Journal Description
Gels
Gels
is an international, peer-reviewed, open access journal on physical and chemical gels published monthly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High visibility: indexed within Scopus, SCIE (Web of Science), PubMed, PMC, CAPlus / SciFinder, and other databases.
- Journal Rank: JCR - Q1 (Polymer Science) / CiteScore - Q2 (Polymers and Plastics)
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 10.9 days after submission; acceptance to publication is undertaken in 2.9 days (median values for papers published in this journal in the first half of 2024).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
- Testimonials: See what our editors and authors say about Gels.
Impact Factor:
5.0 (2023);
5-Year Impact Factor:
4.9 (2023)
Latest Articles
Synthesis and Application of SAPO-11 Molecular Sieves Prepared from Reaction Gels with Various Templates in the Hydroisomerization of Hexadecane
Gels 2024, 10(12), 792; https://doi.org/10.3390/gels10120792 (registering DOI) - 4 Dec 2024
Abstract
Among the most selective catalytic systems for the hydroisomerization of C16+ n-paraffins, catalytic systems based on SAPO-11 are quite promising. In order to increase the activity and selectivity of these bifunctional catalysts, it is necessary to reduce the diffusion restrictions
[...] Read more.
Among the most selective catalytic systems for the hydroisomerization of C16+ n-paraffins, catalytic systems based on SAPO-11 are quite promising. In order to increase the activity and selectivity of these bifunctional catalysts, it is necessary to reduce the diffusion restrictions for the reacting molecules and their products in the microporous structure of SAPO-11 by reducing the crystal size. To solve this problem, we have studied the influence of different templates (diethylamine, dipropylamine, diisopropylamine, and dibutylamine) on the physicochemical properties of reaction gels and SAPO-11 silicoaluminophosphates during their crystallization. Using XRD, SEM, and NMR techniques, we found that regardless of the template used, the reaction gel after the aging process at 90 °C is an AlPO4·2H2O hydroaluminophosphate. At the same time, the nature of the template affects the morphology and crystal sizes of the intermediate alumophosphate, AlPO4·2H2O, and the molecular sieves, SAPO-11. The acidic properties and the porous structure characteristics of SAPO-11 are also affected by the template. A template was proposed to enable the synthesis of nanoscale SAPO-11 crystals. The influence of the morphology and crystal size of SAPO-11 on the catalytic properties of a bifunctional catalyst based on SAPO-11 in the hydroisomerization of hexadecane was investigated.
Full article
(This article belongs to the Special Issue Functional Gel Materials: Chemistry, Processing, Mechanical Performance, and Applications)
►
Show Figures
Open AccessArticle
Steam Explosion Modified κ-Carrageenan Structure and Its Jelly Application
by
Mengfan Lin, Qingyu Yang, Changrong Wang and Zebin Guo
Gels 2024, 10(12), 791; https://doi.org/10.3390/gels10120791 (registering DOI) - 3 Dec 2024
Abstract
Steam explosion (SE) technology enhances the extraction efficiency of bioactive compounds and their physicochemical properties. This study compared the structural characteristics of κ-carrageenan extracted by SE-assisted alkali treatment and conventional alkali treatment from Eucheuma, as well as the quality attributes of the
[...] Read more.
Steam explosion (SE) technology enhances the extraction efficiency of bioactive compounds and their physicochemical properties. This study compared the structural characteristics of κ-carrageenan extracted by SE-assisted alkali treatment and conventional alkali treatment from Eucheuma, as well as the quality attributes of the resulting jellies. The results indicate that SE treatment did not alter the species of carrageenan, but it significantly elevated the content of characteristic carrageenan groups, with the sulfate group content and 3,6-anhydrogalactose (3,6-AG) content increasing by 15.86% and 45.08%, respectively. The jellies prepared with κ-carrageenan following SE treatment demonstrated a more stable gel network structure, with an 80.9% increase in gel strength at a 1.5% κ-carrageenan concentration; the water precipitation rate of these jellies was minimized to 7.96 ± 0.69% when κ-carrageenan was added at a 1.7% concentration. These results suggest that SE treatment provides useful information for the application of κ-carrageenan in jelly.
Full article
(This article belongs to the Special Issue Recent Advance in Food Gels (2nd Edition))
►▼
Show Figures
Figure 1
Open AccessArticle
Ionic Crosslinking of Linear Polyethyleneimine Hydrogels with Tripolyphosphate
by
Luis M. Araque, Antonia Infantes-Molina, Enrique Rodríguez-Castellón, Yamila Garro-Linck, Belén Franzoni, Claudio J. Pérez, Guillermo J. Copello and Juan M. Lázaro-Martínez
Gels 2024, 10(12), 790; https://doi.org/10.3390/gels10120790 (registering DOI) - 3 Dec 2024
Abstract
In this work, the mechanical properties of hydrogels based on linear polyethyleneimine (PEI) chemically crosslinked with ethyleneglycoldiglycidyl ether (EGDE) were improved by the ionic crosslinking with sodium tripolyphosphate (TPP). To this end, the quaternization of the nitrogen atoms present in the PEI structure
[...] Read more.
In this work, the mechanical properties of hydrogels based on linear polyethyleneimine (PEI) chemically crosslinked with ethyleneglycoldiglycidyl ether (EGDE) were improved by the ionic crosslinking with sodium tripolyphosphate (TPP). To this end, the quaternization of the nitrogen atoms present in the PEI structure was conducted to render a network with a permanent positive charge to interact with the negative charges of TPP. The co-crosslinking process was studied by 1H high-resolution magic angle spinning (1H HRMAS) NMR and X-ray photoelectron spectroscopy (XPS) in combination with organic elemental analysis and inductively coupled plasma mass spectrometry (ICP-MS). In addition, the mobility and confinement of water molecules within the co-crosslinked hydrogels were studied by low-field 1H NMR. The addition of small amounts of TPP, 0.03 to 0.26 mmoles of TPP per gram of material, to the PEI-EGDE hydrogel resulted in an increase in the deformation resistance from 320 to 1080%, respectively. Moreover, the adsorption capacity of the hydrogels towards various emerging contaminants remained high after the TPP crosslinking, with maximum loading capacities (qmax) of 77, 512, and 55 mg g−1 at pH = 4 for penicillin V (antibiotic), methyl orange (azo-dye) and copper(II) ions (metal ion), respectively. A significant decrease in the adsorption capacity was observed at pH = 7 or 10, with qmax of 356 or 64 and 23 or 0.8 mg g−1 for methyl orange and penicillin V, respectively.
