12 pages, 1960 KiB  
Communication
Drones for Area-Wide Larval Source Management of Malaria Mosquitoes
by Wolfgang R. Mukabana, Guido Welter, Pius Ohr, Leka Tingitana, Makame H. Makame, Abdullah S. Ali and Bart G. J. Knols
Drones 2022, 6(7), 180; https://doi.org/10.3390/drones6070180 - 20 Jul 2022
Cited by 9 | Viewed by 4594
Abstract
Given the stagnating progress in the fight against malaria, there is an urgent need for area-wide integrated vector management strategies to complement existing intra-domiciliary tools, i.e., insecticide-treated bednets and indoor residual spraying. In this study, we describe a pilot trial using drones for [...] Read more.
Given the stagnating progress in the fight against malaria, there is an urgent need for area-wide integrated vector management strategies to complement existing intra-domiciliary tools, i.e., insecticide-treated bednets and indoor residual spraying. In this study, we describe a pilot trial using drones for aerial application of Aquatain Mosquito Formulation (AMF), a monomolecular surface film with larvicidal activity, against the African malaria mosquito Anopheles arabiensis in an irrigated rice agro-ecosystem in Unguja island, Zanzibar, Tanzania. Nine rice paddies were randomly assigned to three treatments: (a) control (drone spraying with water only), (b) drone spraying with 1 mL/m2, or (c) drone spraying with 5 mL/m2 of AMF. Compared to control paddies, AMF treatments resulted in highly significant (p < 0.001) reductions in the number of larvae and pupae and >90% fewer emerging adults. The residual effect of AMF treatment lasted for a minimum of 5 weeks post-treatment, with reductions in larval densities reaching 94.7% in week 5 and 99.4% in week 4 for the 1 and 5 mL/m2 AMF treatments, respectively. These results merit a review of the WHO policy regarding larval source management (LSM), which primarily recommends its use in urban environments with ‘few, fixed, and findable’ breeding sites. Unmanned aerial vehicles (UAVs) can rapidly treat many permanent, temporary, or transient mosquito breeding sites over large areas at low cost, thereby significantly enhancing the role of LSM in contemporary malaria control and elimination efforts. Full article
(This article belongs to the Section Drones in Ecology)
Show Figures

Figure 1

55 pages, 14829 KiB  
Article
Urban Air Mobility: Systematic Review of Scientific Publications and Regulations for Vertiport Design and Operations
by Karolin Schweiger and Lukas Preis
Drones 2022, 6(7), 179; https://doi.org/10.3390/drones6070179 - 19 Jul 2022
Cited by 34 | Viewed by 13815
Abstract
Novel electric aircraft designs coupled with intense efforts from academia, government and industry led to a paradigm shift in urban transportation by introducing UAM. While UAM promises to introduce a new mode of transport, it depends on ground infrastructure to operate safely and [...] Read more.
Novel electric aircraft designs coupled with intense efforts from academia, government and industry led to a paradigm shift in urban transportation by introducing UAM. While UAM promises to introduce a new mode of transport, it depends on ground infrastructure to operate safely and efficiently in a highly constrained urban environment. Due to its novelty, the research of UAM ground infrastructure is widely scattered. Therefore, this paper selects, categorizes and summarizes existing literature in a systematic fashion and strives to support the harmonization process of contributions made by industry, research and regulatory authorities. Through a document term matrix approach, we identified 49 Scopus-listed scientific publications (2016–2021) addressing the topic of UAM ground infrastructure with respect to airspace operation followed by design, location and network, throughput and capacity, ground operations, cost, safety, regulation, weather and lastly noise and security. Last listed topics from cost onwards appear to be substantially under-represented, but will be influencing current developments and challenges. This manuscript further presents regulatory considerations (Europe, U.S., international) and introduces additional noteworthy scientific publications and industry contributions. Initial uncertainties in naming UAM ground infrastructure seem to be overcome; vertiport is now being predominantly used when speaking about vertical take-off and landing UAM operations. Full article
(This article belongs to the Special Issue Urban Air Mobility (UAM))
Show Figures

Figure 1

19 pages, 4999 KiB  
Article
An Error Prediction Model for Construction Bulk Measurements Using a Customized Low-Cost UAS-LIDAR System
by Shanyue Guan, Yilei Huang, George Wang, Hannah Sirianni and Zhen Zhu
Drones 2022, 6(7), 178; https://doi.org/10.3390/drones6070178 - 19 Jul 2022
Cited by 4 | Viewed by 2435
Abstract
Small unmanned aerial systems (UAS) have been increasingly popular in surveying and mapping tasks. While photogrammetry has been the primary UAS sensing technology in other industries, construction activities can also benefit from accurate surveying measurements from airborne LIDAR. This paper discusses a custom-designed [...] Read more.
Small unmanned aerial systems (UAS) have been increasingly popular in surveying and mapping tasks. While photogrammetry has been the primary UAS sensing technology in other industries, construction activities can also benefit from accurate surveying measurements from airborne LIDAR. This paper discusses a custom-designed low-cost UAS-based LIDAR system that can effectively measure construction excavation and bulk piles. The system is designed with open interfaces that can be easily upgraded and expanded. An error model was developed to predict the horizontal and vertical errors of single point geo-registration for a generic UAS-LIDAR. This model was validated for the proposed UAS-LIDAR system using calibration targets and real-world measurements from different scenarios. The results indicated random errors from LIDAR at approximately 0.1 m and systematic errors at or below centimeter level. Additional pre-processing of the raw point cloud can further reduce the random errors in LIDAR measurements of bulk piles. Full article
Show Figures

Figure 1

29 pages, 1222 KiB  
Article
Computing in the Sky: A Survey on Intelligent Ubiquitous Computing for UAV-Assisted 6G Networks and Industry 4.0/5.0
by Saeed Hamood Alsamhi, Alexey V. Shvetsov, Santosh Kumar, Jahan Hassan, Mohammed A. Alhartomi, Svetlana V. Shvetsova, Radhya Sahal and Ammar Hawbani
Drones 2022, 6(7), 177; https://doi.org/10.3390/drones6070177 - 18 Jul 2022
Cited by 57 | Viewed by 7063
Abstract
Unmanned Aerial Vehicles (UAVs) are increasingly being used in a high-computation paradigm enabled with smart applications in the Beyond Fifth Generation (B5G) wireless communication networks. These networks have an avenue for generating a considerable amount of heterogeneous data by the expanding number of [...] Read more.
Unmanned Aerial Vehicles (UAVs) are increasingly being used in a high-computation paradigm enabled with smart applications in the Beyond Fifth Generation (B5G) wireless communication networks. These networks have an avenue for generating a considerable amount of heterogeneous data by the expanding number of Internet of Things (IoT) devices in smart environments. However, storing and processing massive data with limited computational capability and energy availability at local nodes in the IoT network has been a significant difficulty, mainly when deploying Artificial Intelligence (AI) techniques to extract discriminatory information from the massive amount of data for different tasks.Therefore, Mobile Edge Computing (MEC) has evolved as a promising computing paradigm leveraged with efficient technology to improve the quality of services of edge devices and network performance better than cloud computing networks, addressing challenging problems of latency and computation-intensive offloading in a UAV-assisted framework. This paper provides a comprehensive review of intelligent UAV computing technology to enable 6G networks over smart environments. We highlight the utility of UAV computing and the critical role of Federated Learning (FL) in meeting the challenges related to energy, security, task offloading, and latency of IoT data in smart environments. We present the reader with an insight into UAV computing, advantages, applications, and challenges that can provide helpful guidance for future research. Full article
(This article belongs to the Special Issue Drone Computing Enabling IoE)
Show Figures