Full article
(This article belongs to the Special Issue Functionalized Gels for Environmental Applications (2nd Edition))
►▼
Show Figures
Graphical abstract
Open AccessArticle
Mechanisms of Low Temperature Thickening of Different Materials for Deepwater Water-Based Drilling Fluids
by
Zhongyi Wang, Jinsheng Sun, Kaihe Lv, Xianbin Huang, Zhenhang Yuan and Yang Zhang
Gels 2024, 10(12), 789; https://doi.org/10.3390/gels10120789 (registering DOI) - 2 Dec 2024
Abstract
During deepwater drilling, the low mudline temperatures and narrow safe density window pose serious challenges to the safe and efficient performance of deepwater water-based drilling fluids. Low temperatures can lead to physical and chemical changes in the components of water-based drilling fluids and
[...] Read more.
During deepwater drilling, the low mudline temperatures and narrow safe density window pose serious challenges to the safe and efficient performance of deepwater water-based drilling fluids. Low temperatures can lead to physical and chemical changes in the components of water-based drilling fluids and the behavior of low temperature gelation. As a coarse dispersion system, water-based drilling fluid has a complex composition of dispersed phase and dispersing medium. Further clarification of low temperature gelation would be helpful in developing technical approaches to enhance the flat rheology performance of deepwater water-based drilling fluids. In this paper, different components are separated in order to comprehensively analyze the gelation behavior of different materials in water-based drilling fluids at low temperatures. In the first place, the rheological and hydrodynamic radius alterations of inorganic salts, bentonite, and additives in aqueous solutions were examined at low temperatures. The effects of inorganic salts, bentonite, and additives on the purified water system were investigated at low (4 °C)–normal (25 °C)–high (75 °C) temperatures. The low temperature gelation of different materials in pure water systems are fully clarified. The mud containing 4% bentonite with weak low temperature gelation commonly used in deepwater water-based drilling fluids was selected as the basic test system. Inorganic salts, additives, and solid-phase materials were added to the mud containing 4% bentonite. The effects of the interactions between different materials and bentonite particles on the low temperature gelation behavior of mud were analyzed. The higher the bentonite dosage, the stronger the low temperature gelation behavior of mud. The higher the addition of inorganic salts, the more serious the low temperature gelation behavior of mud. Inorganic salts should be avoided as much as possible to add too much. The low temperature gelation behavior of mud with low-viscosity additives is weak. However, the viscosity of mud with high-viscosity additives has a small change in viscosity with increasing temperature. The low temperature gelation of mud with the addition of solid-phase particulate materials with reactive groups on the surface is strong, and the low temperature gelation with the addition of inert particles is weak. This paper elucidates the low temperature gelation mechanism of bentonite, inorganic salts, additives, and solid-phase materials in deepwater water-based drilling fluids. The conclusion can also be used to guide the construction of a drilling fluid system, which is of great significance for the research and development of deepwater water-based drilling fluid additives and the safe and efficient performance of deepwater drilling fluids.
Full article
(This article belongs to the Special Issue Gels in the Oil Field)
►▼
Show Figures
Figure 1
Open AccessArticle
Silicon-Enhanced PVA Hydrogels in Flexible Sensors: Mechanism, Applications, and Recycling
by
Xiaolei Guo, Hao Zhang, Manman Wu, Zhan Tian, Yanru Chen, Rui Bao, Jinghao Hao, Xiao Cheng and Chuanjian Zhou
Gels 2024, 10(12), 788; https://doi.org/10.3390/gels10120788 (registering DOI) - 2 Dec 2024
Abstract
Hydrogels, known for their outstanding water absorption, flexibility, and biocompatibility, have been widely utilized in various fields. Nevertheless, their application is still limited by their relatively low mechanical performance. This study has successfully developed a dual-network hydrogel with exceptional mechanical properties by embedding
[...] Read more.
Hydrogels, known for their outstanding water absorption, flexibility, and biocompatibility, have been widely utilized in various fields. Nevertheless, their application is still limited by their relatively low mechanical performance. This study has successfully developed a dual-network hydrogel with exceptional mechanical properties by embedding amino-functionalized polysiloxane (APSi) networks into a polyvinyl alcohol (PVA) matrix. This hydrogel effectively dissipates energy through dense sacrificial bonds between the networks, allowing for precise control over its tensile strength (ranging from 0.07 to 1.46 MPa) and toughness (from 0.06 to 2.17 MJ/m3) by adjusting the degree of crosslinking in the polysiloxane network. Additionally, the hydrogel exhibits excellent conductivity (10.97 S/cm) and strain sensitivity (GF = 1.43), indicating its potential for use in wearable strain sensors. Moreover, at the end of its life (EOL), the sensor waste can be repurposed as an adsorbent material for metal ions in water treatment, achieving the recycling of hydrogel materials and maximizing resource utilization.