Figure 1

20 pages, 1657 KiB  
Article
Rotor Failure Compensation in a Biplane Quadrotor Based on Virtual Deflection
by Nihal Dalwadi, Dipankar Deb and Stepan Ozana
Drones 2022, 6(7), 176; https://doi.org/10.3390/drones6070176 - 17 Jul 2022
Cited by 5 | Viewed by 1984
Abstract
A biplane quadrotor is a hybrid type of UAV that has wide applications such as payload pickup and delivery, surveillance, etc. This simulation study mainly focuses on handling the total rotor failure, and for that, we propose a control architecture that does not [...] Read more.
A biplane quadrotor is a hybrid type of UAV that has wide applications such as payload pickup and delivery, surveillance, etc. This simulation study mainly focuses on handling the total rotor failure, and for that, we propose a control architecture that does not only handle rotor failure but is also able to navigate the biplane quadrotor to a safe place for landing. In this structure, after the detection of total rotor failure, the biplane quadrotor will imitate reallocating control signals and then perform the transition maneuver and switch to the fixed-wing mode; control signals are also reallocated. A synthetic jet actuator (SJA) is used as the redundancy that generates the desired virtual deflection to control the pitch angle, while other states are taken care of by the three rotors. The SJA has parametric nonlinearity, and to handle it, an inverse adaptive compensation scheme is applied and a closed-loop stability analysis is performed based on the Lyapunov method for the pitch subsystem. The effectiveness of the proposed control structure is validated using numerical simulation carried out in the MATLAB Simulink. Full article
Show Figures

Figure 1

21 pages, 104609 KiB  
Article
In the Heat of the Night: Comparative Assessment of Drone Thermography at the Archaeological Sites of Acquarossa, Italy, and Siegerswoude, The Netherlands
by Jitte Waagen, Jesús García Sánchez, Menno van der Heiden, Aaricia Kuiters and Patricia Lulof
Drones 2022, 6(7), 165; https://doi.org/10.3390/drones6070165 - 1 Jul 2022
Cited by 1 | Viewed by 2335
Abstract
Although drone thermography is increasingly applied as an archaeological remote sensing tool in the last few years, the technique and methods are still relatively under investigated. No doubt there are successes in positive identification of buried archaeology, and the prospection technique has clear [...] Read more.
Although drone thermography is increasingly applied as an archaeological remote sensing tool in the last few years, the technique and methods are still relatively under investigated. No doubt there are successes in positive identification of buried archaeology, and the prospection technique has clear complementary value. Nevertheless, there are also instances where thermograms did not reveal present shallow buried architectural features which had been clearly identified by, for example, ground-penetrating radar. The other way around, there are cases where the technique was able to pick up a signals of buried archaeology at a time of day that is supposed to be very unfavorable for thermographic recording. The main issue here is that the exact factors determining the potential for tracing thermal signatures of anthropomorphic interventions in the soil are many, and their effect, context, and interaction under investigated. This paper deals with a systematic application of drone thermography on two archaeological sites in different soils and climates, one in The Netherlands, and one in Italy, to investigate important variables that can make the prospection technique effective. Full article
(This article belongs to the Special Issue (Re)Defining the Archaeological Use of UAVs)
Show Figures

Figure 1

18 pages, 6284 KiB  
Article
High-Temporal-Resolution Forest Growth Monitoring Based on Segmented 3D Canopy Surface from UAV Aerial Photogrammetry
by Wenbo Zhang, Feng Gao, Nan Jiang, Chu Zhang and Yanchao Zhang
Drones 2022, 6(7), 158; https://doi.org/10.3390/drones6070158 - 26 Jun 2022
Cited by 9 | Viewed by 2043
Abstract
Traditional forest monitoring has been mainly performed with images or orthoimages from aircraft or satellites. In recent years, the availability of high-resolution 3D data has made it possible to obtain accurate information on canopy size, which has made the topic of canopy 3D [...] Read more.
Traditional forest monitoring has been mainly performed with images or orthoimages from aircraft or satellites. In recent years, the availability of high-resolution 3D data has made it possible to obtain accurate information on canopy size, which has made the topic of canopy 3D growth monitoring timely. In this paper, forest growth pattern was studied based on a canopy point cloud (PC) reconstructed from UAV aerial photogrammetry at a daily interval for a year. Growth curves were acquired based on the canopy 3D area (3DA) calculated from a triangulated 3D mesh. Methods for canopy coverage area (CA), forest coverage rate, and leaf area index (LAI) were proposed and tested. Three spectral vegetation indices, excess green index (ExG), a combination of green indices (COM), and an excess red union excess green index (ExGUExR) were used for the segmentation of trees. The results showed that (1) vegetation areas extracted by ExGUExR were more complete than those extracted by the other two indices; (2) logistic fitting of 3DA and CA yielded S-shaped growth curves, all with correlation R2 > 0.92; (3) 3DA curves represented the growth pattern more accurately than CA curves. Measurement errors and applicability are discussed. In summary, the UAV aerial photogrammetry method was successfully used for daily monitoring and annual growth trend description. Full article
(This article belongs to the Section Drones in Agriculture and Forestry)
Show Figures

Figure 1

10 pages, 2723 KiB  
Article
Quality Analysis of Tuberculosis Specimens Transported by Drones versus Ground Transportation
by Diosdélio Malamule, Susana Moreira, Carla Madeira, Carla Lutucuta, Gabriella Ailstock, Luciana Maxim, Ruth Bechtel, Olivier Defawe and Sofia Viegas
Drones 2022, 6(7), 155; https://doi.org/10.3390/drones6070155 - 23 Jun 2022
Viewed by 2786
Abstract
There are many challenges that impact the current referral network for Tuberculosis (TB) sputum specimens in Mozambique. In some cases, health facilities are remote and the road infrastructure is poor and at times impassable, leading to delays in laboratory specimen transportation and long [...] Read more.
There are many challenges that impact the current referral network for Tuberculosis (TB) sputum specimens in Mozambique. In some cases, health facilities are remote and the road infrastructure is poor and at times impassable, leading to delays in laboratory specimen transportation and long turn-around times for results. Drone transportation is a promising solution to reduce transportation time and improve access to laboratory diagnostics if the sample quality is not compromised during transport. This study evaluated the impact of drone transportation on the quality of TB sputum specimens with suspected Mycobacterium tuberculosis. 156 specimens were collected at five (5) health centers and sent to the Instituto Nacional de Saúde (INS) National TB Reference Laboratory. Specimens were then equally divided into two aliquots; one to be transported on land and the other by air using a drone. Control and study group specimens were processed using the NALC-NaOH method. Agreement between sample and control specimens was acceptable, indicating that drone transportation did not affect the quality of TB specimens. The authors recommend additional studies to validate drone transportation of TB specimens over a longer period of time to give further confidence in the adoption of drone delivery in Mozambique. Full article
Show Figures