Full article
(This article belongs to the Special Issue Flexible Gel Sensor: From Design to Application)
►▼
Show Figures
Graphical abstract
Open AccessArticle
Rheological Properties and Physical Stability of Aqueous Dispersions of Flaxseed Fibers
by
María-Carmen Alfaro-Rodríguez, María Carmen García, Paula Prieto-Vargas and José Muñoz
Gels 2024, 10(12), 787; https://doi.org/10.3390/gels10120787 (registering DOI) - 2 Dec 2024
Abstract
(1) Background: The main objective of this work is to investigate the influence of shear on the rheological properties and physical stability of aqueous dispersions of flaxseed fiber. The variable to consider will be the homogenization rate in two different rotor-stator homogenizers, Ultraturrax
[...] Read more.
(1) Background: The main objective of this work is to investigate the influence of shear on the rheological properties and physical stability of aqueous dispersions of flaxseed fiber. The variable to consider will be the homogenization rate in two different rotor-stator homogenizers, Ultraturrax T50 or T25. (2) Methods: In order to achieve the proposed objective, small amplitude oscillatory tests, flow curves, and multiple light scattering measurements were carried out. (3) Results: All samples exhibited a shear thinning behavior that was not influenced by the shear imposed, and a weak gel-like behavior. The latter, unlike the flow behavior, was sensitive to the homogenization rate. Thus, an increase in this variable caused a decrease in the viscoelastic moduli values. This result pointed out a weakening of the network formed by the flaxseed fiber in an aqueous medium. On the contrary, the physical stability improved. Nevertheless, all samples were highly stable. The homogenizer used was a significant variable. (4) Conclusions: The shear negatively influenced the microstructure of the aqueous flaxseed fiber dispersions, although the obtained gels were highly stable. The gel-like behavior, the high viscosity at low shear rates, and the high physical stability of the samples studied make them interesting food stabilizers and thickeners.
Full article
(This article belongs to the Special Issue Food Gels: Structures, Properties and Applications)
►▼
Show Figures
Graphical abstract
Open AccessArticle
Self-Assembled Hydrogel Based on (Bio)polyelectrolyte Complex of Chitosan–Gelatin: Effect of Composition on Physicochemical Properties
by
Kashurin Aleksandr, Litvinov Mikhail and Podshivalov Aleksandr
Gels 2024, 10(12), 786; https://doi.org/10.3390/gels10120786 (registering DOI) - 1 Dec 2024
Abstract
Taking into account the trends in the field of green chemistry and the desire to use natural materials in biomedical applications, (bio)polyelectrolyte complexes ((bio)PECs) based on a mixture of chitosan and gelatin seem to be relevant systems. Using the approach of self-assembly from
[...] Read more.
Taking into account the trends in the field of green chemistry and the desire to use natural materials in biomedical applications, (bio)polyelectrolyte complexes ((bio)PECs) based on a mixture of chitosan and gelatin seem to be relevant systems. Using the approach of self-assembly from the dispersion of the coacervate phase of a (bio)PEC at different ratios of ionized functional groups of chitosan and gelatin (z), hydrogels with increased resistance to mechanical deformations and resorption in liquid media were obtained in this work in comparison to a hydrogel from gelatin. It was found that at z ≥ 1 a four-fold increase in the elastic modulus of the hydrogel occurred in comparison to a hydrogel based on gelatin. It was shown that hydrogels at z ≈ 1 had an increased sorption capacity and water sorption rate, as well as increased resistance to the in vitro model environment of phosphate-buffered saline (PBS) solution containing lysozyme at 37 °C. It was also shown that in PBS and simulated gastric fluid (SGF) solutions, the effect of the polyelectrolyte swelling of the hydrogels was significantly suppressed; however, at z ≥ 1, the (bio)PEC hydrogels had increased stability compared to the samples at z < 1 and based on gelatin.
Full article
(This article belongs to the Section Gel Chemistry and Physics)
►▼
Show Figures
Graphical abstract
Open AccessArticle
Gamma Radiation-Induced Synthesis of Carboxymethyl Cellulose-Acrylic Acid Hydrogels for Methylene Blue Dye Removal
by
Sabuj Chandra Sutradhar, Nipa Banik, Mobinul Islam, Mohammad Mizanur Rahman Khan and Jae-Ho Jeong
Gels 2024, 10(12), 785; https://doi.org/10.3390/gels10120785 (registering DOI) - 1 Dec 2024
Abstract
►▼
Show Figures
This study aims to develop efficient and sustainable hydrogels for dye adsorption, addressing the critical need for improved wastewater treatment methods. Carboxymethyl cellulose (CMC)-based hydrogels grafted with AAc were synthesized using gamma radiation polymerization. Various AAc to CMC ratios (5:5, 5:7.5, 5:10, 5:15)
[...] Read more.
This study aims to develop efficient and sustainable hydrogels for dye adsorption, addressing the critical need for improved wastewater treatment methods. Carboxymethyl cellulose (CMC)-based hydrogels grafted with AAc were synthesized using gamma radiation polymerization. Various AAc to CMC ratios (5:5, 5:7.5, 5:10, 5:15) were treated with 37% NaOH and exposed to 1–15 kGy radiation, with the optimal hydrogel obtained at 5 kGy. Swelling studies showed an increase in swelling with 5–7.5% AAc content, with the 5:7.5 hydrogel achieving the highest swelling at 18,774.60 (g/g). FTIR spectroscopy confirmed the interaction between AAc and CMC, indicating the successful formation of the hydrogel. DSC analysis revealed that higher AAc content led to increased glass transition and decomposition temperatures, thereby enhancing thermal stability. The swelling kinetics were linked to a reduction in pore size and improved AAc grafting. The 5:7.5 hydrogel demonstrated the highest adsorption capacity (681 mg/g) for methylene blue at 80 mg/L, achieving a desorption efficiency of 95% in 2M HCl. Kinetic analysis revealed non-uniform physisorption on a heterogeneous surface, which followed Schott’s pseudo-second-order model. This study advances the development of efficient hydrogels for water purification, providing a cost-effective and environmentally friendly solution for large-scale applications.