Figure 1

21 pages, 13127 KiB  
Article
UAV Computing-Assisted Search and Rescue Mission Framework for Disaster and Harsh Environment Mitigation
by Saeed Hamood Alsamhi, Alexey V. Shvetsov, Santosh Kumar, Svetlana V. Shvetsova, Mohammed A. Alhartomi, Ammar Hawbani, Navin Singh Rajput, Sumit Srivastava, Abdu Saif and Vincent Omollo Nyangaresi
Drones 2022, 6(7), 154; https://doi.org/10.3390/drones6070154 - 22 Jun 2022
Cited by 73 | Viewed by 7871
Abstract
Disasters are crisis circumstances that put human life in jeopardy. During disasters, public communication infrastructure is particularly damaged, obstructing Search And Rescue (SAR) efforts, and it takes significant time and effort to re-establish functioning communication infrastructure. SAR is a critical component of mitigating [...] Read more.
Disasters are crisis circumstances that put human life in jeopardy. During disasters, public communication infrastructure is particularly damaged, obstructing Search And Rescue (SAR) efforts, and it takes significant time and effort to re-establish functioning communication infrastructure. SAR is a critical component of mitigating human and environmental risks in disasters and harsh environments. As a result, there is an urgent need to construct communication networks swiftly to help SAR efforts exchange emergency data. UAV technology has the potential to provide key solutions to mitigate such disaster situations. UAVs can be used to provide an adaptable and reliable emergency communication backbone and to resolve major issues in disasters for SAR operations. In this paper, we evaluate the network performance of UAV-assisted intelligent edge computing to expedite SAR missions and functionality, as this technology can be deployed within a short time and can help to rescue most people during a disaster. We have considered network parameters such as delay, throughput, and traffic sent and received, as well as path loss for the proposed network. It is also demonstrated that with the proposed parameter optimization, network performance improves significantly, eventually leading to far more efficient SAR missions in disasters and harsh environments. Full article
(This article belongs to the Special Issue Drone Computing Enabling IoE)
Show Figures

Figure 1

14 pages, 1094 KiB  
Article
Anti-Occlusion UAV Tracking Algorithm with a Low-Altitude Complex Background by Integrating Attention Mechanism
by Chuanyun Wang, Zhongrui Shi, Linlin Meng, Jingjing Wang, Tian Wang, Qian Gao and Ershen Wang
Drones 2022, 6(6), 149; https://doi.org/10.3390/drones6060149 - 16 Jun 2022
Cited by 8 | Viewed by 2168
Abstract
In recent years, the increasing number of unmanned aerial vehicles (UAVs) in the low-altitude airspace have not only brought convenience to people’s work and life, but also great threats and challenges. In the process of UAV detection and tracking, there are common problems [...] Read more.
In recent years, the increasing number of unmanned aerial vehicles (UAVs) in the low-altitude airspace have not only brought convenience to people’s work and life, but also great threats and challenges. In the process of UAV detection and tracking, there are common problems such as target deformation, target occlusion, and targets being submerged by complex background clutter. This paper proposes an anti-occlusion UAV tracking algorithm for low-altitude complex backgrounds by integrating an attention mechanism that mainly solves the problems of complex backgrounds and occlusion when tracking UAVs. First, extracted features are enhanced by using the SeNet attention mechanism. Second, the occlusion-sensing module is used to judge whether the target is occluded. If the target is not occluded, tracking continues. Otherwise, the LSTM trajectory prediction network is used to predict the UAV position of subsequent frames by using the UAV flight trajectory before occlusion. This study was verified on the OTB-100, GOT-10k and integrated UAV datasets. The accuracy and success rate of integrated UAV datasets were 79% and 50.5% respectively, which were 10.6% and 4.9% higher than those of the SiamCAM algorithm. Experimental results show that the algorithm could robustly track a small UAV in a low-altitude complex background. Full article
(This article belongs to the Special Issue Advances in UAV Detection, Classification and Tracking)
Show Figures