Full article
Graphical abstract
Open AccessArticle
Rheological Properties of Weak Gel System Cross-Linked from Chromium Acetate and Polyacrylamide and Its Application in Enhanced Oil Recovery After Polymer Flooding for Heterogeneous Reservoir
by
Yunqian Long, Chenkan Zhang, Dandan Yin, Tao Huang, Hailong Zhang, Ming Yue and Xiaohe Huang
Gels 2024, 10(12), 784; https://doi.org/10.3390/gels10120784 (registering DOI) - 1 Dec 2024
Abstract
Long-term polymer flooding exacerbates reservoir heterogeneity, intensifying intra- and inter-layer conflicts, which makes it difficult to recover the remaining oil. Therefore, further improvement in oil recovery after polymer flooding is essential. In this study, a weak gel system was successfully synthesized, and possesses
[...] Read more.
Long-term polymer flooding exacerbates reservoir heterogeneity, intensifying intra- and inter-layer conflicts, which makes it difficult to recover the remaining oil. Therefore, further improvement in oil recovery after polymer flooding is essential. In this study, a weak gel system was successfully synthesized, and possesses a distinct network structure that becomes more compact as the concentration of partially hydrolyzed polyacrylamide increases. The network structure of the weak gel system provides excellent shear resistance, with its apparent viscosity significantly higher than that of partially hydrolyzed polyacrylamide solution. The weak gel system exhibits typical pseudo-plastic behavior, which is a non-Newtonian fluid as well as a viscoelastic fluid. Additionally, the weak gel system’s elasticities exceed its viscosities, and longer crosslinking time further enhances the viscoelasticity. The weak gel system achieves superior conformance control and enhanced oil recovery in highly heterogeneous reservoirs compared to partially hydrolyzed polyacrylamide solutions. The weak gel system is more suited to low-permeability reservoirs with strong heterogeneity, as its effectiveness in conformance control and oil recovery increases with greater reservoir heterogeneity. Enhanced oil recoveries of the weak gel system in low-permeability sandpacks increase from 22% to 48% with a rise in permeability ratios from 14.39 to 35.64 after polymer flooding.
Full article
(This article belongs to the Special Issue Gels for Oil and Gas Industry Applications (3rd Edition))
►▼
Show Figures
Graphical abstract
Open AccessArticle
Zirconium–Polycarboxylato Gel Systems as Substrates to Develop Advanced Fluorescence Sensing Devices
by
Jon Pascual-Colino, Garikoitz Beobide, Oscar Castillo, Javier Cepeda, Mónica Lanchas, Antonio Luque and Sonia Pérez-Yáñez
Gels 2024, 10(12), 783; https://doi.org/10.3390/gels10120783 (registering DOI) - 29 Nov 2024
Abstract
This study presents the development of zirconium polycarboxylate gel systems as substrates for advanced fluorescence sensing devices. Zirconium-based metal–organic gels (MOGs) offer a promising alternative due to the robustness of the Zr–O bond, which provides enhanced chemical stability. In this work, zirconium polycarboxylate
[...] Read more.
This study presents the development of zirconium polycarboxylate gel systems as substrates for advanced fluorescence sensing devices. Zirconium-based metal–organic gels (MOGs) offer a promising alternative due to the robustness of the Zr–O bond, which provides enhanced chemical stability. In this work, zirconium polycarboxylate gels were synthesized using green solvents in a rapid room temperature method. Fluorescein, naphthalene-2,6-dicarboxylic acid, and 4,4′,4″,4‴-(porphine-5,10,15,20-tetrayl)tetrakisbenzoic acid were incorporated as fluorophores to give the gel luminescent properties, enabling it to be used as a sensor. These fluorophores produce specific changes in the perceived color and intensity of the fluorescence emission upon interaction with different analytes in a solution, allowing a qualitative identification of different solvents and compounds. However, the fragile structure of neat gels hinders reproducible quantitative analysis of fluorescence emission. Therefore, to increase their mechanical stability during manipulation, a composite material was developed by combining the MOGs with quartz microcrystals, which proved to be a more reliable fluorescent system. The results show that the material can identify univocally different solvents and analytes in aqueous solutions by the quantitative analysis of the emission intensities. This work presents an innovative approach to create advanced fluorescence sensors with improved mechanical properties and stability using zirconium polycarboxylate gels and multiple fluorophores.
Full article
(This article belongs to the Special Issue Outcomes and Trends in Polymer Gels: Designing, Properties and Applications)
►▼
Show Figures
Graphical abstract
Open AccessArticle
Expanded Perlite-Reinforced Alginate Xerogels: A Chemical Approach to Sustainable Building and Packaging Materials
by
Radmila Damjanović, Marija M. Vuksanović, Miloš Petrović, Željko Radovanović, Milena Stavrić, Radmila Jančić Heinemann and Irena Živković
Gels 2024, 10(12), 782; https://doi.org/10.3390/gels10120782 (registering DOI) - 29 Nov 2024
Abstract
In sustainable construction and packaging, the development of novel bio-based materials is crucial, driving a re-evaluation of traditional components. Lightweight, biodegradable materials, including xerogels, have great potential in architectural and packaging applications. However, reinforcing these materials to improve their mechanical strength remains a
[...] Read more.
In sustainable construction and packaging, the development of novel bio-based materials is crucial, driving a re-evaluation of traditional components. Lightweight, biodegradable materials, including xerogels, have great potential in architectural and packaging applications. However, reinforcing these materials to improve their mechanical strength remains a challenge. Alginate is a promising matrix material that may be compatible with inorganic fibrous or particulate materials. In this study, biocomposite xerogel-structured foam materials based on an alginate matrix with expanded perlite reinforcement are improved using certain additives in different weight ratios. The plasticizers used include glycerol and gum arabic, while chitosan was added as an additional reinforcement, and iota carrageenan was added as a stabilizer. The tested specimens, with varying weight ratios of the added components, showed good mechanical behavior that highlights their potential use as packaging and/or architectural materials. The influence of the presence of different components in the composite material specimens on the modulus of elasticity was investigated using SEM images and FTIR analyses of the specimens. The results show that the specimen with the largest improvement in the elastic modulus contained a combination of chitosan and glycerol at a lower percentage (1.96 MPa), and the specimen with the largest improvement in tensile strength was the specimen containing chitosan with no plasticizers (120 kPa), compared to cases where combinations of other materials are present.