Figure 1

30 pages, 39732 KiB  
Article
Resource Management in 5G Networks Assisted by UAV Base Stations: Machine Learning for Overloaded Macrocell Prediction Based on Users’ Temporal and Spatial Flow
by Rodrigo Dias Alfaia, Anderson Vinicius de Freitas Souto, Evelin Helena Silva Cardoso, Jasmine Priscyla Leite de Araújo and Carlos Renato Lisboa Francês
Drones 2022, 6(6), 145; https://doi.org/10.3390/drones6060145 - 15 Jun 2022
Cited by 7 | Viewed by 3060
Abstract
The rapid growth of data traffic due to the demands of new services and applications poses new challenges to the wireless network. Unmanned aerial vehicles (UAVs) can be a solution to support wireless networks during congestion, especially in scenarios where the region has [...] Read more.
The rapid growth of data traffic due to the demands of new services and applications poses new challenges to the wireless network. Unmanned aerial vehicles (UAVs) can be a solution to support wireless networks during congestion, especially in scenarios where the region has high traffic peaks due to the temporal and spatial flow of users. In this paper, an intelligent machine-learning-based system is proposed to deploy UAV base stations (UAV-BS) to temporarily support the mobile network in regions suffering from the congestion effect caused by the high density of users. The system includes two main steps, the load prediction algorithm (LPA) and the UAV-BSs clustering and positioning algorithm (UCPA). In LPA, the load history generated by the mobile network is used to predict which macrocells are congested. In UCPA, planning is performed to calculate the number of UAV BSs needed based on two strategies: naïve and optimized, in addition to calculating the optimal positioning for each device requested to support the overloaded macrocells. For prediction, we used two models, generalized regression neural networks (GRNN) and random forest, and the results showed that both models were able to make accurate predictions, and the random forest model was better with an accuracy of over 85%. The results showed that the intelligent system significantly reduced the overhead of the affected macrocells, improved the quality of service (QoS), and reduced the probability of blocking users, as well as defined the preventive scheduling for the UAV BSs, which benefited the scheduling and energy efficiency. Full article
(This article belongs to the Section Drone Communications)
Show Figures

Figure 1

27 pages, 6045 KiB  
Review
Towards the Unmanned Aerial Vehicles (UAVs): A Comprehensive Review
by Syed Agha Hassnain Mohsan, Muhammad Asghar Khan, Fazal Noor, Insaf Ullah and Mohammed H. Alsharif
Drones 2022, 6(6), 147; https://doi.org/10.3390/drones6060147 - 15 Jun 2022
Cited by 193 | Viewed by 29621
Abstract
Recently, unmanned aerial vehicles (UAVs), also known as drones, have come in a great diversity of several applications such as military, construction, image and video mapping, medical, search and rescue, parcel delivery, hidden area exploration, oil rigs and power line monitoring, precision farming, [...] Read more.
Recently, unmanned aerial vehicles (UAVs), also known as drones, have come in a great diversity of several applications such as military, construction, image and video mapping, medical, search and rescue, parcel delivery, hidden area exploration, oil rigs and power line monitoring, precision farming, wireless communication and aerial surveillance. The drone industry has been getting significant attention as a model of manufacturing, service and delivery convergence, introducing synergy with the coexistence of different emerging domains. UAVs offer implicit peculiarities such as increased airborne time and payload capabilities, swift mobility, and access to remote and disaster areas. Despite these potential features, including extensive variety of usage, high maneuverability, and cost-efficiency, drones are still limited in terms of battery endurance, flight autonomy and constrained flight time to perform persistent missions. Other critical concerns are battery endurance and the weight of drones, which must be kept low. Intuitively it is not suggested to load them with heavy batteries. This study highlights the importance of drones, goals and functionality problems. In this review, a comprehensive study on UAVs, swarms, types, classification, charging, and standardization is presented. In particular, UAV applications, challenges, and security issues are explored in the light of recent research studies and development. Finally, this review identifies the research gap and presents future research directions regarding UAVs. Full article
Show Figures

Figure 1

13 pages, 1410 KiB  
Review
sUAS Monitoring of Coastal Environments: A Review of Best Practices from Field to Lab
by Shanyue Guan, Hannah Sirianni, George Wang and Zhen Zhu
Drones 2022, 6(6), 142; https://doi.org/10.3390/drones6060142 - 8 Jun 2022
Cited by 6 | Viewed by 2484
Abstract
Coastal environments are some of the most dynamic environments in the world. As they are constantly changing, so are the technologies and techniques we use to map and monitor them. The rapid advancement of sUAS-based remote sensing calls for rigorous field and processing [...] Read more.
Coastal environments are some of the most dynamic environments in the world. As they are constantly changing, so are the technologies and techniques we use to map and monitor them. The rapid advancement of sUAS-based remote sensing calls for rigorous field and processing workflows so that more reliable and consistent sUAS projects of coastal environments are carried out. Here, we synthesize the best practices to create sUAS photo-based surveying and processing workflows that can be used and modified by coastal scientists, depending on their project objective. While we aim to simplify the complexity of these workflows, we note that the nature of this work is a craft that carefully combines art, science, and technology. sUAS LiDAR is the next advancement in mapping and monitoring coastal environments. Therefore, future work should consider synthesizing best practices to develop rigorous field and data processing workflows used for sUAS LiDAR-based projects of coastal environments. Full article
Show Figures