Full article
(This article belongs to the Special Issue Multifunctional Polymer Nano-, Micro- and Hydro- Gels: Synthesis, Properties and Applications)
►▼
Show Figures
Figure 1
Open AccessArticle
Physicochemical Properties, Drug Release and In Situ Depot-Forming Behaviors of Alginate Hydrogel Containing Poorly Water-Soluble Aripiprazole
by
Hy D. Nguyen, Munsik Jang, Hai V. Ngo, Myung-Chul Gil, Gang Jin, Jing-Hao Cui, Qing-Ri Cao and Beom-Jin Lee
Gels 2024, 10(12), 781; https://doi.org/10.3390/gels10120781 (registering DOI) - 29 Nov 2024
Abstract
The objective of this study was to investigate the physicochemical properties, drug release and in situ depot-forming behavior of alginate hydrogel containing poorly water-soluble aripiprazole (ARP) for achieving free-flowing injectability, clinically accessible gelation time and sustained drug release. The balanced ratio of pyridoxal
[...] Read more.
The objective of this study was to investigate the physicochemical properties, drug release and in situ depot-forming behavior of alginate hydrogel containing poorly water-soluble aripiprazole (ARP) for achieving free-flowing injectability, clinically accessible gelation time and sustained drug release. The balanced ratio of pyridoxal phosphate (PLP) and glucono-delta-lactone (GDL) was crucial to modulate gelation time of the alginate solution in the presence of calcium carbonate. Our results demonstrated that the sol state alginate hydrogel before gelation was free-flowing, stable and readily injectable using a small 23 G needle. In addition, the ratio (w/w) of PLP and GDL altered the gelation time, which was longer as the PLP content increased but shorter as the GDL content increased. The alginate hydrogel with a ratio of PLP to GDL of 15:9 had the optimal physicochemical properties in terms of a clinically acceptable gelation time (9.1 min), in situ-depot formation with muscle-mimicking stiffness (3.55 kPa) and sustained release over a two-week period. The alginate hydrogel, which is tunable by varying the ratio of PLP and GDL, could provide a controllable pharmaceutical preparation to meet the need for long-acting performance of antipsychotic drugs like ARP.
Full article
(This article belongs to the Special Issue Engineering Advanced Hydrogels for Biomedical Applications (2nd Edition))
►▼
Show Figures
Figure 1
Open AccessArticle
3D Bioprintable Self-Healing Hyaluronic Acid Hydrogel with Cysteamine Grafting for Tissue Engineering
by
Kasula Nagaraja, Amitava Bhattacharyya, Minsik Jung, Dajeong Kim, Mst Rita Khatun and Insup Noh
Gels 2024, 10(12), 780; https://doi.org/10.3390/gels10120780 (registering DOI) - 28 Nov 2024
Abstract
The abundance of hyaluronic acid (HA) in human tissues attracts its thorough research in tissue regenerating scaffolds and 3D bioprintable hydrogel preparation. Though methacrylation of HA can lead to photo-crosslinkable hydrogels, the catalyst has toxicity concerns, and the hydrogel is not suitable for
[...] Read more.
The abundance of hyaluronic acid (HA) in human tissues attracts its thorough research in tissue regenerating scaffolds and 3D bioprintable hydrogel preparation. Though methacrylation of HA can lead to photo-crosslinkable hydrogels, the catalyst has toxicity concerns, and the hydrogel is not suitable for creating stable complex 3D structures using extrusion 3D bioprinting. In this study, a dual crosslinking on methacrylated HA is introduced, using cysteamine-grafted HA and varying concentrations of 2-hydroxy ethyl acrylate. The resultant hydrogel is suitable for extrusion 3D printing (or bioprinting), mechanically robust, self-standing, stable in phosphate-buffered saline at 37 °C for more than 42 days, has high water absorption capacity with a low swelling ratio (1.5), and exhibits self-healing and adhesive properties. Complex 3D structures like ears and pyramid shapes with more than 2 cm of height are 3D printed using the optimized composition. All the synthesized hydrogels have shown nontoxicity and cell-supportiveness. Loading of cells, tetracycline, and bovine serum albumin into the hydrogel led to better bioink properties such as cell attachment, growth, and proliferation for osteoblast cells. The test results suggest that this hydrogel is biocompatible and has potential for 3D bioprinting of self-standing structures in bioink form in tissue engineering and regenerative medicine.
Full article
(This article belongs to the Special Issue Recent Trends in Gels for 3D Printing)
►▼
Show Figures
Graphical abstract
Open AccessArticle
Adsorption of Cr(VI) Using Organoclay/Alginate Hydrogel Beads and Their Application to Tannery Effluent
by
Mayra X. Muñoz-Martinez, Iván F. Macías-Quiroga and Nancy R. Sanabria-González
Gels 2024, 10(12), 779; https://doi.org/10.3390/gels10120779 - 28 Nov 2024
Abstract
The tanning industry is among the most environmentally harmful activities globally due to the pollution of lakes and rivers from its effluents. Hexavalent chromium, a metal in tannery effluents, has adverse effects on human health and ecosystems, requiring the development of removal techniques.
[...] Read more.