Figure 1

23 pages, 125145 KiB  
Article
A ROS Multi-Tier UAV Localization Module Based on GNSS, Inertial and Visual-Depth Data
by Angelos Antonopoulos, Michail G. Lagoudakis and Panagiotis Partsinevelos
Drones 2022, 6(6), 135; https://doi.org/10.3390/drones6060135 - 24 May 2022
Cited by 11 | Viewed by 4520
Abstract
Uncrewed aerial vehicles (UAVs) are continuously gaining popularity in a wide spectrum of applications, while their positioning and navigation most often relies on Global Navigation Satellite Systems (GNSS). However, numerous conditions and practices require UAV operation in GNSS-denied environments, including confined spaces, urban [...] Read more.
Uncrewed aerial vehicles (UAVs) are continuously gaining popularity in a wide spectrum of applications, while their positioning and navigation most often relies on Global Navigation Satellite Systems (GNSS). However, numerous conditions and practices require UAV operation in GNSS-denied environments, including confined spaces, urban canyons, vegetated areas and indoor places. For the purposes of this study, an integrated UAV navigation system was designed and implemented which utilizes GNSS, visual, depth and inertial data to provide real-time localization. The implementation is built as a package for the Robotic Operation System (ROS) environment to allow ease of integration in various systems. The system can be autonomously adjusted to the flight environment, providing spatial awareness to the aircraft. This system expands the functionality of UAVs, as it enables navigation even in GNSS-denied environments. This integrated positional system provides the means to support fully autonomous navigation under mixed environments, or malfunctioning conditions. Experiments show the capability of the system to provide adequate results in open, confined and mixed spaces. Full article
(This article belongs to the Special Issue Advances in SLAM and Data Fusion for UAVs/Drones)
Show Figures

Figure 1

21 pages, 27426 KiB  
Article
Open Collaborative Platform for Multi-Drones to Support Search and Rescue Operations
by Yao-Hua Ho and Yu-Jung Tsai
Drones 2022, 6(5), 132; https://doi.org/10.3390/drones6050132 - 20 May 2022
Cited by 15 | Viewed by 3646
Abstract
Climate-related natural disasters have affected the lives of thousands of people. Global warming creates warmer and drier conditions which increase the risk of wildfires. In large-scale disasters such as wildfires, search and rescue (SAR) operations become extremely challenging due to low visibility, difficulty [...] Read more.
Climate-related natural disasters have affected the lives of thousands of people. Global warming creates warmer and drier conditions which increase the risk of wildfires. In large-scale disasters such as wildfires, search and rescue (SAR) operations become extremely challenging due to low visibility, difficulty to breath, and high temperature from fire and smoke. Unmanned aerial vehicles (UAVs), such as drones, have been used to support such operations. In our previous work, a Krypto module is proposed to “sniff” out wireless signals from mobile phones to locate any possible survivors. With the increased popularity of drones, it is possible to allow people to volunteer in SAR operations with their drones. In this paper, we propose an Open Collaborative Platform for multiple drones to assist SAR operations. The open platform manages different searching drones that carry the Krypto module to collaborate by sharing information and planning search paths/areas. With our Open Collaborative Platform, anyone can participate in SAR operations and contribute to finding possible survivors. The novelty of this work is the openness and collaboration of the platform that “crowdsourcing” the searching operation to a large group of people who share information and contribute to finding possible survivors in a large disaster such as wildfires. Our experimental study shows that the Open Collaborative Platform is effective in reducing both the number of drones required and the search time for finding survivors. Full article
Show Figures