The tanning industry is among the most environmentally harmful activities globally due to the pollution of lakes and rivers from its effluents. Hexavalent chromium, a metal in tannery effluents, has adverse effects on human health and ecosystems, requiring the development of removal techniques. This study assessed the efficacy of organobentonite/alginate hydrogel beads in removing Cr(VI) from a fixed-bed adsorption column system. The synthesized organobentonite (OBent) was encapsulated in alginate, utilizing calcium chloride as a crosslinking agent to generate hydrogel beads. The effects of the volumetric flow rate, bed height, and initial Cr(VI) concentration on a synthetic sample were analyzed in the experiments in fixed-bed columns. The fractal-like modified Thomas model showed a good fit to the experimental data for the asymmetric breakthrough curves, confirmed by the high R2 correlation coefficients and low χ2 values. The application of organoclay/alginate hydrogel beads was confirmed with a wastewater sample from an artisanal tannery industry in Belén (Nariño, Colombia), in which a Cr(VI) removal greater than 99.81% was achieved. Organobentonite/alginate hydrogels offer the additional advantage of being composed of a biodegradable polymer (sodium alginate) and a natural material (bentonite-type clay), resulting in promising adsorbents for the removal of Cr(VI) from aqueous solutions in both synthetic and real water samples.
Full article
(This article belongs to the Special Issue Alginate-Based Gels: Preparation, Characterization and Application (2nd Edition))
►▼
Show Figures
Graphical abstract
Open AccessArticle
Microwave Irradiation-Assisted Synthesis of Anisotropic Crown Ether-Grafted Bamboo Pulp Aerogel as a Chelating Agent for Selective Adsorption of Heavy Metals (Mn+)
by
Wenxiang Jing, Min Tang, Xiaoyan Lin, Chai Yang, Dongming Lian, Ying Yu and Dongyang Liu
Gels 2024, 10(12), 778; https://doi.org/10.3390/gels10120778 - 28 Nov 2024
Abstract
Crown ether is widely used in water purification because of its ring structure and good selective adsorption of specific heavy metals. However, its high cost and difficulty in recycling limit the purification of heavy metals in water. The anisotropic [2,4]-dibenzo-18-crown-6-modified bamboo pulp aerogel
[...] Read more.
Crown ether is widely used in water purification because of its ring structure and good selective adsorption of specific heavy metals. However, its high cost and difficulty in recycling limit the purification of heavy metals in water. The anisotropic [2,4]-dibenzo-18-crown-6-modified bamboo pulp aerogel (DB18C6/PA) is successfully synthesized by microwave irradiation and directional freezing technology. The physical and chemical properties of DB18C6/PA are analyzed by FTIR, XPS, SEM, TEM, TGA, surface area and porosity analyzers. Single or multivariate systems containing Pb2+, Cu2+ and Cd2+ are used as adsorbents. The effects of the DB18C6 addition amount, pH, initial concentration and adsorption temperature on the adsorption of DB18C6/PA are systematically explored. Pseudo-first-order kinetic models, pseudo-second-order kinetic models and the isothermal adsorption models of Langmuir and Freundlich are used to fit the experimental data. The adsorption selectivity is analyzed from the distribution coefficient and the separation factor, and the adsorption mechanism is discussed. The results show that anisotropic DB18C6/PA has the characteristics of 3D directional channels, high porosity (97.67%), large specific surface area (103.7 m2/g), good thermal stability and regeneration (the number of cycles is greater than 5). The surface has a variety of functional groups, including a hydroxyl group, aldehyde group, ether bond, etc. In the single and multivariate systems of Pb2+, Cu2+ and Cd2+, the adsorption process of DB18C6/PA conforms to the pseudo-second-order kinetic model, and the results conform to the Freundlich adsorption isothermal model (a few of them conformed to the Langmuir adsorption isothermal model), indicating that chemical adsorption and physical adsorption are involved in the adsorption process, and the adsorption process is a spontaneous endothermic process. In the single solution system, the maximum adsorption capacities of Pb2+, Cu2+ and Cd2+ by DB18C6/PA are 129.15, 29.85 and 27.89 mg/g, respectively. The adsorption selectivity of DB18C6/PA on Pb2+, Cu2+ and Cd2+ is in the order of Pb2+ >> Cu2+ > Cd2+.
Full article
(This article belongs to the Special Issue Advances in Synthetic and Bio-Based Aerogels: Mechanical Properties, Thermal Insulation, and Environmental Remediation)
►▼
Show Figures
Figure 1
Open AccessArticle
Nanostructured Hydrogels of Carboxylated Cellulose Nanocrystals Crosslinked by Calcium Ions
by
Alexander S. Ospennikov, Yuri M. Chesnokov, Andrey V. Shibaev, Boris V. Lokshin and Olga E. Philippova
Gels 2024, 10(12), 777; https://doi.org/10.3390/gels10120777 (registering DOI) - 28 Nov 2024
Abstract
Bio-based eco-friendly cellulose nanocrystals (CNCs) gain an increasing interest for diverse applications. We report the results of an investigation of hydrogels spontaneously formed by the self-assembly of carboxylated CNCs in the presence of CaCl2 using several complementary techniques: rheometry, isothermal titration calorimetry,
[...] Read more.
Bio-based eco-friendly cellulose nanocrystals (CNCs) gain an increasing interest for diverse applications. We report the results of an investigation of hydrogels spontaneously formed by the self-assembly of carboxylated CNCs in the presence of CaCl2 using several complementary techniques: rheometry, isothermal titration calorimetry, FTIR-spectroscopy, cryo-electron microscopy, cryo-electron tomography, and polarized optical microscopy. Increasing CaCl2 concentration was shown to induce a strong increase in the storage modulus of CNC hydrogels accompanied by the growth of CNC aggregates included in the network. Comparison of the rheological data at the same ionic strength provided by NaCl and CaCl2 shows much higher dynamic moduli in the presence of CaCl2, which implies that calcium cations not only screen the repulsion between similarly charged nanocrystals favoring their self-assembly, but also crosslink the polyanionic nanocrystals. Crosslinking is endothermic and driven by increasing entropy, which is most likely due to the release of water molecules surrounding the interacting COO− and Ca2+ ions. The hydrogels can be easily destroyed by increasing the shear rate because of the alignment of rodlike nanocrystals along the direction of flow and then quickly recover up to 90% of their viscosity in 15 s, when the shear rate is decreased.
Full article
(This article belongs to the Special Issue Advances in Cellulose-Based Hydrogels (3rd Edition))
►▼
Show Figures
Figure 1
Open AccessArticle
Preparation and Rheological Evaluation of Thiol–Maleimide/Thiol–Thiol Double Self-Crosslinking Hyaluronic Acid-Based Hydrogels as Dermal Fillers for Aesthetic Medicine
by
Chia-Wei Chu, Wei-Jie Cheng, Bang-Yu Wen, Yu-Kai Liang, Ming-Thau Sheu, Ling-Chun Chen and Hong-Liang Lin
Gels 2024, 10(12), 776; https://doi.org/10.3390/gels10120776 - 28 Nov 2024
Abstract
This study presents the development of thiol–maleimide/thiol–thiol double self-crosslinking hyaluronic acid-based (dscHA) hydrogels for use as dermal fillers. Hyaluronic acid with varying degrees of maleimide substitution (10%, 20%, and 30%) was synthesized and characterized, and dscHA hydrogels were fabricated using
[...] Read more.
This study presents the development of thiol–maleimide/thiol–thiol double self-crosslinking hyaluronic acid-based (dscHA) hydrogels for use as dermal fillers. Hyaluronic acid with varying degrees of maleimide substitution (10%, 20%, and 30%) was synthesized and characterized, and dscHA hydrogels were fabricated using two molecular weights of four-arm polyethylene glycol (PEG10K/20K)–thiol as crosslinkers. The six resulting dscHA hydrogels demonstrated solid-like behavior with distinct physical and rheological properties. SEM analysis revealed a decrease in porosity with higher crosslinker MW and maleimide substitution. The swelling ratios of the six hydrogels reached equilibrium at approximately 1 h and ranged from 20% to 35%, indicating relatively low swelling. Degradation rates decreased with increasing maleimide substitution, while crosslinker MW had little effect. Higher maleimide substitution also required greater injection force. Elastic modulus (G′) in the linear viscoelastic region increased with maleimide substitution and crosslinker MW, indicating enhanced firmness. All hydrogels displayed similar creep-recovery behavior, showing instantaneous deformation under constant stress. Alternate-step strain tests indicated that all six dscHA hydrogels could maintain elasticity, allowing them to integrate with the surrounding tissue via viscous deformation caused by the stress exerted by changes in facial expression. Ultimately, the connection between the clinical performance of the obtained dscHA hydrogels used as dermal filler and their physicochemical and rheological properties was discussed to aid clinicians in the selection of the most appropriate hydrogel for facial rejuvenation. While these findings are promising, further studies are required to assess irritation, toxicity, and in vivo degradation before clinical use. Overall, it was concluded that all six dscHA hydrogels show promise as dermal fillers for various facial regions.
Full article
(This article belongs to the Special Issue Recent Research on Medical Hydrogels)
►▼
Show Figures
Graphical abstract
Open AccessArticle
Novel Injectable Collagen/Glycerol/Pullulan Gel Promotes Osteogenic Differentiation of Mesenchymal Stem Cells and the Repair of Rat Cranial Defects
by
Xin Wang, Satoshi Komasa, Yoshiro Tahara, Shihoko Inui, Michiaki Matsumoto and Kenji Maekawa
Gels 2024, 10(12), 775; https://doi.org/10.3390/gels10120775 - 28 Nov 2024
Abstract
Bone tissue engineering is a technique that simulates the bone tissue microenvironment by utilizing cells, tissue scaffolds, and growth factors. The collagen hydrogel is a three-dimensional network bionic material that has properties and structures comparable to those of the extracellular matrix (ECM), making
[...] Read more.
Bone tissue engineering is a technique that simulates the bone tissue microenvironment by utilizing cells, tissue scaffolds, and growth factors. The collagen hydrogel is a three-dimensional network bionic material that has properties and structures comparable to those of the extracellular matrix (ECM), making it an ideal scaffold and drug delivery system for tissue engineering. The clinical applications of this material are restricted due to its low mechanical strength. In this investigation, a collagen-based gel (atelocollagen/glycerol/pullulan [Col/Gly/Pul] gel) that is moldable and injectable with high adhesive qualities was created by employing a straightforward technique that involved the introduction of Gly and Pul. This study aimed to characterize the internal morphology and chemical composition of the Col/Gly/Pul gel, as well as to verify its osteogenic properties through in vivo and in vitro experiments. When compared to a standard pure Col hydrogel, this material is more adaptable to the complexity of the local environment of bone defects and the apposition of irregularly shaped flaws due to its greater mechanical strength, injectability, and moldability. Overall, the Col/Gly/Pul gel is an implant that shows great potential for the treatment of complex bone defects and the enhancement of bone regeneration.
Full article
(This article belongs to the Special Issue Development of Nanogels/Microgels for Regenerative Medicine)
►▼
Show Figures
Graphical abstract
Open AccessArticle
CO2 Foamed Viscoelastic Gel-Based Seawater Fracturing Fluid for High-Temperature Wells
by
Jawad Al-Darweesh, Murtada Saleh Aljawad, Muhammad Shahzad Kamal, Mohamed Mahmoud, Shabeeb Alajmei, Prasad B. Karadkar and Bader G. Harbi
Gels 2024, 10(12), 774; https://doi.org/10.3390/gels10120774 - 27 Nov 2024
Abstract
This study investigates the development of a novel CO2-foamed viscoelastic gel-based fracturing fluid to address the challenges of high-temperature formations. The influence of various parameters, including surfactant type and concentration, gas fraction, shear rate, water salinity, temperature, and pressure, on foam
[...] Read more.