Figure 1

13 pages, 1720 KiB  
Article
Comparison of Radar Signatures from a Hybrid VTOL Fixed-Wing Drone and Quad-Rotor Drone
by Jiangkun Gong, Deren Li, Jun Yan, Huiping Hu and Deyong Kong
Drones 2022, 6(5), 110; https://doi.org/10.3390/drones6050110 - 27 Apr 2022
Cited by 7 | Viewed by 4156
Abstract
Current studies rarely mention radar detection of hybrid vertical take-off and landing (VTOL) fixed-wing drones. We investigated radar signals of an industry-tier VTOL fixed-wing drone, TX25A, compared with the radar detection results of a quad-rotor drone, DJI Phantom 4. We used an X-band [...] Read more.
Current studies rarely mention radar detection of hybrid vertical take-off and landing (VTOL) fixed-wing drones. We investigated radar signals of an industry-tier VTOL fixed-wing drone, TX25A, compared with the radar detection results of a quad-rotor drone, DJI Phantom 4. We used an X-band pulse-Doppler phased array radar to collect tracking radar data of the two drones in a coastal area near the Yellow Sea in China. The measurements indicate that TX25A had double the values of radar cross-section (RCS) and flying speed and a 2 dB larger signal-to-clutter ratio (SCR) than DJI Phantom 4. The radar signals of both drones had micro-Doppler signals or jet engine modulation (JEM) produced by the lifting rotor blades, but the Doppler modulated by the puller rotor blades of TX25A was undetectable. JEM provides radar signatures such as the rotating rate, modulated by the JEM frequency spacing interval and the number of blades for radar automatic target recognition (ATR), but also interferes with the radar tracking algorithm by suppressing the body Doppler. This work provides an a priori investigation of new VTOL fixed-wing drones and may inspire future research. Full article
Show Figures

Figure 1

15 pages, 13243 KiB  
Article
A Multi-Colony Social Learning Approach for the Self-Organization of a Swarm of UAVs
by Muhammad Shafiq, Zain Anwar Ali, Amber Israr, Eman H. Alkhammash and Myriam Hadjouni
Drones 2022, 6(5), 104; https://doi.org/10.3390/drones6050104 - 23 Apr 2022
Cited by 8 | Viewed by 2547
Abstract
This research offers an improved method for the self-organization of a swarm of UAVs based on a social learning approach. To start, we use three different colonies and three best members i.e., unmanned aerial vehicles (UAVs) randomly placed in the colonies. This study [...] Read more.
This research offers an improved method for the self-organization of a swarm of UAVs based on a social learning approach. To start, we use three different colonies and three best members i.e., unmanned aerial vehicles (UAVs) randomly placed in the colonies. This study uses max-min ant colony optimization (MMACO) in conjunction with social learning mechanism to plan the optimized path for an individual colony. Hereinafter, the multi-agent system (MAS) chooses the most optimal UAV as the leader of each colony and the remaining UAVs as agents, which helps to organize the randomly positioned UAVs into three different formations. Afterward, the algorithm synchronizes and connects the three colonies into a swarm and controls it using dynamic leader selection. The major contribution of this study is to hybridize two different approaches to produce a more optimized, efficient, and effective strategy. The results verify that the proposed algorithm completes the given objectives. This study also compares the designed method with the Non-Dominated Sorting Genetic Algorithm II (NSGA-II) to prove that our method offers better convergence and reaches the target using a shorter route than NSGA-II. Full article
(This article belongs to the Special Issue Advances in UAV Detection, Classification and Tracking)
Show Figures

Figure 1

Back to TopTop