This study investigates the development of a novel CO2-foamed viscoelastic gel-based fracturing fluid to address the challenges of high-temperature formations. The influence of various parameters, including surfactant type and concentration, gas fraction, shear rate, water salinity, temperature, and pressure, on foam viscosity was systematically explored. Rheological experiments were conducted using a high-pressure/high-temperature (HPHT) rheometer at 150 °C and pressures ranging from 6.89 to 20.68 MPa. To simulate field conditions, synthetic high-salinity water was employed. The thermal stability of the CO2 foam was evaluated at a constant shear rate of 100 1/s for 180 min. Additionally, foamability and foam stability were assessed using an HPHT foam analyzer at 100 °C. The results demonstrate that liquid phase chemistry, experimental conditions, and gas fraction significantly impact foam viscosity. Viscoelastic surfactants achieved a peak foam viscosity of 0.183 Pa·s at a shear rate of 100 1/s and a 70% foam quality, surpassing previous records. At lower foam qualities (≤50%), pressure had a negligible effect on foam viscosity, whereas at higher qualities, it increased viscosity by over 30%. While a slight increase in viscosity was observed with foam qualities between 40% and 60%, a significant enhancement was noted at 65% foam quality. The addition of polymers did not improve foam viscosity. The generation of viscous and stable foams is crucial for effective proppant transport and fracture induction. However, maintaining the thermal stability of CO2 foams with minimal additives remains a significant challenge in the industry. This laboratory study provides valuable insights into the development of stable CO2 foams for stimulating high-temperature wells.
Full article
(This article belongs to the Special Issue Gels for Oil and Gas Industry Applications (3rd Edition))
►▼
Show Figures
Figure 1
Open AccessArticle
Reinforcement of Dextran Methacrylate-Based Hydrogel, Semi-IPN, and IPN with Multivalent Crosslinkers
by
Luca Paoletti, Gianluca Ferrigno, Nicole Zoratto, Daniela Secci, Chiara Di Meo and Pietro Matricardi
Gels 2024, 10(12), 773; https://doi.org/10.3390/gels10120773 - 27 Nov 2024
Abstract
The need for new biomaterials to meet the needs of advanced healthcare therapies is constantly increasing. Polysaccharide-based matrices are considered extremely promising because of their biocompatibility and soft structure; however, their use is limited by their poor mechanical properties. In this light, a
[...] Read more.
The need for new biomaterials to meet the needs of advanced healthcare therapies is constantly increasing. Polysaccharide-based matrices are considered extremely promising because of their biocompatibility and soft structure; however, their use is limited by their poor mechanical properties. In this light, a strategy for the reinforcement of dextran-based hydrogels and interpenetrated polymer networks (semi-IPNs and IPNs) is proposed, which will introduce multifunctional crosslinkers that can modify the network crosslinking density. Hydrogels were prepared via dextran methacrylation (DexMa), followed by UV photocrosslinking in the presence of diacrylate (NPGDA), triacrylate (TMPTA), and tetraacrylate (PETA) crosslinkers at different concentrations. The effect of these molecules was also tested on DexMa-gellan semi-IPN (DexMa/Ge) and, later, on IPN (DexMa/CaGe), obtained after solvent exchange with CaCl2 in HEPES and the resulting Ge gelation. Mechanical properties were investigated via rheological and dynamic mechanical analyses to assess the rigidity, resistance, and strength of the systems. Our findings support the use of crosslinkers with different functionality to modulate the properties of polysaccharide-based scaffolds, making them suitable for various biomedical applications. While no significative difference is observed on enriched semi-IPN, a clear improvement is visible on DexMa and DexMa/CaGe systems when TMPTA and NPGDA crosslinker are introduced at higher concentrations, respectively.
Full article
(This article belongs to the Special Issue Rheological Properties and Applications of Gel-Based Materials)
►▼
Show Figures
Graphical abstract
Journal Menu
► ▼ Journal Menu-
- Gels Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Topics
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Editor’s Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Editorial Office
Journal Browser
► ▼ Journal BrowserHighly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Batteries, Catalysts, Gels, Molecules, Nanomaterials, IJMS
Advanced Nanomaterials and Technologies for Sustainable Development
Topic Editors: Shuijian He, Haoqi Yang, Hua ZhangDeadline: 31 March 2025
Conferences
Special Issues
Special Issue in
Gels
Hydrogel for Tissue Engineering and Biomedical Therapeutics
Guest Editor: Hyun Jong LeeDeadline: 10 December 2024
Special Issue in
Gels
Engineering Hydrogel for Biomedical Applications (2nd Edition)
Guest Editors: Junfeng Shi, Fei XuDeadline: 10 December 2024
Special Issue in
Gels
Hydrogels with Appropriate/Tunable Properties for Biomedical Applications (2nd Edition)
Guest Editors: Yazhong Bu, Yanyu Yang, Feifei SunDeadline: 15 December 2024
Special Issue in
Gels
Latest Advances and Prospects of Hydrogels for Biomedical Applications
Guest Editors: Federica Curcio, Roberta Cassano, Sonia TrombinoDeadline: 20 December 2024
Topical Collections
Topical Collection in
Gels
Recent Advances and Future Perspectives in Stimuli-Responsive Gels
Collection Editors: Dirk Kuckling, Sandra Van Vlierberghe
Topical Collection in
Gels
Hydrogel in Tissue Engineering and Regenerative Medicine
Collection Editor: Esmaiel Jabbari
Topical Collection in
Gels
Recent Advances and Future Perspectives in Organogels and Organogelators Research
Collection Editor: Jean-Michel Guenet